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This article deals with the magnetohydrodynamic instability of a thin layer which is characterized
by a high magnetic shear, a constant curvature radius, and a plasma velocity shear. The magnetic
field and the plasma parameters are considered to be piecewise constant inside the layer and in the
regions adjacent to the layer. The plasma parameters and the magnetic field are assumed to obey the
ideal incompressible magnetohydrodynamics. Fourier analysis is used to calculate small
perturbations of the magnetic field and plasma parameters near the layer in linear approximation.
The instability growth rate is obtained as a function of different parameters: the magnetic shear
angle, the velocity direction angle, the tangential plasma velocity, the layer thickness, the wave
number, and the curvature radius. The resulting instability is a mixture of interchange and Kelvin–
Helmholtz instabilities on a surface with nonzero curvature. For a fixed velocity shear and curvature
radius, the instability growth has a maximum in the case of antiparallel magnetic fields~maximal
magnetic shear!. This growth rate is an increasing function of the tangential velocity component
perpendicular to the magnetic field, and a decreasing function of the velocity component along the
magnetic field. The instability is stronger for smaller curvature radius. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1432698#

I. INTRODUCTION

The interchange instability is similar in nature to the
Rayleigh–Taylor instability in classic hydrodynamics, where
the magnetic tension plays the role of an effective gravita-
tional force.1–3 There are many aspects of laboratory and
space plasma where this instability is important. In space
plasma there exist structures which have thin, curved bound-
ary layers separating magnetic fields and plasmas of different
origin. Magnetospheres of planets and magnetic clouds are
typical examples of such structures.

In particular, the interchange instability was proposed as
an important process3,4 occurring at the Earth’s magneto-
spheric boundary~magnetopause!. The reason for this insta-
bility is the fact that the plasma pressure should have a local
maximum which coincides with the magnetic pressure mini-
mum in the layer separating the antiparallel magnetic fields.
For simplicity, the authors3,4 assumed a tangential disconti-
nuity separating the magnetosheath plasma from the en-
hanced pressure region in the magnetopause. Applying an
incompressible magnetohydrodynamic~MHD! model to the
tangential discontinuity, they estimated the instability growth
rate as a function of the curvature radius and the shear angle.
Concerning this instability problem, there are two important
facts which have to be taken into account: A finite thickness
of the layer and a velocity shear.

It was shown in Ref. 5 that the finite thickness of the
layer is an important parameter which substantially affects
the interchange instability growth rate. The velocity shear is
of large importance because it drives the Kelvin–Helmholtz

instability6 and thus has a strong influence on the interchange
instability.

The aim of our paper is to study the interchange insta-
bility of the layer with a high magnetic shear taking into
account the plasma velocity directed arbitrarily along the
layer, as well as a finite thickness of the curved layer.

II. STATEMENT OF PROBLEM

With regard to the Kelvin–Helmhotz instability, a three-
layered model consisting of three plasma regions~the mag-
netosheath, the boundary layer, and the magnetosphere! was
introduced by Leeet al.7 and Uberoi.8 We use a similar
model to study the interchange instability of a thin layer with
a finite curvature radius. This model allows us to study not
only the finite thickness effect on the instability growth rate
but also magnetic angle effects.

We consider a thin layer of the thickness 2a with two
idealized sharp boundaries: The first (F1) is that with contact
with region I and the second (F2) is that of contact with
region II ~see Fig. 1!. The magnetic fields in regions I and II
are denoted by the vectorsB1 and B2 , respectively. The
magnetic field inside the layer,B0 , is directed between the
vectorsB and determined as the vector average,B05(B1

1B2)/2. The direction of the plasma flow is determined by
the anglea with respect to the magnetic field vectorB2 .

To describe the temporal and spatial variations of the
magnetic field and plasma parameters resulting from small
perturbations of the boundariesF1 @x15 f 1(y,z,t)# and F2

@x25 f 2(y,z,t)#, we use the ideal magnetohydrodynamic
~MHD! equations for an incompressible plasma6
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Here r,U,P,B are the density, velocity, total pressure, and
the magnetic field strength, respectively.

AssumingF1 andF2 to be tangential discontinuities, we
have no-flow conditions for the normal components of the
velocity

~U1,22D!•N̂5~U02D!•N̂50, ~4!

whereD is the speed of the boundary surface andN̂ is the
unit vector normal to the boundary surface.

In addition, we have balance of the total pressure at both
boundaries

P15P0 , for x5a; P25P0 , for x52a. ~5!

Hereafter, subscripts ‘‘1, 0, 2’’ denote quantities correspond-
ing to the different regions: region I, the layer region, and
region II, respectively.

Generally, the surface of the layer is characterized by
two main local curvature radii,Ry andRz . In a small neigh-
borhood of the chosen point on the surface, we introduce a
local coordinate system related to this surface. The two co-
ordinatesy andz are the distances along the geodetic lines on
the surface with curvature radiiRy andRz , respectively. The
third coordinatex is the distance along the normal to the
surface.

We introduce small perturbations of the magnetic field
and plasma parameters

B5B* 1b, P5P* 1p, U5U* 1u,

whereubu!uBu, p!P, uuu!uUu.
Assuming that the density of the plasma is constant and

that the componentsBx* of the magnetic fields and the com-
ponentsUx* of the velocities are equal to zero, we obtain
from ~1!–~3! the following equations in linear approxima-
tion:
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Here,¹* is a vector operator defined as

¹* 5S ]
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where qy and qz are the metric coefficients related to the
curvatureqy511x/Ry and qz511x/Rz . To simplify the
problem, we incorporate only the first-order terms with re-
spect to the curvature;1/Ry , ;1/Rz .

Initially, the plasma is assumed to satisfy the steady-state
condition and thus the gradient of the total pressure is as-
sumed to compensate the magnetic tension and to support the
normal centrifugal acceleration of the plasma flowing around
the curved surface. Therefore, the initial total pressure is
considered to be a function of the normal distancex and can
be linearized near the surface as follows:

FIG. 1. Geometrical illustrations:~a! corresponds to the model of Rezenov
and Maltsev~Ref. 3! and ~b! corresponds to our model.
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whereP0 is a constant parameter. The variation of the total
pressure determined by~11! is caused by the magnetic field
tension and the centrifugal force.

From ~2!, ~3! we obtain in linear approximation
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For simplicity, we consider the two curvature radii to be
equal to each other,Ry5Rz5R.

For computational convenience, we introduce the dimen-
sionless parameters

x̃5x/a, K5k•a, r 5R/a, r̃ i5r i /r1 ,

H i5Bi* /B2* , hi5bi /B2* , V i5Ui* •A4pr1/B2* ,

vi5ui•A4pr1/B2* ,

ṽ5v•A4pr1a/B2* , p̃5p•4p/B2*
2. ~16!

We use a dimensionless small parameter«51/kR51/Kr that
is treated in linear approximation.

We assume the coefficients of the linearized system to be
constant. In such a case we can apply the usual Fourier
method to solve our linear MHD problem. Thus, considering
all perturbations to be proportional to the complex exponen-
tial function exp(i(K•s2ṽt)), wheres is a two-dimensional
vector in the plane (yz), we obtain from~6!–~10!
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2 i q ṽ v i y1 i ~V i•K !v i y1« K~Vi yv i x!1
i K y

r̃ i

p̃i

5
1

r̃ i

$ i ~H i•K ! hi y1« K~Hi yhi x!%,

2 i q ṽ v i z1 i ~V i•K ! v i z1«K~Vi zv i x!1
i K z

r̃ i

p̃i

5
1

r̃ i

$ i ~H i•K ! hi z1« K~Hi zhi x!%, ~17!

whereq5qy5qz511« K x̃.
In dimensionless form, Eq.~11! can be rewritten as

P̃i5P̃ i 02«
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q
~Hi

22 r̃ iVi
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After normalization, the system of the equations~12!–
~15! yields
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] x̃
1Kyv i y1Kzv i z22«K~ iv i x!50. ~20!

Using the continuity equation~20! together with Eqs.
~17! and ~19!, we obtain a differential equation for pressure

2~11«Kx̃!
]2p̃i

] x̃2
1«di

] p̃i

] x̃
1K2p̃i50, ~21!

where

di5K
4~H i•K !2/ r̃ i23Wi

21ṽ22~V i•K !2

Wi
22~H i•K !2/ r̃ i

,

Wi5ṽ2~V i•K !.

III. INSTABILITY OF A TANGENTIAL DISCONTINUITY

We start off with the instability problem for one discon-
tinuity which is similar to that studied by Rezenov and
Maltsev.3 This concerns the interchange instability of just
one boundaryF1 separating the magnetic field in region I
from that inside the layer. Under the consideration of zero
plasma velocity and constant density, the dimensionless dif-
ferential equation for the pressure~21! can be written in the
form

]2p̃i

] x̃2
12 « K

2~H i•K !22 r̃ iṽ
2

~H i•K !22 r̃ iṽ
2

] p̃i

] x̃
2K2p̃i50. ~22!

This equation has exponential solutions which are decreasing
functions of the distance from the discontinuity
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Here, di522K@2(H i•K )22 r̃ iṽ
2#/@(H i•K )22 r̃ iṽ

2#; c1 ,
c0 are constants. Thus, all perturbations are localized to the
vicinity of the unstable boundary.

From the boundary conditions~4! and ~5! we get

i v1 x5ṽ f 1 , i v0 x5ṽ f 1 ,

p̃12
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r
f 15 p̃02
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From Eqs.~17!, ~19!, ~24!, we derive the following system:
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where Qi52 « 2 K (H i•K )2/@(H i•K )22 r̃ iṽ
2#. And fi-

nally, we obtain the following algebraic equation for the
growth rate of instability:
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This equation determines the growth rate of instability of the
one boundary as a function of the direction of the magnetic
field in region I ~angleu), a wave number (k), and a local
curvature radius of the boundary (R). This dispersion equa-
tion can be transformed into the form suitable for the analy-
sis

ṽ2
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« D J

52«K2~H1
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In the right-hand side, there are two terms which are in con-
currence: The first one is related with the interchange insta-
bility effect, and the second one plays a stabilizing role when
the wave vector is not exactly perpendicular to the magnetic
field. The instability growth rate is largest when the wave

vector is perpendicular to the magnetic field vectorsB1 and
B0 . But, this is possible only in the case of collinear mag-
netic vectorsB0 andB1 .

In the particular case (H1•k)50,(H0•k)50, the disper-
sion equation can be simplified to

ṽ2
•H r̃1S 12

3

4
« D1 r̃0S 11

3

4
« D J 5«K2~H0

22H1
2!. ~28!

Comparing Eqs.~27! and ~28!, one can see that the in-
stability growth rate has a nonregular asymptotic dependence
on the small parameter«. This dependence is different in the
cases of collinear (;A«) and noncollinear (;«) magnetic
fields.

The frequency determined by Eqs.~27! and~28! is pure
imaginary, and thus instability produces nonoscillatory
modes which grow exponentially. A real part of frequency
appears when a nonzero tangential component of the plasma
velocity is taken into account.

IV. INSTABILITY OF A LAYER

In this section we study the interchange instability of a
thin layer bounded by two tangential discontinuities. A finite
thickness of the layer and a nonzero velocity of the plasma
flow are taken into account.

We seek a solution of Eq.~21! in an exponential form

p̃i5Ci~ x̃!exp~k i
0x̃!5~Ci

01«Ci
1~ x̃!!exp~k i

0x̃!.

Therefore, we have exponential solutions forp̃ in three re-
gions. In the regions aboveF1 and belowF2 ~see Fig. 1!, the
perturbations of the total pressure are given by the following
equations:

p̃15c1 exp~2Kx̃!H 11
«

4
@ ~2d11K !x̃1K2x̃2#

1O~«2!J ,

p̃25c2 exp~Kx̃!H 11
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~29!

In the region betweenF1 and F2 the solution for the total
pressure is a combination of two exponential functions

p̃05c01exp~2Kx̃!H 11
«

4
@ ~2d01K !x̃1K2x̃2#

1O~«2!J 1c02exp~Kx̃!H 11
«

4
@ ~2d01K !x̃

2K2x̃2#1O~«2!J . ~30!

Here,c1 ,c2 ,c01, andc02 are constants.
In dimensionless form, the linearized conditions for the

total pressure and velocity are
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at x̃51:
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iv0 x5ṽ f̃ 12~V0•K ! ~12«Kx̃! f̃ 1 ;

at x̃521:
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Finally, we obtain from Eqs.~17!–~19!, ~29!–~31! a lin-
ear algebraic system for the parametersc1 , c01, c02, c2 , f̃ 1 ,
and f̃ 2
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where
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2%H 11« K xj
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The dispersion equation is determined from the usual
condition of a zero determinant for the linear algebraic sys-
tem ~32!. The numerical solution of this dispersion equation
is analyzed in the next section.

V. RESULTS

The dispersion equations are solved numerically for both
instability problems~with one and two boundaries!. For the
first problem, the instability growth rate is obtained from
~26! as a function of three parametersu,ka,R/a. For the
second problem, the dispersion equation is determined by
~32!, and the instability growth rate is obtained as a function
of four parametersu,ka,R/a,Ui /Ua 2 ~here,Ua 2 is the Al-
fvén velocity in region 2!. In each plot, the instability growth
rate is normalized to the quantity g* 5Ua 2 /a
5B2 /A4pr1 a.

Figure 2 shows the instability growth rate as a function
of the magnetic shear angleu for zero plasma velocity (V1

5V250) and different density ratios:~a! r2 /r151, and~b!
r2 /r150.1. The normalized curvature radii and wave num-
ber areR/a5160,ka50.15. The ratio of the field strengths
is equal to 1,n5B1 /B251. The curves denoted by~1! cor-
respond to the model of Rezenov and Maltsev,3 which deals
with the instability growth rate just for one boundary (F1)
imposing the relation betweenB0 andB1

B05B1 sin~u!. ~34!

FIG. 2. Instability growth rate versus magnetic shear angle,ka50.15,
R/a5160, U15U250. The curve 1 corresponds to Rezenov and Maltsev
~Ref. 3!, and the curves~2! and~3! are obtained in our models with one and
two boundaries, respectively. The plot~a! corresponds to the case of equal

densities,r̃15 r̃05 r̃251, and the plot~b! corresponds to the case of differ-

ent densities,r̃151, r̃050.5, r̃250.1.
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In our model, we impose another relation betweenB0 andB1

B05~B11B2!/2. ~35!

Thus, the magnetic field in the layer is determined as the
vector average of the magnetic fields in regions I and II. This
relation seems to be more reasonable because it is symmetric
with respect to the fieldsB1 andB2 .

In Fig. 2 the curves~2! correspond to our solution in the
case of one boundary~one tangential discontinuity!, while
the curves denoted by number~3! correspond to our solution
in the case of two boundaries. Comparing the curves~1! and
~2! in Fig. 2, one can see that both models have practically
the same maximum growth rate corresponding to the antipar-
allel magnetic fields. However, the angle interval of the in-
stability in our model is larger than that in the model of
Rezenov and Maltsev.3 This is caused by the difference in the
relations~34! and ~35! used in the models. The comparison
of the curves~2! and~3! shows that a finite thickness of the
layer diminishes the instability rate. Comparing the plots~a!
and ~b!, one can see that interchange instability becomes
stronger for smaller densityr2.

Figure 3 shows the instability growth rate as a function
of the normalized wave numberka for zero velocity, antipar-
allel magnetic fields (u50) with the ratio n51, and the
normalized curvature radiusR/a5160. The curves~1! and
~2! correspond to the different values of normalized density
r̃251, 0.1. One can see that the instability growth rate is a
monotonic increasing function of the wave number.

Figure 4 shows the instability growth rate as a function
of the normalized curvature radius for a fixed normalized
wave vectorka50.15, and two different cases of density
ratio, r2 /r151 @curve ~1!# and r2 /r150.1 @curve ~2!#.
Similar to Fig. 3, the velocities (V0,1,2) are assumed to be
zero and the magnetic fields are antiparallel (u50) with the
ratio n51. One can see that the instablity growth rate is a
monotonic decreasing function of a curvature radius. From
Figs. 3 and 4 we can also conclude that the instability growth
rate is an increasing function of the layer thickness.

Figure 5 shows the instability growth rate as a function
of the normalized relative velocityV5V12V2 for antiparal-
lel magnetic fields (u50). The normalized wave number

and curvature radius areka50.15, R/a5160. Similar to
Figs. 3 and 4, the curves~1! and ~2! correspond to different
density values,r̃251, 0.1, respectively. Plots~a! and~b! cor-
respond to parallel (a50) and perpendicular (a5p/2) di-
rection of the vectorV with respect to the magnetic field.

Figure 6 shows the instability growth rate as a function
of the velocity anglea for different values of the normalized
relative velocityV. Here, the magnetic fields are assumed to
be antiparallel; the wave number and the curvature radius are
the same as those for Fig. 5. The curves~1!, ~2!, and ~3!
correspond toV50, 0.5, 1, respectively. The plots~a! and~b!

FIG. 3. Normalized instability growth rate as a function ofka for u50,
R/a5160, V15V250. The curve~1! corresponds to the case of equal den-

sities,r̃15 r̃05 r̃251, and the curve~2! corresponds to the case of different

densities,r̃151, r̃050.5,r̃250.1.

FIG. 4. Normalized instability growth rate as a function ofR/a for u50,
ka50.15, V15V250. The curve~1! corresponds to the case of equal den-

sities,r̃15 r̃05 r̃251, and the curve~2! corresponds to the case of different

densities,r̃151, r̃050.5,r̃250.1.

FIG. 5. Normalized instability growth rate as a function of normalized ve-
locity V5(V12V2) for u50, ka50.15, R/a5160. The curves~1! and~2!

correspond to the cases of equal (r̃15 r̃05 r̃251) and different (r̃151, r̃0

50.5,r̃250.1) densities, respectively. The plots~a! and ~b! correspond to
a50 anda5p/2, respectively.
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correspond to different density values,r̃251, 0.1.
One can see from Figs. 5 and 6 that an increase of the

plasma velocity component perpendicular to the magnetic
field causes an enhancement of the instability growth rate.
That is related to the Kelvin–Helmholtz instability acting in
addition to the interchange instability. On the other hand, an
increase of the plasma velocity component parallel to the
magnetic field diminishes the instability growth rate. The
reason is the following: For a parallel motion of the plasma,
the Kelvin–Helmholtz instability is not pronounced for the
velocity interval shown in the figures due to a strong mag-
netic field tension. And, also for small anglesa, the inter-
change instability growth rate is smaller because of a stabi-
lizing role of the centrifugal force.

VI. DISCUSSION AND CONCLUSION

The growth rate of the interchange instability is studied
as a function of the magnetic shear angle, the thickness of the
layer, the wave vector, and the tangential velocity of plasma.

This instability is the strongest in a case of antiparallel
magnetic fields separated by the neutral layer. The instability
decreases if the magnetic field of region I deviates from the
direction antiparallel to the magnetic field of region II. The
growth rate is positive within a finite angle interval of the
magnetic shear. This angle interval of the instability is rather
sensitive to the relation between the layer magnetic vector
and those of regions I and II. Determining the magnetic field
of the layer as a vector average of magnetic fields in regions

I and II, we obtained the instability angle interval, which is
twice as large as that in the model of Rezenov and Maltsev.3

Besides the shear angle, there are four main factors
which bring about an enhanced growth rate of the inter-
change instability of the layer.

~1! Increase of the thickness of the layer;
~2! Decrease of the wavelength;
~3! Decrease of the local curvature radius of the layer;
~4! Plasma flow in the direction perpendicular to the mag-

netic field.

The instability growth rate decreases in the case of
plasma flow along the magnetic field. From the physical
point of view, the influence of plasma velocity can be ex-
plained in the following way. In the case of plasma flow in
the direction perpendicular to the magnetic field, the inter-
change instability caused by the magnetic tensionB2/R is
enhanced by the Kelvin–Helmholtz instability which is
driven by the velocity shear. But, in the case of the plasma
velocity directed along the magnetic field, the Kelvin–
Helmholtz modes are stabilized by the magnetic tension, and
in addition, the interchange instability is also weakened by
the centrifugal force, which is proportional to the velocity
squared and the curvature of the surface.

Applying the results described above to conditions of the
Earth’s magnetopause flowed by the solar with southward
interplanetary magnetic field~IMF!, we find that the growth
rate of the interchange instability must decrease in the me-
ridional plane of the magnetosphere because of plasma flow
along the magnetic field. On the other hand, the growth rate
must increase in the equatorial plane because of plasma mo-
tion in the direction perpendicular to the magnetic field.

Taking the typical parameters:B2560 nT, B1560 nT,
n55 cm23, a5500 km ~total width of the layer is equal to
1000 km!, the relative velocityV50, R58•104 km, and the
wave scalek2153300 km, we obtain the characteristic time

of the instability ast5a/(g̃Ua 2)548 s for the case of the
density ratior2 /r151, andt539 s for the case of the den-
sity ratio r2 /r150.1.

The instability can evolve into a nonlinear stage, if the
growth timet is much less than the timetc of plasma con-
vection along the dayside magnetopause. Using a rough es-
timation of the convection timetc;R/U (U;400 km/s!, we
find the ratiot/tc;50.2. This means that the perturbations
caused by the interchange instability can reach a nonlinear
stage at the dayside magnetopause for southward IMF.

As shown by Luhmannet al.,9 in the case of arbitrary
IMF orientation, there always exist regions with antiparallel
magnetic fields at the magnetopause. But, the locations of
these regions are strongly dependent on the IMF direction.

For steady-state solar wind flow around the magneto-
sphere, the magnetic field is enhanced near the magneto-
pause in the boundary layer, which is thus called the mag-
netic barrier or plasma depletion layer~see Erkaevet al.10

and references therein!. In the case of nonsteady IMF varia-
tions from north to south, the magnetic field can change its
direction inside the magnetic barrier. For this situation, the
interchange instability theory studied above can also be ap-

FIG. 6. Normalized instability growth rate as a function of velocity anglea
for u50, ka50.15,R/a5160. The plots~a! and~b! correspond to the cases

of equal (r̃15 r̃05 r̃251) and different (r̃151, r̃050.5, r̃250.1) densities,
respectively. The curves~1!, ~2!, and~3! correspond to different normalized
velocities,V5V12V250, 0.5, 1, respectively.
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plied. In such a case the thickness of the boundary layer is
larger: It is on the order of the magnetic barrier thickness~a
few thousand kilometers!. For the same curvature radius, the
instability growth rate is larger when the boundary layer is
thicker.

With regard to space plasma, there is an important ques-
tion concerning applicability of an MHD model for the in-
terchange instability analysis. The MHD approach is often
used for space plasma because it much easier than the kinetic
study. It is generally believed that an MHD model can be
used for sufficiently large scales which are much larger than
plasma scales. For magnetosheath conditions, the ion scale is
about 100 km. Therefore, the wave scale 1/k and the layer
thickness 2a as considered in our model should exceed the
plasma scale of 100 km.

It is a fact that the interchange instability growth rate
obtained in kinetic study11 for a plasma with a pressure gra-
dient is similar to that obtained in an MHD model. This
means that the physics of the interchange instability can be
described in the framework of the MHD model.

Another question is that about the assumption of an in-
compressible plasma used in our model. We take into ac-
count a difference in densities between regions I, II, and III,
but within each region the density is assumed to be constant.
Perturbations of the density propagate from the magneto-
pause with the fast magnetosonic speedcs1 . An incompress-
ible MHD model can be applied when the distance of the
compressible wave propagation exceeds the surface wave
scale,cs1t@1/k ~wherecs is the fast magnetosonic speed
andt5g21). The fast magnetosonic speed is larger than the
Alfvén speed, and thus the last condition is covered by the
more stronger condition,Ua 1t@1/k, which can be written
in dimensionless form as follows: (B1 /B2)ka@g̃. This con-
dition is well fulfilled for the parameters used in our study.

The interchange instability of the magnetopause seems
to be an important process which brings about transfer of
magnetic flux tubes through the magnetopause. Finally, this
might cause an enhanced magnetic field diffusion at the high
shear magnetopause, which in its turn can initiate the recon-
nection process~see Priest and Forbes,12 and references
therein!. As a trigger of magnetic reconnection for the mag-
netopause, the interchange instability can be considered as a
complementary factor to the instabilities of a thin current
sheet.13–15

Besides the Earth’s magnetosphere, additional possible
applications of our results are the magnetospheres of the
other planets, and also magnetic clouds~large magnetic cavi-
ties! convected by the solar wind.
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