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Abstract

Theory of pointlike magnetic monopole with an arbitrary magnetic charge is considered. It is shown that a proper description
requires making use of nonunitary representations of the rotation group and the nonassociative generalization of the gauge
group and fibre bundle theory.
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1. Introduction description pointlike Abelian magnetic monopole in
the framework of fibre bundle theory. Finally, Dirac’s
In his remarkable paper Dirac [1] showed that guantization condition can be derived employing the

a proper description of the quantum mechanics of Unitary representation of the rotation group.

the magnetic monopole of the chargerequires the ~ tent theory of the magnetic monopole with an arbi-

¢ = 1). There are strong mathematical and physical tations of the rotation group and nonassociative gen-
arguments why this condition must be fulfilled [1-10]. eralization of gauge transformations and fibre bundles
For instance, it restores associativity of the translation theory, where a gauge group is replaced by gauge loop.
group for the charge-monopole system, ensures the

absence of an Aharanov—-Bohm effect produced by

a Dirac string, arises as natural condition of the 2. prdiminaries
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and as well-known any choice of the vector poterial
being compatible with Eq. (1) must have singularities.
For instance, Dirac introduced the vector potential as

rxn
An=¢g——, 2
n qr(r —n-r) (2)
where the unit vecton determines the direction of

a string S, passing from the origin of coordinates to
oo [1]. Schwinger’s choice is

1 n-nNrxn
ASW=Z(Ap+A_N=¢g—5——5 3
2( n+ n) qr(rz_(n.r)z)’ ( )
and the string is propagated froavo to oo [2].
Itis easy verify that
rotA, =B — hy, rotASW =B — hSW,
where
o0
hn = 4mgn / 83(r —no)dr, 4)
0
oo
hSW = 27¢n / 83(r —n1)dr, (5)
—00

determine the magnetic field of the respective strings.
Both vector potentials yield the same magnetic mono-
pole field, however the quantization is different, while
the Dirac condition is 2 = p, the Schwinger one is
w=p,pEL.

These two strings are members of a famigf;}
with the magnetic field given by

e = ichin + (1 — K)h_n, ®)

wherex is a weight of a semi-infinite Dirac’s string.
Further we callS;, aweighted string.

For a non relativistic charged patrticle in the field of
a magnetic monopole the equations of motion

.M ,
r=r—3rxr @)

imply that the total angular momentum

®)

is conserved. The last term in Eq. (8) usually is
interpreted as the contribution of the electromagnetic
field, which carries an angular momentum [11-13]

J:rx(p—eA)—p,E
’

1 3 r
Lem=— [ rx(ExB)d°r=—u-.
4 r
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The operator

©)

representing the angular momentumhas the same
properties as a standard angular momentum and obeys
the following commutation relations:

r
J=r x(—iV—eA)—u-,
’

[H.J*]=0,  [H,Ji]=0,

[Ji, Ji1=ieijk Ik,

[32, 7] =0, (10)
(11)

whereH is the Hamiltonian. Notice that the commu-
tation relations fail on the string, howevéd, andJ
may be extended to self-adjoint operators satisfying
the commutation relations of Egs. (10), (11) for any
value ofu [14-16].

Now following [3,4], let us cover the two-dimensio-
nal spheres? of fixed radiusr > 0 by two neighbor-
hoods 0< 6 <n/2+ ¢ andw/2 — e <0 <m. The
vector potential is taken to be

1-cosd, 1+cosp,
- — &, (12
r sind r sind S (12)

where (r, 0, ¢) are the spherical coordinates. Notice
that Ay, s have singularities on(S, N) pole of the
sphere and in the overlap of the neighborhodds
andAg are related by a gauge transformation.
Choosing the vector potential &y we have

Aqu ) ASZ_CI

: 0 0 sing
Je=cFo(+ L yicoto— - L7 ) (13)
36 dp 1+ cosd
3
Jo=—i— —p, (14)
de
5 1 9 /. 9 1 92
=———|(siNff— )| - ———
sing 90 90 Sintg d¢?
j— i 15
i cosag M Ttrcom T (15)

whereJi = J, £iJ, are the raising and the lowering
operators fot/o = J..

Schrddinger’'s equation written in the spherical
coordinates as

1 d(,9

<_ 2mr2 or (r 5) +
admits the separation of variables and, puttihg=
R()Y (0, ¢) into Eq. (16), we get

1 d I+ 1) — u?
- — —— "R
( 2mr2 dr (r 2mr? )

32— p?)
2

)II/ =FEv, (16)
2mr

2d

5)+
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= ER(r),
2Y(0,0) =1L +1)Y (B, 9). 17)
Starting fromJpY,, = mY,, and writing
Y, = eiawza/Z(l _ Z)ﬂ/zF,
a=m+pu, p=m—pu,
where z = (1 — cos9)/2, we obtain the resultant
equation in the standard form of the hypergeometric
equation,

2

dF
z(l—z)d—Z2+(c—(a+b+1)z)d—Z—abF:O,
(18)
where
c=m+u+1, a+b=2m+1,
=m—-D(I+m+1). (19)

The hypergeometric functior¥ (a, b; c; z) diverges
whenf(c — b — a) < —1, and it reduces to a poly-
nomial of degree: in z whena or b is equal to—n,
(n=0,1,2,...). Fora being negative integer we find
that the corresponding solution of Eq. (18) is of the
form [17,18]

F=21—2) pu(2),

wherep, (z) is a polynomial inz of degreen.

Here we are looking for the regular solutions,
like (20), of the Schrodinger equation (17). The
requirement of the wave function being single valued
force us to taken + u as an integer. The respective
regular solution is given by

(20)

! zal2(1 _ BI2F(a, b; ¢; 7),
c=m+pu+1 (21)

Yu = Clmu

a=m + M, ﬁ =m-—-u,
whereCy,,,, is the normalization and for the parame-
tersa andb we have:

a=-—n, b=n4+a+p+1 ifa=012...,
a=n+1, b=—n—a-g,
fa=-1-2,....

It follows that F reduces to the Jacobi polynomials
PP so thaty, takes the form (compare with [4,11])

YI(W”) — C[,Wei‘w(l _ u)la\/z(l + u)|5|/2pn(\<¥|»\ﬂ\)(u)’
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a=Il+pu—n,p=1—pu—nandl =m+n. Since
m + u is an integer we conclude thiat- . must be an
integer too.

The function YZ(“’”) is a member of a family

{y“"} such that

Y’((f;,n) _ e_iZK“le(M’n) (22)
is a solution of the Schrdédinger equation correspond-

ing to the vector potential

A“=kAg+ (1—k)Ay.

The requwementY(“ " peing single valued yields
2« 1 being integer. Thus, for a givem a weightk is
guantizied parameter in units pf

The wave functionsr® " form a complete set
of orthonormal solutlons that implies any solution
(0, ¢; u, k) can be expanded as
=Y CcnyM, Cn

=¥, (23)

Similar consideration can be done for the vector poten-
tial Ag. In this casd€l — u) € Z and the corresponding
wave functions belng’( mam) Yl(“K”g form a com-
plete set of orthonormal solutions as well.

For (I £ 1) and Zpu all being integers we call
the functionsy >*" weighted monopole harmonics.
They are regular for the all allowed valuesiofi and
. Whenn + a, n + 8 andn + o + 8 all are integers
> 0 andkx = 0 the weighted monopole harmonics are
reduced to thenonopole harmonicsintroduced by Wu
and Yang [4], and the imposed here restrictions on
the values ofi, « and g yield the Dirac quantization
condition.

3. Nonunitary representationsof therotation
group and solution of Dirac’s monopole problem

It is known that the unitary representations of the
rotation group leads to Dirac’s quantization condition,
2u € Z [14-16,21]. Thus, the unique way to avoid the
Dirac’s rule is to consider nonunitary representations.
In what follows, assuminge being arbitrary parame-
ter, we are looking for nonunitary representations of
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the rotation group relating to an arbitrary magnetic
charge [19}.
Forl(/ + 1) being value of the Casimir operator

1
C=J2+ SUTy 40300, (24)

we denote the states by n),n =0, 1, ..., co. For the
representations bounded below we obtain

Jill,ny =@ +n)n+1)|l,n+1), (25)
J_|l,n)=—y/n@ +n—-1)l,n—1), (26)
Joll,n) = (I +n)|l,n). (27)

The representation is characterized by the eigenvalue
of the highest-weight staté¥, 0) such that/_|/, 0) =

0 and Jp|l,0) = I|{,0). Comparing Eq. (27) with
JoY/"" = my/"™ and remembering that + p € Z
(see Section 2) we conclude that w is an integer.

Thus, the representation bounded below also can be

characterized by + u being integer. Taking into
account the restriction following from the Schrodinger
equationi(/ + 1) — u? > 0, we find that the allowed
values ofl are

I=lul+{—(n+IuDt+k, k=01,2.... (28)
For the representation bounded above we have

Jell,n) =—yn@ +n—1)|l,n—1), (29)
J_|l,n)=y(n+D@2 +n)|l,n+1), (30)
Joll,n) == +n)|l, n). (31)

This representation is characterized by the eigen-

value —! of the highest-weight statel, 0) such that
J+|1,0) =0 andJoll, 0) = —I|/, 0). We found that in
this casé — u is an integer and the allowed valued of
are

I=|u|+{u—lul}+k k=012 ... (32)

The obtained representations can be realized in 32y (z) =1(l + )Y (2),

the space of holomorphic functions of a complex
variablez. Following [20] we assign a “wave function”
(zll, n) by

(I +p) = (zll,n) = A",

(—w = (zll,n)=Az724™",

(33)
(34)

1 We follow the ideas of [20] where the description of infinite

dimensional unitary representations has been done for the group Y (2)

SU(1L,1)
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whereA = /T2 +n)/T(n +1DI'(2l — 1) is a nor-
malization,I" being the Gamma function. The mono-
mials (33) and (34) form the basis for the analytic
functions in the unit dis®: |z| <1andinD: |z] >1,
respectively.

The Lie algebra is realized by the differential
operators:

Jy =720, + 2z, J_=—9d., Jo=129. +1,
(35)
[J4, J_1=2Jo, [Jo, J+]=+J4, (36)

and an arbitrary state of the representation is of the
form
o0
f@=)_ falzll.n). (37)
n=0
The inner product of two holomorphic functions is
defined as follows:

NN
U+ = (f1g) =5 / d2dz o (38)
D
R
(I_IL):> (f|g> - 27i /dZdZ (|Z|2_1)2721- (39)

D

With the introduced inner product the group represen-
tation is infinite dimensional, irreducible and nonuni-
tary.

Finite-dimensional representation arises when

takes the exceptional values 2 p with p being

positive integer. In this case the representation is
unitary and bounded from above and below. One
has the standard selectional ruléss |u| + &, k =
0,1,2,...,m=—l1,...,1, and the Dirac quantization
condition holds [4].

Returning to the eigenvalues equations

(40)

JoY(2) =+l +n)Y(z) (41)

we see that their solutions given by eigenfunctions

Y™ (z) of Egs. (33), (34) satisfy the Schrodinger
equation (17). Introducing the wave function as fol-
lows: ¥ (r,z) = R(r)Y (z), whereY(z) is a holomor-
phic function:

=Y fulzll.n) (42)
n=0
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we obtain the solution of the monopole problem inside
of the unit disc and for an arbitrary monopole charge.

For D1 being unit disc we relateg € D4 to
the points of the upper semi sphepe, via the
stereographic projection from the south pole ars
D_ to the points of the lower semi-spheke. via the
stereographic projection from the north pole. Covering
the two-spheré? as follows:S? = D, U D_, we have
the solution of the Schrédinger equation of the form
v(r,0,9) =¥, UWw_ for the whole sphere. In the
intersectionD; N D_ the functions¥, must satisfy
the relationy, = w_.

4. Gaugetransformationsand monopole charge
quantization

Before proceeding let us note that with the repre-
sentationg/ + u) are related two string familie$Sy }
and{S*, }. Their respective vector potentials are

(43)
(44)

Al =kAn+ (A —«k)A_n, 2¢pn€ez,
AR =RA 4+ (1A —K)An, 2RpelZ,

and the changsX — S*, is given by the following
gauge transformation:

AC = A —dyl, k=1—k-vy, (45)
(rxn)y-dr

dxh =2yq—5———, 46

Xn yqrz _ (n | r)2 ( )

xn being polar angle in the plane orthogonahto

We start with an observation that due to the string
guantization one has the equivalence relatiariu2=
2k modZ. Therefore, further we restrict ourselves
by the gauge transformations, that do not change
the weight of the stringSy — Sy,. It produces the
transformation(Ay, ¥y) — (A, w%) given by [2,24]

n:

Wy (r) =exp(—ie® () ¥y (1), 47)
where the functiomﬁgvn/(r) satisfies
AR — Al (1) =V &f | (F). (48)

Let denote byn" = gn, g € SO(3), the left action of
the rotation group induced b§f — S;,. From rota-
tional symmetry of the theory it follows immediately
that an arbitrary gauge transformatigff — ¥, can
be undone by rotatiom — rg. Using this fact and
adopting results of [4,5,22] we find that an arbitrary
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gauge transformatioti, , producing the rotation of the

string S§ — Sy, is given by nonintegrable phase fac-
tor,
UgWk (r) = explia (r,n; g)) X (1), (49)
r/
al(r;g)ze/A’é(g)dE, r'=rg, (50)

r
where the integration is performed along the geodesic
rr’ c $2 andey is the so-called first cochain [5,6,23].
Actually, U, is an operator of the parallel transport
along the geodesics on the two-dimensional sphere of
the fixed radius.
For a given cochain a 2-cocyclex; is defined by

az(r; g1, g2) = 0oy = a1 (rg1; g2)
—o1(r; g182) +aa(r; g1) (51)

which satisfiesaz = 0, and, forxz being 2-cochain, a
3-cocyclexs = daz is given by

as(r; g1, 82, 83) = a2(r g1; g2, 83) — a2(r; g182, £3)
+a2(r; g1, g283) — a2(r; g1, £2).

Similarly one can introducen-cocycle «,(r; g1,
g2, ..., 8n) [6,23].

Following [5,6] let us define a 2-cochaismy, by

az(r;gl,g2)=e/BdS=e¢|z, (52)

)

where @|y is a magnetic flux through the geodesic
triangle ¥ ¢ $2 spanned by(r,rgi,rgig2). Since

B =V x A locally, but not globally thenw; is a 2-
cochain and not a 2-cocycle. Indeed, applying Stokes’
theorem we get

az(r; g1, g2) =8 (r; g1, 82) + o (S5, ¥), (53)

whereo = [, hf - ds being contribution of the string
is not zero if and only if the string crosses

For computing> let us divideRr® into R2 and k3
by the plane passing through the origin of coordinates
and orthogonal ton. Assuming that the stringsy
crossesy at a pointpg, we find

4 (1 — rNR3
_A4rQ—n, poe = (54)
Ak, pPo€ X NRY.
Since Zu is an integer, one has
o = 8oy + 4| p, mod 27 Z. (55)
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Similar consideration of the gauge transformations = The gauge loop is associated also with the loop
Sy — S¥,, related with the reflections, yields QU(1) defined as a loop of multiplication by unimod-
ular complex numbers [26—28]:

& i & = g,
Examining the composition of two operatols, axf=a+p+Fp)

and Ug,, we find that 2-cochainx, occurs in its
composition law as follows:

a2 =8a1 +4r(1— 2c)p =8 + 4w mod 2rZ.

F(a,0)= F(0, ) =0. (60)

Before proceeding notice that QU(1) is isomorphic to
Ug Ug, W5 (1) = explio2(r: g1, 82)) Ugy g, %y (1), (56) the group U(1) if

Consider now three elementsg, g2, g3 € O(3) _ .
producing the transformation — Sy , S§ — Sp., F(a.pxy)=0mod 2rZ. (61)

S5 — Sk, respectively. Then the product of the three thatis a 2-cocycle conditiofuz =0 mod 2 Z.

operators is given by Assuming QU(1) to be a local loop we define a
respective gauge loop ov&f by
Ug,(Ug, Ug )W (1
01U Uga) % (1) Ua(n) Wiy (1) = explia(n) &5 (1), (62)
. . K
= exp(iaa(r; 81, 82, 83)) (Ug Ugy ) Ugs W (1), Ut Upty (1) = Unyspie W (). (63)
whereus is athree cocycle. Here the operatiom(r) * B(r) is given by Eq. (60)

From Egs. (52) and (55) it follows:s = 4mu with F(a, B: 1) determined as followsF = o'(SX, X)
mod 27Z if the monopole is enclosed by the geodesic \yhere the geodesic trianglE c $2 is spanned by
simple>_< with verticegr, rg1, rgig2, rg1g2g3) or zero (r,T84,T8p), gu> 88 € SO3). For computingg, we
otherwise’ employ the rotational symmetry of the theory. This

We turn now to Eg. (56) and rewrite the product of jmpjies that for a given strin and gauge function

the two transformations as a(r) the following equation holds:
UgUg, W (1) = Up(gy,g2:1) W (1), (57) W (r') =W (r) = explia(n)) ¥y (n),
’_ ’_
whereg is defined by I'=rgo,N =guN, ga € SOA). (64)
It should be considered as the equation for findjpg
@(g1,82; 1) = oy (5 g182) +a2(r'; g1, 82) Returning now to Eq. (63) we see that the local loop
— a1(r; g1) +aa(r; g2) + 0 (S5, 2. (58) ?5[;)(1) becomes the gauge loop defined by Egs. (57),

Itis easy verify that the following identity of quasi-
associativity holds:
5. Discussion and concluding remarks
9(g1, (82, 83:1): 1) = ¢(9(g1, g2: T g3), g3: ). (59)
] o We deduced a consistent pointlike monopole the-
We say that Egs. (57)—(59) defingaugeloop. This is ory, with an arbitrary magnetic charge, involving
a special case of transformation quasigroup introduced o nitary representations of the rotation group and
by Batalin [25] and a 3-cocycle, being a “measure” of  aking use of nonassociative QU(L) bundle oy
nonassociativity, can be related with an associator in \ynere QU(L) is the structure loop [26—28]. From our
theory of quasigroups and loops [26-30]. approach it follows a generalized quantization condi-
tion, 2cu € Z, that can be considered as quantization
2 Similar analysis related with the modification of the translation of the weight string instead of the monopole charge. In

group in the presence of the magnetic monopole has been done inParticular cases = 1 and’f =1/21it yields_the Dirac
[5] (see also [6-9]). and Schwinger selectional rules, respectively.
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At first sight our results are in contradiction with  Avoiding this condition forces us to go beyond the
well-known topological and geometrical arguments in  standard quantum mechanical approach and introduce
behalf of Dirac quantization rule [2,3,10]. For the anonassociative algebra of observables[5-9]. Notice
better understanding of the problem let us notice that that in ordinary quantum mechanics the Schrédinger
known proofs are based on employing unitary finite- and Heisenberg pictures are equivalent, but the same
dimensional representations of the rotation group or is not true in a nonassociative quantum mechanics. In-
classical fibre bundle theory. One can remove the deed, whilst the concept of the Hilbert space failed
effect of 3-cocycle imposing the Dirac quantization for nonassociative algebras, the Heisenberg approach
condition, however, this arises only from a realization could be still realized [31-33]. In a possible nonasso-
of the monopole as U(1) bundle ove [3,4,6]. ciative quantum mechanics one must give up a con-
This implies that there exists the division of space ventional description of the quantum mechanics pro-
into overlapping regionglU;} such that nonsingular  vided by Hilbert space concept and look for the gener-
vector potential can be defined and yields the correct alization based on the Heisenberg approach and maybe
monopole magnetic field in each region. On each only in terms of density matrix [9,32,33].
intersectionU; N U; can be defined the transition
functionsg;; = e®n;n; such that/; N"U; — U(1). On

the triple overlag; N U; N Uy it holds Acknowledgements
expli (gij + qjk + qui)) = EXpidr ), (65) Authors thank the referee for helpful comments
and the consistency condition requirgs + ¢ + improving the manuscript.
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