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This article deals with the magnetohydrodynamic instability of a thin layer which is characterized
by a high magnetic shear, a constant curvature radius, and a plasma velocity shear. The magnetic
field and the plasma parameters are considered to be piecewise constant inside the layer and in the
regions adjacent to the layer. The plasma parameters and the magnetic field are assumed to obey the
ideal incompressible magnetohydrodynamics. Fourier analysis is used to calculate small
perturbations of the magnetic field and plasma parameters near the layer in linear approximation.
The instability growth rate is obtained as a function of different parameters: the magnetic shear
angle, the velocity direction angle, the tangential plasma velocity, the layer thickness, the wave
number, and the curvature radius. The resulting instability is a mixture of interchange and Kelvin—
Helmholtz instabilities on a surface with nonzero curvature. For a fixed velocity shear and curvature
radius, the instability growth has a maximum in the case of antiparallel magnetic (fietosmal
magnetic shear This growth rate is an increasing function of the tangential velocity component
perpendicular to the magnetic field, and a decreasing function of the velocity component along the
magnetic field. The instability is stronger for smaller curvature radius2092 American Institute

of Physics. [DOI: 10.1063/1.1432698

I. INTRODUCTION instability? and thus has a strong influence on the interchange
instability.

The interchange instability is similar in nature to the The aim of our paper is to study the interchange insta-
Rayleigh—Taylor instability in classic hydrodynamics, wherebility of the layer with a high magnetic shear taking into
the magnetic tension plays the role of an effective gravitaaccount the plasma velocity directed arbitrarily along the
tional forcel™® There are many aspects of laboratory andlayer, as well as a finite thickness of the curved layer.
space plasma where this instability is important. In space
plasma there exist structures which have thin, curved bound+ STATEMENT OF PROBLEM
ary layers separating magnetic fields and plasmas of different y:1, regard to the Kelvin—Helmhotz instability, a three-
origin. Magnetospheres of planets and magnetic clouds aiyered model consisting of three plasma regi¢the mag-
typical examples of such structures. netosheath, the boundary layer, and the magnetospivere

In particular, the interchange instability was proposed asntroduced by Leeetal” and Uberof We use a similar
an important proce$$ occurring at the Earth's magneto- model to study the interchange instability of a thin layer with
spheric boundarymagnetopaugeThe reason for this insta- 5 finjte curvature radius. This model allows us to study not
bility is the fact that the plasma pressure should have a locajny the finite thickness effect on the instability growth rate
maximum which coincides with the magnetic pressure minitt ajso magnetic angle effects.
mum in the layer separating the antiparallel magnetic fields. e consider a thin layer of the thicknesa vith two
For simplicity, the authors' assumed a tangential disconti- idealized sharp boundaries: The firBt] is that with contact
nuity separating the magnetosheath plasma from the eRgith region | and the secondr¢) is that of contact with
hanced pressure region in the magnetopause. Applying aggion Il (see Fig. 1L The magnetic fields in regions | and Il
incompressible magnetohydrodynaniMHD) model to the  are denoted by the vectoB; and B,, respectively. The
tangential discontinuity, they estimated the instability growthmagnetic field inside the layeBy, is directed between the
rate as a function of the curvature radius and the shear anglgectorsB and determined as the vector averaBg= (B,
Concerning this instability problem, there are two important+ B,)/2. The direction of the plasma flow is determined by
facts which have to be taken into account: A finite thicknesghe anglea with respect to the magnetic field vectdg.
of the layer and a velocity shear. To describe the temporal and spatial variations of the

It was shown in Ref. 5 that the finite thickness of the magnetic field and plasma parameters resulting from small
layer is an important parameter which substantially affectgerturbations of the boundariés, [x;=f;(y,z,t)] andF,
the interchange instability growth rate. The velocity shear i§ x,=f,(y,z,t)], we use the ideal magnetohydrodynamic
of large importance because it drives the Kelvin—HelmholtzZ(MHD) equations for an incompressible plaSma
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a) Hereafter, subscripts “1, 0, 2” denote quantities correspond-
2 ing to the different regions: region I, the layer region, and
v k region Il, respectively.
B, Generally, the surface of the layer is characterized by
two main local curvature radiRy andR,. In a small neigh-
y borhood of the chosen point on the surface, we introduce a
0 local coordinate system related to this surface. The two co-
1 ordinatesy andz are the distances along the geodetic lines on
the surface with curvature radd, andR,, respectively. The
A third coordinatex is the distance along the normal to the
1 surface.
A R F We introduce small perturbations of the magnetic field
By and plasma parameters

® y B=B*+b, P=P*+p, U=U*+u,

N
v

where|b|<|B|, p<P, |u|<]|U]|.
Assuming that the density of the plasma is constant and

b) that the component8 of the magnetic fields and the com-
ponentsU} of the velocities are equal to zero, we obtain
from (1)—(3) the following equations in linear approxima-
tion:

AUy Uyu, Uju,| 14p
— +(U*-V*)u,— + +-—
ot (0¥ 2( Ay Ry a: R, p dX
1 BXb, BIb,
= | (B*-V*)b —2( Y 2 ) : (6)
x M 4’7Tp[( X qy Ry d: Rz
B *
1 au uju 1 dp
y P y Ux
i F —L+(U*.V*)u,+ +—
B, 1 . 1 at Y ayR, ayp dy
> B*b
® ia y — 1 ((B* V*)b + y X) (7)
Z - A ° ]
S }; _________ F, A7p Y ay Ry
2 au, Ulu, 1 dp
o . — +(U*- V¥ )u,+ ——+ —
FIG. 1. Geometrical illustrationga) corresponds to the model of Rezenov  Jt q,R, q,p 9z
and Maltsev(Ref. 3 and(b) corresponds to our model.
:i (B*-V*)b +%) 8
4mp z q;R;/)’

JuU 1 1 * *x 2 * 2 * 2 * 2

4 (UV)U+>V(P)=———(B-V) B, @ (BT B, (Y U ©

ot P 4mp X 47\ R, R, R, R,/

JB _ _

—==Vx[UxB], V-B=0, ( Vu=0 V-b=0. (10
Here,V* is a vector operator defined as

V-U=0. ()

Here p,U,P,B are the density, velocity, total pressure, and
the magnetic field strength, respectively.

AssumingF, andF, to be tangential discontinuities, we Where g, and g, are the metric coefficients related to the
have no-flow conditions for the normal components of thecurvatureqy=1+x/R, and q,=1+x/R,. To simplify the

. 0 1 0 1 0
“\ox’ay dy’ g, 0z

velocity problem, we incorporate only the first-order terms with re-
. . spect to the curvature 1/R,, ~1/R,.
(Ug2—D)-N=(Uy—D)-N=0, 4 Initially, the plasma is assumed to satisfy the steady-state

condition and thus the gradient of the total pressure is as-
sumed to compensate the magnetic tension and to support the
normal centrifugal acceleration of the plasma flowing around
the curved surface. Therefore, the initial total pressure is
considered to be a function of the normal distar@nd can
P,=Py, forx=a; P,=P,, for x=—a. (5) be linearized near the surface as follows:

whereD is the speed of the boundary surface ands the
unit vector normal to the boundary surface.

In addition, we have balance of the total pressure at bot
boundaries
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1(By? Bj? uy?  u3? Kz~
P=Ilo—7— quy+ Rq,) <P quy+ R, —iqui,+i(Vi-K)vi,+eK(Viwi,)+ =
pi
(11)
1
wherell, is a constant parameter. The variation of the total  =={i (H;-K) h; ,+& K(H; ;h; )}, (17
pressure determined k1) is caused by the magnetic field Pi
tension and the centrifugal force. ~
From (2), (3) we obtain in linear approximation whereq=q,=q,=1+s Kx. .
In dimensionless form, Eq11) can be rewritten as
by
—(B* V*)u,— (U* - V*)b,, (12 5 K X -
_H| 0~ 8_(H2 pIVZ) (18

%z(B*-V*)uy—(U* ~V*)by+(uxB§ _bXU;)q_R' After normalization, the system of the equatiaii®)—

yy (15) yields

13
b —ighi =i (Hi-K)vi—=i (Vi-K) hiy,
— = (B* - V¥)u,— (U* - V*)b,+ (u,B] LR _
(14) _iqwhiy:i(Hi'K)Uiy_i(Vi'K)hiy
a( ) 01( ) &( ) +8K(UiXHiy_hiXViy)!
u u u
quz X + d: y + qy z =0. (15) .
IX ay 0z —igqwh,=i (Hi-K)v;,—i(V;-K)h
For simplicity, we consider the two curvature radii to be +eK(vixHiz—hix Vi), (19
equal to each otheR,=R,=R.
For computational convenience, we introduce the dimen- (9v i
sionless parameters - a)l(x +Kyviy+Kpi,—2eK(ivi,) =0. (20
X=xla, K=k-a, r=Rla, pi=pilp1, Using the continuity equatiori20) together with Egs.
(17) and(19), we obtain a differential equation for pressure
leB;k/B* y hi:bi/B*, V|=U,* \/4’77[)1/85 y
7P, p; 7 —
—(1+eKX —+sd +K*p;=0, 21
=U;- V4mp,/B3, ( U ax @y
w=w-\J4mp,alB}, p=p-4mIBL2. (16y ~ Where
We use a dimensionless small parameterl/kR= 1/Kr that di= 4(H K)2/pi—3W7 + w?— (V;-K)?
is treated in linear appro?d'mation. . _ : W2— (H;-K)¥/p; ’
We assume the coefficients of the linearized system to be
constant. In such a case we can apply the usual Fourier = (Vi -K)
I | .

method to solve our linear MHD problem. Thus, considering
all perturbations to be proportional to the complex exponen-
tial function expi((K - s— wt)), wheres is a two-dimensional Il INSTABILITY OF A TANGENTIAL DISCONTINUITY

vector in the planey2), we obtain from(6)—(10) We start off with the instability problem for one discon-

tinuity which is similar to that studied by Rezenov and

QB (Vi K)o =2 & KV i) + a a_Ei Maltsev® This concerns the interchange instability of just
i X one boundary, separating the magnetic field in region |
from that inside the layer. Under the consideration of zero
1 plasma velocity and constant density, the dimensionless dif-
- Z{' (Hi-K) hix—2 e K(Hi-h)}, ferential equation for the pressui2l1) can be written in the
form
iqw i Ky~ a%p, 2(H;-K)2— ap
_lquiy+|(Vi-K)Uiy+8 K(V |yU|x)+ > p, ~2|+28 (H;- ) p|w2 Pi KZEJ 0. 22)
X (HlK) —piw (?X
1 . . . . . .
=={i (H;-K) hjy+& K(Hjyhi 0}, This equation has exponential solutions which are decreasing

pi functions of the distance from the discontinuity
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vector is perpendicular to the magnetic field vectBgsand
By . But, this is possible only in the case of collinear mag-
netic vectorsB, andB; .

~ ~ t] ~
P1=cexp—KX)| 1+ Z[(2dy+K)x+ K2x?)]

2 In the particular caseH;-k)=0,(Hq- k) =0, the disper-
+0(&9) ¢, . ) ) -
sion equation can be simplified to
~ > € T2 2 ~2 |~ 3 | .~ 3 2,42 142
Po=Coexp(Kx){ 1+ Z[(2d0+K)x—K X)]+0(&%);. w4 p1 l—Zs +po 1+4_18 =eK(H;—H?). (29

e . Comparing Eqs(27) and(28), one can see that the in-
Here, di=—2K[2(H,-K)?— p;w?]/[(H;-K)2—p;w?]; ¢4, stability growth rate has a nonregular asymptotic dependence
Co are constants. Thus, all perturbations are localized to then the small parameter. This dependence is different in the

vicinity of the unstable boundary. cases of collinear+ &) and noncollinear £ &) magnetic
From the boundary conditiong) and(5) we get fields.
) - ) - The frequency determined by Eq&7) and(28) is pure
tvix=wfy, Tvey=ofy, imaginary, and thus instability produces nonoscillatory
H2 H2 modes which grow exponentially. A real part of frequency
pL— Tl f1=po— TO fy. (24) appears when a nonzero tangential component of the plasma

velocity is taken into account.
From Egs.(17), (19), (24), we derive the following system:

~ ~ ~  dpy
(Hy-K)2= a2 = ( Qb _) ’ IV. INSTABILITY OF A LAYER

In this section we study the interchange instability of a
. -~ Po thin layer bounded by two tangential discontinuities. A finite
((Ho-K)2—pow?) f1=| Qopo— —= |, thickness of the layer and a nonzero velocity of the plasma
X flow are taken into account.
~ o~ We seek a solution of Eq21) in an exponential form
B~ Po=e K (HZ-HA) Ty, (29 ! P
D =C: (X 0y =(co 1% 0%

where Q=— & 2K (H;-K)2[(H;-K)2~ 7@, And fi- Pi=Cix)expliix) = (Ci e CHx))expl ).
nally, we obtain the following algebraic equation for the therefore, we have exponential solutions foin three re-
growth rate of instability: gions. In the regions abov, and belowF, (see Fig. 1, the

(Hy-K)2—p, @2 (Ho-K)2—po @2 perturbations of the total pressure are given by the following

L L -0 0 equations:

& &

P1=c; exp(—KX)

1+ %[ (2d,+ K)X+ K52

=e K (HI—HJ). (26)
This equation determines the growth rate of instability of the + 0(82)] )
one boundary as a function of the direction of the magnetic
field in region I (angle d), a wave numberk), and a local 3 _ e 5
curvature radius of the boundariR). This dispersion equa- pP>=C, exp( Kx)[ 1+ Z[ (2d,+K)x— KZ;<2]+O(82)}.
tion can be transformed into the form suitable for the analy- 29)
sis
In the region betweefr; and F, the solution for the total
2. [51( 1— §8 +hol 1+ ES ] pressure is a combination of two exponential functions
4 4

P Bozcmexp(—K})[ 1+ %[ (2dy+ K)X+K?X?]
=—eK?(Hf—H3)+(H,- K)2{1+ 7

+0(&?) | +copexp(KX)

[ e 1+%[(2d0+K)§<
+(Ho k)2 15

. (27)

In the right-hand side, there are two terms which are in con- —K%?]+ 0(82)]- (30
currence: The first one is related with the interchange insta-

bility effect, and the second one plays a stabilizing role wherHere,c,,c,,Cq;, andcg, are constants.

the wave vector is not exactly perpendicular to the magnetic  In dimensionless form, the linearized conditions for the
field. The instability growth rate is largest when the wavetotal pressure and velocity are
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atx=1:
P1—& K(Hi=p1V])=po—& K(H5—poV5),
v =wf;—(Vi-K) (1—eKXx) T,

ivgx=wf;—(Vo-K) (1—eKx) Ty;

P2t K(H3—paV3) =Po+e K(HG—poV5),

v =i~ (Vy-K) (1—eKX) T,,

ivgx=wf— (VoK) (1—eKX)T,. (31)
Finally, we obtain from Eqs(17)—(19), (29—(31) a lin-

ear algebraic system for the paramet®rsco;, Coz, C2, 11,
andf,

Lifi=Al;crexp—K),

L5 T1=Ag 1 Corexp(—K)+Aj ,CorexpK),

L& To=A5 1 corexp(K) +Af , corexp —K),

L5T,=AZ ,coexp(—K),

¢ exp(—K) 97 1=Cor€Xp —K) g5 1+ Co28Xp(K) 95
+& K (H3—H3)f1—e K (pyV3
—poV) 1,

coexp(—K) g5 ,= Corexp(K) g§ 1+ Copexp( —K) g5
+& K (H2—H2)f,— e K (p,V2

~PoV3)T, (32

where

Wi=w—(V;-K), x;=1, x,=—1,

. ,~ X ‘w+(V;-K)
LI={(H;-K)*/pi =W} 1+ & K xj}——m—,
Wi
g _K4(Hi-K)Z/T)i—SW2+Zuz—(Vi-K)Z
| W2 (H;-K)?/p, |

’ &
gl1=1+ Z[(2di+k)x;+K2X7],

; &
Oi =1+ 4 [(2di+k)x;— K21,

. . & -
Al 1:[ -Kal,+ Z(Zdi+K+2K2Xj)]/pi :

A{ZZ[Kg{2+2(2di+K—2K2xj)]/7)i. (33

Magnetohydrodynamic instability . . . 405
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FIG. 2. Instability growth rate versus magnetic shear anfgkes=0.15,
R/a=160, U;=U,=0. The curve 1 corresponds to Rezenov and Maltsev
(Ref. 3, and the curve$2) and(3) are obtained in our models with one and
two boundaries, respectively. The pi@ corresponds to the case of equal

densitiesp; =po=p,=1, and the plotb) corresponds to the case of differ-
ent densitiesp; =1, p,=0.5, p,=0.1.

The dispersion equation is determined from the usual
condition of a zero determinant for the linear algebraic sys-
tem (32). The numerical solution of this dispersion equation
is analyzed in the next section.

V. RESULTS

The dispersion equations are solved numerically for both
instability problemswith one and two boundarigsFor the
first problem, the instability growth rate is obtained from
(26) as a function of three parametefiska,R/a. For the
second problem, the dispersion equation is determined by
(32), and the instability growth rate is obtained as a function
of four parameter®,ka,R/a,U; /U, (here,U,, is the Al-
fvén velocity in region 2. In each plot, the instability growth
rate is normalized to the quantityy*=U,,/a
=B, /\4mp;a.

Figure 2 shows the instability growth rate as a function
of the magnetic shear angtefor zero plasma velocity\(;
=V,=0) and different density ratioga) p,/p;=1, and(b)
p2/p1=0.1. The normalized curvature radii and wave num-
ber areR/a=160,ka=0.15. The ratio of the field strengths
is equal to 1n=B;/B,=1. The curves denoted k) cor-
respond to the model of Rezenov and Malt3exhich deals
with the instability growth rate just for one boundarly
imposing the relation betwedB, and B,
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FIG. 4. Normalized instability growth rate as a functionRfa for =0,
ka=0.15,V;=V,=0. The curve(l) corresponds to the case of equal den-

sities, p; = po=p»= 1, and the curvé2) corresponds to the case of different
densitiesp;=1,py=0.5,p,=0.1.

FIG. 3. Normalized instability growth rate as a function lad for 6=0,
R/a=160,V,=V,=0. The curve1l) corresponds to the case of equal den-

sities, p, = po=p,= 1, and the curvé2) corresponds to the case of different
densitiesp,=1,p,=0.5,p,=0.1.

and curvature radius arka=0.15, R/a=160. Similar to
Figs. 3 and 4, the curved) and (2) correspond to different

Bo=(B1+B>)/2. (35  density valuesp,=1, 0.1, respectively. Plotg) and(b) cor-

Thus, the magnetic field in the layer is determined as th&€SPond to parallel¢=0) and perpendiculara(=m/2) di-
vector average of the magnetic fields in regions | and I1. Thig€ction of the vectol with respect to the magnetic field.

relation seems to be more reasonable because it is symmetric Figure 6 shows the instability growth rate as a function
with respect to the field8, andB,. of the velocity anglex for different values of the normalized

In Fig. 2 the curves2) correspond to our solution in the relatiV(_e velocityV. Here, the magnetic fields are assum_ed to
case of one boundarfone tangential discontinuity while be antiparallel; the wave n_umber and the curvature radius are
the curves denoted by numb@ correspond to our solution the same as those for Fig. 5. The cun¢@s (2), and (3)
in the case of two boundaries. Comparing the cuft@and ~ correspond t&/=0, 0.5, 1, respectively. The plota) and(b)

(2) in Fig. 2, one can see that both models have practically
the same maximum growth rate corresponding to the antipar-
allel magnetic fields. However, the angle interval of the in-
stability in our model is larger than that in the model of
Rezenov and Maltse\This is caused by the difference in the
relations(34) and(35) used in the models. The comparison

of the curves2) and(3) shows that a finite thickness of the Y
layer diminishes the instability rate. Comparing the pl@bs

and (b), one can see that interchange instability becomes
stronger for smaller density..

Figure 3 shows the instability growth rate as a function
of the normalized wave numbge for zero velocity, antipar- 0'000
allel magnetic fields §=0) with the ration=1, and the ' ' v
normalized curvature radiuR/a=160. The curvesl) and
(2) correspond to the different values of normalized density
p,=1,0.1. One can see that the instability growth rate is a  0-06
monotonic increasing function of the wave number.

Figure 4 shows the instability growth rate as a function
of the normalized curvature radius for a fixed normalized
wave vectorka=0.15, and two different cases of density
ratio, p,/p;=1 [curve (1)] and p,/p;=0.1 [curve (2)]. 0.02
Similar to Fig. 3, the velocities\{y;,) are assumed to be
zero and the magnetic fields are antiparalg=Q) with the
ratio n=1. One can see that the instablity growth rate isa 000 —————»——— L
monotonic decreasing function of a curvature radius. From 0.0 0.5 A% 1.0 15
Figs. 3 and 4 we can also conclude that the instability grOWtrl1=|G. 5. Normalized instability growth rate as a function of normalized ve-

In our model, we impose another relation betw8grandB;

0¥83———— 77—

—
—
&

0.02

0.01

=}
o
3
-
=3
-
3

T

—
o

~

0.04

||||I||||I||\|I|

rate is an increasing function of the layer thickness. ~locity V=(V,—V,) for §=0, ka=0.15, R/a=160. The curvesl) and (2)
Figure 5 _shows thg |nstab|I|_ty growth rate as a functionggrrespond to the cases of equal € po=p,=1) and different b, =1, 7o
of the normalized relative velocity =V, —V, for antiparal-  —057,=0.1) densities, respectively. The pld and (b) correspond to

lel magnetic fields §=0). The normalized wave number «=0 anda==/2, respectively.
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N I and Il, we obtained the instability angle interval, which is

twice as large as that in the model of Rezenov and Maftsev.
Besides the shear angle, there are four main factors

- which bring about an enhanced growth rate of the inter-

-7 2 _—— -] change instability of the layer.

0.04

0.02

.........
\

(1) Increase of the thickness of the layer;

(2) Decrease of the wavelength;

(3) Decrease of the local curvature radius of the layer;

000 b—— 1 b (4) Plasma flow in the direction perpendicular to the mag-
netic field.

T

o
w
o
D
o
[{o]
o

The instability growth rate decreases in the case of
® T plasma flow along the magnetic field. From the physical
point of view, the influence of plasma velocity can be ex-
plained in the following way. In the case of plasma flow in
the direction perpendicular to the magnetic field, the inter-
change instability caused by the magnetic tendB3/R is
enhanced by the Kelvin—Helmholtz instability which is
driven by the velocity shear. But, in the case of the plasma
velocity directed along the magnetic field, the Kelvin—
Helmholtz modes are stabilized by the magnetic tension, and
in addition, the interchange instability is also weakened by

o the centrifugal force, which is proportional to the velocity
FIG. 6. Normalized instability growth rate as a function of velocity angle  SAuared and the curvature of the surface.
for =0, ka=0.15,R/a=160. The plotga) and(b) correspond to the cases Applying the results described above to conditions of the
of equal fp;=po=p,=1) and different p; =1,y=0.5,p,=0.1) densities, ~Earth’s magnetopause flowed by the solar with southward
respe_c_tively. The curved), (2), and(3) cqrrespond to different normalized interplanetary magnetic fieldMF), we find that the growth
velocities,V=V1~V,=0,0.5, 1, respectively. rate of the interchange instability must decrease in the me-
ridional plane of the magnetosphere because of plasma flow
along the magnetic field. On the other hand, the growth rate
must increase in the equatorial plane because of plasma mo-

lasma. velocity component perpendicular to the ma netiﬁon in the direction perpendicular to the magnetic field.
b y P Perp 9 Taking the typical parameter®,=60 nT, B;=60 nT,

field causes an enhancement of the instability growth rater.]:5 cm 3, a=500 km (total width of the layer is equal to
That is related to the Kelvin—Helmholtz instability acting in 1000 km {he relative velocity/=0, R=8-10* km, and the
addition to the interchange instability. On the other hand, an -ve sca'\ld<*1:3300 KM we obte{in the charac£eristic time
increase of the plasma velocity component parallel to the , - ~
magnetic field diminishes the instability growth rate. The©f the instability asr=a/(yU,,) =48 s for the case of the
reason is the following: For a parallel motion of the plasma,density ratiop;/p; =1, andr=39 s for the case of the den-
the Kelvin—Helmholtz instability is not pronounced for the Sity ratio p2/p,=0.1. _ _ _
velocity interval shown in the figures due to a strong mag- ' "€ instability can evolve into a nonlinear stage, if the
netic field tension. And, also for small angles the inter- 9rowth timer is much less than the timg of plasma con-

change instability growth rate is smaller because of a stabi€Ction along the dayside magnetopause. Using a rough es-
lizing role of the centrifugal force. timation of the convection timg,~R/U (U ~400 km/g, we

find the ratior/t.~=0.2. This means that the perturbations
caused by the interchange instability can reach a nonlinear
stage at the dayside magnetopause for southward IMF.

The growth rate of the interchange instability is studied ~ As shown by Luhmanret al.® in the case of arbitrary
as a function of the magnetic shear angle, the thickness of thdIF orientation, there always exist regions with antiparallel
layer, the wave vector, and the tangential velocity of plasmamagnetic fields at the magnetopause. But, the locations of

This instability is the strongest in a case of antiparallelthese regions are strongly dependent on the IMF direction.
magnetic fields separated by the neutral layer. The instability ~For steady-state solar wind flow around the magneto-
decreases if the magnetic field of region | deviates from thesphere, the magnetic field is enhanced near the magneto-
direction antiparallel to the magnetic field of region Il. The pause in the boundary layer, which is thus called the mag-
growth rate is positive within a finite angle interval of the netic barrier or plasma depletion layésee Erkaewt al®
magnetic shear. This angle interval of the instability is ratheand references thergirin the case of nonsteady IMF varia-
sensitive to the relation between the layer magnetic vectations from north to south, the magnetic field can change its
and those of regions | and Il. Determining the magnetic fielddirection inside the magnetic barrier. For this situation, the
of the layer as a vector average of magnetic fields in regionsiterchange instability theory studied above can also be ap-
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correspond to different density valugs,=1, 0.1.

VI. DISCUSSION AND CONCLUSION
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plied. In such a case the thickness of the boundary layer is Besides the Earth’'s magnetosphere, additional possible
larger: It is on the order of the magnetic barrier thickn@ss applications of our results are the magnetospheres of the
few thousand kilometeysFor the same curvature radius, the other planets, and also magnetic clodidsge magnetic cavi-
instability growth rate is larger when the boundary layer isties) convected by the solar wind.

thicker.
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