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Abstract

Theory of pointlike magnetic monopole with an arbitrary magnetic charge is considered. It is shown that a proper description
requires making use of nonunitary representations of the rotation group and the nonassociative generalization of the gauge
group and fibre bundle theory.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In his remarkable paper Dirac [1] showed that
a proper description of the quantum mechanics of
a charged particle of the chargee in the field of
the magnetic monopole of the chargeq requires the
quantization condition 2µ ∈ Z (we setµ= eq andh̄ =
c = 1). There are strong mathematical and physical
arguments why this condition must be fulfilled [1–10].
For instance, it restores associativity of the translation
group for the charge-monopole system, ensures the
absence of an Aharanov–Bohm effect produced by
a Dirac string, arises as natural condition of the
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description pointlike Abelian magnetic monopole in
the framework of fibre bundle theory. Finally, Dirac’s
quantization condition can be derived employing the
unitary representation of the rotation group.

In our Letter we show that there exists the consis-
tent theory of the magnetic monopole with an arbi-
trary magnetic charge. It requires nonunitary represen-
tations of the rotation group and nonassociative gen-
eralization of gauge transformations and fibre bundles
theory, where a gauge group is replaced by gauge loop.

2. Preliminaries

A magnetic field of the monopole is

(1)B = q
r
r3

,

0375-9601/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(02)01172-6

http://www.elsevier.com/locate/pla
http://udgserv.cencar.udg.mx/~nesterov


254 A.I. Nesterov, F.A. de la Cruz / Physics Letters A 302 (2002) 253–260

and as well-known any choice of the vector potentialA
being compatible with Eq. (1) must have singularities.
For instance, Dirac introduced the vector potential as

(2)An = q
r × n

r(r − n · r)
,

where the unit vectorn determines the direction of
a stringSn passing from the origin of coordinates to
∞ [1]. Schwinger’s choice is

(3)ASW = 1

2
(An + A−n)= q

(n · r)r × n
r(r2 − (n · r)2)

,

and the string is propagated from−∞ to ∞ [2].
It is easy verify that

rotAn = B − hn, rotASW = B − hSW,

where

(4)hn = 4πqn

∞∫
0

δ3(r − nτ ) dτ,

(5)hSW = 2πqn

∞∫
−∞

δ3(r − nτ ) dτ,

determine the magnetic field of the respective strings.
Both vector potentials yield the same magnetic mono-
pole field, however the quantization is different, while
the Dirac condition is 2µ = p, the Schwinger one is
µ = p, p ∈ Z.

These two strings are members of a family{Sκ
n}

with the magnetic field given by

(6)hκ
n = κhn + (1− κ)h−n,

whereκ is a weight of a semi-infinite Dirac’s string.
Further we callSκ

n aweighted string.
For a non relativistic charged particle in the field of

a magnetic monopole the equations of motion

(7)r̈ = µ

r3 r × ṙ

imply that the total angular momentum

(8)J = r × (p − eA)−µ
r
r

is conserved. The last term in Eq. (8) usually is
interpreted as the contribution of the electromagnetic
field, which carries an angular momentum [11–13]

Lem = 1

4π

∫
r × (E × B) d3r = −µ

r
r
.

The operator

(9)J = r × (−i∇ − eA)−µ
r
r
,

representing the angular momentumJ, has the same
properties as a standard angular momentum and obeys
the following commutation relations:

(10)
[
H,J2] = 0, [H,Ji] = 0,

[
J2, Ji

] = 0,

(11)[Ji, Jj ] = iεijkJk,

whereH is the Hamiltonian. Notice that the commu-
tation relations fail on the string, however,H and J
may be extended to self-adjoint operators satisfying
the commutation relations of Eqs. (10), (11) for any
value ofµ [14–16].

Now following [3,4], let us cover the two-dimensio-
nal sphereS2 of fixed radiusr > 0 by two neighbor-
hoods 0� θ < π/2 + ε andπ/2 − ε � θ < π . The
vector potential is taken to be

(12)AN = q
1− cosθ

r sinθ
êϕ, AS = −q

1+ cosθ

r sinθ
êϕ,

where(r, θ,ϕ) are the spherical coordinates. Notice
that AN,S have singularities on(S,N) pole of the
sphere and in the overlap of the neighborhoodsAN

andAS are related by a gauge transformation.
Choosing the vector potential asAN we have

(13)J± = e±iϕ

(
± ∂

∂θ
+ i cotθ

∂

∂ϕ
− µsinθ

1+ cosθ

)
,

(14)J0 = −i
∂

∂ϕ
−µ,

J2 = − 1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− 1

sin2 θ

∂2

∂ϕ2

(15)+ i
2µ

1+ cosθ

∂

∂ϕ
+µ21− cosθ

1+ cosθ
+µ2

whereJ± = Jx ± iJy are the raising and the lowering
operators forJ0 = Jz.

Schrödinger’s equation written in the spherical
coordinates as

(16)

(
− 1

2mr2

∂

∂r

(
r2 ∂

∂r

)
+ (J2 −µ2)

2mr2

)
Ψ =EΨ,

admits the separation of variables and, puttingΨ =
R(r)Y (θ,ϕ) into Eq. (16), we get(

− 1

2mr2

d

dr

(
r2 d

dr

)
+ l(l + 1)−µ2

2mr2

)
R(r)
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=ER(r),

(17)J2Y (θ,ϕ)= l(l + 1)Y (θ,ϕ).

Starting fromJ0Yµ =mYµ and writing

Yµ = eiαϕzα/2(1− z)β/2F,

α =m+µ,β =m−µ,

where z = (1 − cosθ)/2, we obtain the resultant
equation in the standard form of the hypergeometric
equation,

(18)

z(1− z)
d2F

dz2 + (
c − (a + b + 1)z

)dF
dz

− abF = 0,

where

c =m+µ+ 1, a + b = 2m+ 1,

(19)ab = (m− l)(l +m+ 1).

The hypergeometric functionF(a, b; c; z) diverges
when �(c − b − a) � −1, and it reduces to a poly-
nomial of degreen in z whena or b is equal to−n,
(n = 0,1,2, . . .). Fora being negative integer we find
that the corresponding solution of Eq. (18) is of the
form [17,18]

(20)F = zδ(1− z)γ pn(z),

wherepn(z) is a polynomial inz of degreen.
Here we are looking for the regular solutions,

like (20), of the Schrödinger equation (17). The
requirement of the wave function being single valued
force us to takem + µ as an integer. The respective
regular solution is given by

Yµ = Clmµe
i(m+µ)ϕzα/2(1− z)β/2F(a, b; c; z),

(21)α = m+µ, β =m−µ, c =m+µ+ 1,

whereClmµ is the normalization and for the parame-
tersa andb we have:

a = −n, b = n+ α + β + 1, if α = 0,1,2, . . . ,

a = n+ 1, b = −n− α − β,

if α = −1,−2, . . . .

It follows thatF reduces to the Jacobi polynomials
P

(α,β)
n so thatYµ takes the form (compare with [4,11])

Y
(µ,n)
l = Clnµe

iαϕ(1− u)|α|/2(1+ u)|β|/2P (|α|,|β|)
n (u),

α = l + µ − n, β = l − µ − n and l = m + n. Since
m+µ is an integer we conclude thatl +µ must be an
integer too.

The function Y
(µ,n)
l is a member of a family

{Y (µ,n)
κ,l } such that

(22)Y
(µ,n)
κ,l = e−i2κµϕY

(µ,n)
l

is a solution of the Schrödinger equation correspond-
ing to the vector potential

Aκ = κAS + (1− κ)AN.

The requirementY (µ,n)
κ,l being single valued yields

2κµ being integer. Thus, for a givenµ a weightκ is
quantizied parameter in units ofµ.

The wave functionsY (µ,n)
κ,l form a complete set

of orthonormal solutions that implies any solution
Ψ (θ,ϕ;µ,κ) can be expanded as

(23)Ψ =
∑
ln

ClnY
(µ,n)
κ,l , Cln = 〈Y (µ,n)

κ,l |Ψ 〉.

Similar consideration can be done for the vector poten-
tial AS . In this case(l−µ) ∈ Z and the corresponding
wave functions beingY (−µ,n)

κ,l = Y
(µ,n)
1−κ,l form a com-

plete set of orthonormal solutions as well.
For (l ± µ) and 2κµ all being integers we call

the functionsY (±µ,n)
κ,l weighted monopole harmonics.

They are regular for the all allowed values ofl, n and
µ. Whenn+ α, n+ β andn+ α + β all are integers
� 0 andκ = 0 the weighted monopole harmonics are
reduced to themonopole harmonics introduced by Wu
and Yang [4], and the imposed here restrictions on
the values ofn,α andβ yield the Dirac quantization
condition.

3. Nonunitary representations of the rotation
group and solution of Dirac’s monopole problem

It is known that the unitary representations of the
rotation group leads to Dirac’s quantization condition,
2µ ∈ Z [14–16,21]. Thus, the unique way to avoid the
Dirac’s rule is to consider nonunitary representations.
In what follows, assumingµ being arbitrary parame-
ter, we are looking for nonunitary representations of
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the rotation group relating to an arbitrary magnetic
charge [19]1.

For l(l + 1) being value of the Casimir operator

(24)C = J 2
0 + 1

2
(J−J+ + J+J−),

we denote the states by|l, n〉, n = 0,1, . . . ,∞. For the
representations bounded below we obtain

(25)J+|l, n〉 = √
(2l + n)(n+ 1) |l, n+ 1〉,

(26)J−|l, n〉 = −√
n(2l + n− 1) |l, n− 1〉,

(27)J0|l, n〉 = (l + n)|l, n〉.
The representation is characterized by the eigenvaluel

of the highest-weight state:|l,0〉 such thatJ−|l,0〉 =
0 and J0|l,0〉 = l|l,0〉. Comparing Eq. (27) with
J0Y

µ,m
l = mY

µ,m
l and remembering thatm + µ ∈ Z

(see Section 2) we conclude thatl + µ is an integer.
Thus, the representation bounded below also can be
characterized byl + µ being integer. Taking into
account the restriction following from the Schrödinger
equation:l(l + 1) − µ2 � 0, we find that the allowed
values ofl are

(28)l = |µ| + {−(µ+ |µ|)} + k, k = 0,1,2, . . . .

For the representation bounded above we have

(29)J+|l, n〉 = −√
n(2l + n− 1)) |l, n− 1〉,

(30)J−|l, n〉 = √
(n+ 1)(2l + n) |l, n+ 1〉,

(31)J0|l, n〉 = −(l + n)|l, n〉.
This representation is characterized by the eigen-
value−l of the highest-weight state:|l,0〉 such that
J+|l,0〉 = 0 andJ0|l,0〉 = −l|l,0〉. We found that in
this casel−µ is an integer and the allowed values ofl

are

(32)l = |µ| + {µ− |µ|} + k, k = 0,1,2, . . . .

The obtained representations can be realized in
the space of holomorphic functions of a complex
variablez. Following [20] we assign a “wave function”
〈z|l, n〉 by

(33)(l +µ)⇒ 〈z|l, n〉 =Azn,

(34)(l −µ)⇒ 〈z|l, n〉 =Az−2l−n,

1 We follow the ideas of [20] where the description of infinite
dimensional unitary representations has been done for the group
SU(1,1)

whereA = √
3(2l + n)/3(n + 1)3(2l − 1) is a nor-

malization,3 being the Gamma function. The mono-
mials (33) and (34) form the basis for the analytic
functions in the unit discD: |z| � 1 and inD̃: |z| � 1,
respectively.

The Lie algebra is realized by the differential
operators:

(35)

J+ = z2∂z + 2lz, J− = −∂z, J0 = z∂z + l,

(36)[J+, J−] = 2J0, [J0, J±] = ±J±,

and an arbitrary state of the representation is of the
form

(37)f (z)=
∞∑
n=0

fn〈z|l, n〉.

The inner product of two holomorphic functions is
defined as follows:

(38)(l +µ)⇒ 〈f |g〉 = 1

2πi

∫
D

dz̄ dz
f̄ g

(1− |z|2)2−2l ,

(39)(l −µ)⇒ 〈f |g〉 = 1

2πi

∫
D̃

dz̄ dz
f̄ g

(|z|2 − 1)2−2l .

With the introduced inner product the group represen-
tation is infinite dimensional, irreducible and nonuni-
tary.

Finite-dimensional representation arises whenl

takes the exceptional values 2l = p with p being
positive integer. In this case the representation is
unitary and bounded from above and below. One
has the standard selectional rules:l = |µ| + k, k =
0,1,2, . . ., m = −l, . . . , l, and the Dirac quantization
condition holds [4].

Returning to the eigenvalues equations

(40)J2Y (z)= l(l + 1)Y (z),

(41)J0Y (z)= ±(l + n)Y (z)

we see that their solutions given by eigenfunctions
Y
(µ,n)
l (z) of Eqs. (33), (34) satisfy the Schrödinger

equation (17). Introducing the wave function as fol-
lows: Ψ (r, z) = R(r)Y (z), whereY (z) is a holomor-
phic function:

(42)Y (z)=
∞∑
n=0

fn〈z|l, n〉
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we obtain the solution of the monopole problem inside
of the unit disc and for an arbitrary monopole charge.

For D± being unit disc we relatez ∈ D+ to
the points of the upper semi sphereΣ+ via the
stereographic projection from the south pole andz ∈
D− to the points of the lower semi-sphereΣ− via the
stereographic projection from the north pole. Covering
the two-sphereS2 as follows:S2 =D+ ∪D−, we have
the solution of the Schrödinger equation of the form
Ψ (r, θ,ϕ) = Ψ+ ∪ Ψ− for the whole sphere. In the
intersectionD+ ∩ D− the functionsΨ± must satisfy
the relation:Ψ+ = Ψ−.

4. Gauge transformations and monopole charge
quantization

Before proceeding let us note that with the repre-
sentations(l ±µ) are related two string families:{Sκn }
and{Sκ̃−n}. Their respective vector potentials are

(43)Aκ
n = κAn + (1− κ)A−n, 2κµ ∈ Z,

(44)Aκ̃−n = κ̃A−n + (1− κ̃)An, 2κ̃µ ∈ Z,

and the changeSκn → Sκ̃−n is given by the following
gauge transformation:

(45)Aκ̃−n =Aκ
n − dχ

γ
n , κ̃ = 1− κ − γ,

(46)dχ
γ
n = 2γ q

(r × n) · dr
r2 − (n · r)2

,

χn being polar angle in the plane orthogonal ton.
We start with an observation that due to the string

quantization one has the equivalence relation: 2κ ′µ =
2κµ modZ. Therefore, further we restrict ourselves
by the gauge transformations, that do not change
the weight of the string,Sκn → Sκn′ . It produces the
transformation(Aκ

n,Ψ
κ
n )→ (Aκ

n′ ,Ψ κ
n′) given by [2,24]

(47)Ψ κ
n′(r)= exp

(−ieΦκ
n,n′(r)

)
Ψ κ

n (r),

where the functionΦκ
n,n′ (r) satisfies

(48)Aκ
n(r)− Aκ

n′(r)= ∇Φκ
n,n′ (r).

Let denote byn′ = gn, g ∈ SO(3), the left action of
the rotation group induced bySκn → Sκn′ . From rota-
tional symmetry of the theory it follows immediately
that an arbitrary gauge transformationΨ κ

n → Ψ κ
n′ can

be undone by rotationr → rg. Using this fact and
adopting results of [4,5,22] we find that an arbitrary

gauge transformationUg , producing the rotation of the
stringSκn → Sκn′ , is given by nonintegrable phase fac-
tor,

(49)UgΨ
κ
n (r)= exp

(
iακ

1(r,n;g))Ψ κ
n (r),

(50)α1(r;g)= e

r′∫
r

Aκ
n(ξ ) dξ , r′ = rg,

where the integration is performed along the geodesic
r̂r′ ⊂ S2 andα1 is the so-called first cochain [5,6,23].
Actually, Ug is an operator of the parallel transport
along the geodesics on the two-dimensional sphere of
the fixed radiusr.

For a given cochainα1 a 2-cocycleα2 is defined by

α2(r;g1, g2)= δα1 = α1(rg1;g2)

(51)− α1(r;g1g2)+ α1(r;g1)

which satisfiesδα2 = 0, and, forα2 being 2-cochain, a
3-cocycleα3 = δα2 is given by

α3(r;g1, g2, g3)= α2(rg1;g2, g3)− α2(r;g1g2, g3)

+ α2(r;g1, g2g3)− α2(r;g1, g2).

Similarly one can introducen-cocycle αn(r;g1,

g2, . . . , gn) [6,23].
Following [5,6] let us define a 2-cochain,α2, by

(52)α2(r;g1, g2)= e

∫
Σ

Bds = eΦ|Σ,

whereΦ|Σ is a magnetic flux through the geodesic
triangle Σ ⊂ S2 spanned by(r, rg1, rg1g2). Since
B = ∇ × A locally, but not globally thenα2 is a 2-
cochain and not a 2-cocycle. Indeed, applying Stokes’
theorem we get

(53)α2(r;g1, g2)= δα1(r;g1, g2)+ σ
(
Sκn ,Σ

)
,

whereσ = ∫
Σ hκ

n · ds being contribution of the string
is not zero if and only if the string crossesΣ .

For computingσ let us divideR3 into R3+ andR3−
by the plane passing through the origin of coordinates
and orthogonal ton. Assuming that the stringSκn
crossesΣ at a pointp0, we find

(54)σ =
{

4π(1− κ)µ, p0 ∈ Σ ∩R3−,
4πκµ, p0 ∈ Σ ∩R3+.

Since 2κµ is an integer, one has

(55)α2 = δα1 + 4πµ|p0 mod 2πZ.



258 A.I. Nesterov, F.A. de la Cruz / Physics Letters A 302 (2002) 253–260

Similar consideration of the gauge transformations
Sκn → Sκ−n, related with the reflections, yields

α2 = δα1 + 4π(1− 2κ)µ= δα1 + 4πµ mod 2πZ.

Examining the composition of two operatorsUg1

and Ug2, we find that 2-cochainα2 occurs in its
composition law as follows:

(56)Ug1Ug2Ψ
κ
n (r)= exp

(
iα2(r;g1, g2)

)
Ug1g2Ψ

κ
n (r),

whereg1, g2 ∈ SO(3).
Consider now three elementsg1, g2, g3 ∈ O(3)

producing the transformationsSκn → Sκn1
, Sκn → Sκn2

,

Sκn → Sκn3
, respectively. Then the product of the three

operators is given by

Ug1(Ug2Ug3)Ψ
κ
n (r)

= exp
(
iα3(r;g1, g2, g3)

)
(Ug1Ug2)Ug3Ψ

κ
n (r),

whereα3 is athree cocycle.
From Eqs. (52) and (55) it followsα3 = 4πµ

mod 2πZ if the monopole is enclosed by the geodesic
simplex with vertices(r, rg1, rg1g2, rg1g2g3) or zero
otherwise.2

We turn now to Eq. (56) and rewrite the product of
the two transformations as

(57)Ug1Ug2Ψ
κ
n (r)=Uϕ(g1,g2;r)Ψ κ

n (r),

whereϕ is defined by

ϕ(g1, g2; r)= ακ
1(r;g1g2)+ α2(r;g1, g2)

(58)= α1(r;g1)+ α1(r;g2)+ σ(Sκn ,Σ).

It is easy verify that the following identity of quasi-
associativity holds:

(59)ϕ
(
g1, ϕ(g2, g3; r); r

) = ϕ
(
ϕ(g1, g2; rg3), g3; r

)
.

We say that Eqs. (57)–(59) define agauge loop. This is
a special case of transformation quasigroup introduced
by Batalin [25] and a 3-cocycle, being a “measure” of
nonassociativity, can be related with an associator in
theory of quasigroups and loops [26–30].

2 Similar analysis related with the modification of the translation
group in the presence of the magnetic monopole has been done in
[5] (see also [6–9]).

The gauge loop is associated also with the loop
QU(1) defined as a loop of multiplication by unimod-
ular complex numbers [26–28]:

eiα ∗ eiβ = eiα∗β,
α ∗ β = α + β + F(α,β),

(60)F(α,0)= F(0, β)= 0.

Before proceeding notice that QU(1) is isomorphic to
the group U(1) if

F(α,β)+ F(α ∗ β,γ )− F(β,γ )

(61)− F(α,β ∗ γ )= 0 mod 2πZ,

that is a 2-cocycle conditionδα2 = 0 mod2πZ.
Assuming QU(1) to be a local loop we define a

respective gauge loop overS2 by

(62)Uα(r)Ψ
κ
n (r)= exp

(
iα(r)

)
Ψ κ

n (r),

(63)Uα(r)Uβ(r)Ψ
κ
n (r)=Uα(r)∗β(r)Ψ κ

n (r).

Here the operationα(r) ∗ β(r) is given by Eq. (60)
with F(α,β; r) determined as follows:F = σ(Sκn ,Σ)

where the geodesic triangleΣ ⊂ S2 is spanned by
(r, rgα, rgβ), gα, gβ ∈ SO(3). For computinggα we
employ the rotational symmetry of the theory. This
implies that for a given stringSκ

n and gauge function
α(r) the following equation holds:

Ψ κ
n (r

′) = Ψ κ
n′(r)= exp

(
iα(r)

)
Ψ κ

n (r),

(64)r′ = rgα,n′ = gαn, gα ∈ SO(3).

It should be considered as the equation for findinggα .
Returning now to Eq. (63) we see that the local loop
QU(1) becomes the gauge loop defined by Eqs. (57),
(58).

5. Discussion and concluding remarks

We deduced a consistent pointlike monopole the-
ory, with an arbitrary magnetic charge, involving
nonunitary representations of the rotation group and
making use of nonassociative QU(1) bundle overS2,
where QU(1) is the structure loop [26–28]. From our
approach it follows a generalized quantization condi-
tion, 2κµ ∈ Z, that can be considered as quantization
of the weight string instead of the monopole charge. In
particular casesκ = 1 andκ = 1/2 it yields the Dirac
and Schwinger selectional rules, respectively.



A.I. Nesterov, F.A. de la Cruz / Physics Letters A 302 (2002) 253–260 259

At first sight our results are in contradiction with
well-known topological and geometrical arguments in
behalf of Dirac quantization rule [2,3,10]. For the
better understanding of the problem let us notice that
known proofs are based on employing unitary finite-
dimensional representations of the rotation group or
classical fibre bundle theory. One can remove the
effect of 3-cocycle imposing the Dirac quantization
condition, however, this arises only from a realization
of the monopole as U(1) bundle overS2 [3,4,6].
This implies that there exists the division of space
into overlapping regions{Ui} such that nonsingular
vector potential can be defined and yields the correct
monopole magnetic field in each region. On each
intersectionUi ∩ Uj can be defined the transition
functionsqij = eΦninj such thatUi ∩Uj → U(1). On
the triple overlapUi ∩Uj ∩Uk it holds

(65)exp
(
i(qij + qjk + qki)

) = exp(i4πµ),

and the consistency condition requiresqij + qjk +
qki = 0 mod 2πZ. This gives 2µ ∈ Z and the
Dirac quantization condition appears again, now as a
necessary condition to have a consistent U(1)-bundle
over S2. Notice that it is consequence of the dynamics
and not of the representation theory [6].

While the Jacobi identity holds for the generators
of the rotation group [14–16] the situation with the
translations in the background of the monopole is quite
different. The difference has a topological nature and
arises from the non-trivial topology of the orbit space.
In the case of the rotations, the orbit space is just a two-
dimensional sphereS2. For the translations the orbit
space is three-dimensional spaceR3 with one point
removed and its non-trivial topology provides the non-
vanishing three-cocycle [8]. Thus, the Jacobi identity
fails for the gauge invariant algebra of translations and
for the finite translations{Ua} one has [5,6]

(66)

(UaUb)UcΨ (r)= exp
(
iα3(r; a,b, c)

)
Ua(UbUc)Ψ (r).

For the Dirac quantization condition being satisfied
one hasα3 = 0 mod 2πZ, and (66) provides an
associative representation of the translations, in spite
of the fact that the Jacobi identity continues to fail.

Since a conventional quantum mechanics deals
with linear Hilbert space operators, the Dirac quanti-
zation rule is a necessary condition for the consistency
of quantum mechanics in the presence of a monopole.

Avoiding this condition forces us to go beyond the
standard quantum mechanical approach and introduce
anonassociative algebra of observables [5–9]. Notice
that in ordinary quantum mechanics the Schrödinger
and Heisenberg pictures are equivalent, but the same
is not true in a nonassociative quantum mechanics. In-
deed, whilst the concept of the Hilbert space failed
for nonassociative algebras, the Heisenberg approach
could be still realized [31–33]. In a possible nonasso-
ciative quantum mechanics one must give up a con-
ventional description of the quantum mechanics pro-
vided by Hilbert space concept and look for the gener-
alization based on the Heisenberg approach and maybe
only in terms of density matrix [9,32,33].
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