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Abstract
The heat capacity, nuclear quadrupole resonance (NQR) and x-ray diffraction of
(Cs1−x Rbx)2ZnI4 single crystals have been measured, for x = 0, 0.001, 0.005,
0.01, 0.025 and 0.05. The normal to incommensurate (N–Inc) phase transition
at TI , the incommensurate to commensurate (Inc–C) lock-in transition at TL and
the structural commensurate monoclinic to triclinic transition at TLT , observed
in the parent compound (x = 0), takes place for x = 0, 0.001, 0.005 and 0.01.
For x = 0.025 only TI and TL are detected, while for x = 0.05 no transitions
were observable. The values of TI and TL increase with x while TLT decreases
and disappears at the concentration x = 0.025. The effect of defects, besides
modifying the transition temperatures, is that of broadening and lowering the
heat capacity anomaly at the lock-in transition until its total quenching for
x = 0.05. No observable hysteresis is detected in this transition. NQR and
x-ray diffraction data show the Inc–C transition up to the highest concentration.
We conclude that this phenomenology is caused by weak interaction of the
incommensurate modulation with point defects even in the region close to the
Inc–C transition.

1. Introduction

The incommensurate phase in ideal crystals is a degenerate state which has a gapless phason
mode in the oscillation spectrum. Defects induce a gap in the phason branch as has been
shown by various authors in both theoretical models and experimental measurements. The
interaction of the modulation with defects in models was studied in two different regimes.
In the first case a strong field of defects is assumed and the modulation phase at the defect
location is determined only by the defect (strong pinning condition) [1]. The system possesses
a large number of metastable states in one- and three-dimensional models in both the sinusoidal
and the soliton lattice limits (see for example [2–4]). In the second case the collective field
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of all defects determines the modulation phase. The influence of the defects is accounted
for through the randomization of interactions (‘weak-pinning condition’) [1]. This regime
has been less studied. The incommensurate structure here is not so obviously unstable with
respect to defects, except probably in the very close vicinity of the lock-in transition, where
the intersoliton interaction falls down.

In crystals, as a matter of fact, some intermediate cases are realized. In the well studied
crystals of the A2BX4 family a number of regularly observed phenomena were understood
on the basis of these model approximations. The thermal hysteresis of the incommensurate–
commensurate (Inc–C) transition strongly increases with point defect concentration [5]. In
ion-substituted crystals the thermal hysteresis region may reach ∼50 K, which is near one-half
of the incommensurate phase interval [6]. In the hysteresis region the coexistence of metastable
modulations with different wavevectors (q�) or very pronounced steplike behaviour of q� were
observed by means of x-ray and neutron diffraction [7–9].

The solid solutions (Cs1−x Rbx)2ZnI4 as well as the parent crystal Cs2ZnI4 belong to the
A2BX4 family with the Pnma space group in the normal (N) phase. In earlier studied nuclear
quadrupole resonance (NQR) measurements we did not observe any hysteresis of the Inc–C
transition up to the largest concentration of Rb ions, x = 0.025, studied [10]. Besides, we
measured the heat capacity of a sample with a small Rb content (x = 0.0018), and observed
that it already caused important effects on the lock-in anomaly height. The unexpected lack
of hysteresis and the strong effect of defects on the lock-in transition has stimulated us to
investigate in more detail these series.

In the present paper we have performed the calorimetric (section 2.1), the NQR
(section 2.2) and the x-ray measurements (section 2.3) of the solid solution system
(Cs1−x Rbx)2ZnI4 in the range of concentrations 0 < x < 0.05. The thermodynamic analysis
of the heat capacity is done in section 3. In section 4 it is concluded that the present series
corresponds to the case of weak interaction of the incommensurate modulation with point
defects.

2. Experimental results

The (Cs1−x Rbx)2ZnI4 crystals were grown by the Bridgeman method in quartz ampoules with
an argon ambient. The starting reagents, Cs2ZnI4 and Rb2ZnI4, were purified by repeated
recrystallization. The Rb content was controlled a posteriori by plasma absorption and x-ray
fluorescence.

2.1. Heat capacity

To perform the heat capacity experiments the samples were cut as thin slabs of approximately
0.2 mm width and 2 mg weight. Then one face was painted black to enhance light absorption.
The heat capacity measurements were performed using a Sinku-Riku ACC-1VL calorimeter
between 77.4 and 280 K. The frequency used for the excitation signal was 2 Hz. Two runs,
one heating and another cooling were performed for each sample to study the existence of
thermal hysteresis. Several measurements have been carried out at heating rates of 5 and
15 K h−1 to extrapolate to zero rate and thus obtain the transition temperature determination
near equilibrium.

For each compound the non-anomalous baseline was calculated by naive interpolation of
the data over (T > 130 K) and below (T < 84 K) the transition region, by a second-order
polynomial fitted by the least-squares method. The anomalous excess heat capacity �Cp(T )

was calculated by direct difference between Cexp(T ) and the obtained baseline. Because of
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Figure 1. Temperature dependence of the anomalous heat capacity of the solid solutions
(Cs1−x Rbx )2ZnI4 (x = 0, 0.005, 0.01 and 0.025). Note the ordinate origins are shifted for the
different x . The thick line is the baseline to be interpolated.

Figure 2. Evolution of the transition temperatures TI , TL and TLT of (Cs1−x Rbx )2ZnI4 as a
function of Rb content (x) from heat capacity data.

the relative character of the heat capacity, for comparison reasons the excess heat capacity in
the anomalous region was normalized to the height of the anomaly at the N–Inc transition;
i.e. �Cp(TI ) = 1.

The heat capacity curves at the concentration of the substituted ions in the range
0 � x � 0.05 are shown in figure 1. At small concentrations x = 0.001, 0.005 and 0.01 three
anomalies existing in the pure compound at TI (N–Inc), TL (Inc–C) and TLT (low temperature)
also appear. The values of TI and TL increase with x while TLT decreases. The variation of the
anomalous temperatures depends linearly on x (see figure 2). The measured values of TI and TL

in figure 2 are in all cases about 5 K lower than those determined from NQR measurements [10],
while the first-order transition temperature TLT coincides. This difference is connected with
a specific behaviour of the NQR spectra in the transition region [10] preventing to determine
precisely the transition temperature.

While the general aspect of the anomaly at TI is similar in all the cases, the peak at
TL decreases in height and broadens. The difference in transition temperature between the
warming and cooling runs was in all cases measured as less than 0.2 K for x = 0.005 and 0.01.
For x = 0.025 the uncertainty increases to 0.5 K.

In all measured cases the heat capacity in the region between TL and TLT depends linearly
on temperature. By fitting a straight line we have extrapolated the commensurate heat capacity
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Figure 3. The shape of the 127I NQR line centred at 77.5 MHz of (Cs1−x Rbx )2ZnI4 at x = 0,
0.005, 0.01, 0.025 and 0.05 [10].

Table 1. Transition temperatures, heat capacity peak at the L transition and fit parameters r , α∗
and T0 for the measured (Cs1−x Rbx )2ZnI4 compounds.

x = 0 x = 0.0011 x = 0.005 x = 0.01 x = 0.025 x = 0.05

TI (K) 116.7 119.1 121 122.6 135 154.6
TL (K) 108 109.2 109.7 110.5 115.4 119.6
TC (K) 94 92.7 90.14 88.7 — —
�C p(TL) 1.85 1.67 1.59 1.60 1.28 —
r(x) 0.50 0.45 0.42 0.45 0.33 —
α∗(x) −3.2 −3.9 −4.3 −3.8 −5.9
T0(x) 114.7 117 119 120 132

up to TL and have calculated the excess heat capacity �C(TL) as the anomalous heat capacity
just below TL . The results are given in table 1, where the progressive reduction of �C(TL) is
evidenced. The delta peak at TLT is sharp and first order for all x .

In contrast to the lower concentrations, in the x = 0.025 crystal only the N–Inc and Inc–C
transitions are detected, as can be seen from figure 1. In fact, the transition at TL had to be
ascertained from the phase shift between the crystal temperature and the power applied to it.
This sample seems different from the less doped ones, namely in the absence of the first-order
transition at TLT and in the near suppression of the transition at TL . Nevertheless, the linear
dependence of TL on x is still fulfilled. In the sample with x = 0.05 any indications of the
transitions were absent. With the phase shift technique only a tenuous hint of the anomaly at
TI could be recognized.

2.2. NQR

We have used the NQR method on the 127I lines to determine the character of the Rb ion
distribution in the substituted crystals. At small concentrations the Gaussian broadening of the
NQR lines at T = 140 K, i.e. in the normal phase (figure 3), indicates a random distribution
of defects. However already at x = 0.01 one may detect the appearance of very broad weak
lines on both sides of the N-phase line. At x = 0.025 the intensity of these new components
increases appreciably and at x = 0.05 a very broad spectral distribution with a plateau appears
as a consequence of the superposition of three or more lines. Therefore, for x > 0.01 the
crystals are not a homogeneous phase.
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The N–Inc and Inc–C transitions in (Cs1−x Rbx)2ZnI4 crystals were studied earlier by
NQR in the range of concentrations x between 0 and 0.025. The N–Inc and Inc–C transitions
were clearly observed at the concentrations corresponding to the random distribution of Rb
ions. The N–Inc transition region at x = 0.025 is very wide. The line broadening and the
additional lines observed at this concentration prevent us from showing exactly the Inc–C
transition temperature; however, the transition is observable. The concentration x = 0.025
was determined in [10] as exceeding the limit of Rb content consistent with a homogeneous
phase in the series of solid solutions (Cs1−x Rbx)2ZnI4. We later measured the crystal with
x = 0.05. Both transitions can still be discerned, with difficulty, from the noisy background.

2.3. X-ray study

The x-ray studies on the doped crystals with concentrations x = 0.010, 0.025 and 0.05
were performed using a four-circle diffractometer (Nonius CAD-4) equipped with a fine-
focus Mo x-ray tube and a graphite monochromator (λMo Kα = 0.710 73 Å). The temperature
was controlled using a Nonius FR558 cryostat, which regulates temperature to within ±1 K.
The satellite reflections are present only around Bragg reflections (h60) with h = 2n. The
diffraction patterns were obtained as q-scans along the reciprocal line (h60), as was done in
pure Cs2ZnI4 [11]; that is, the q-vector was parallel to the reciprocal axis a∗. During the q-scan
measurements, the diffracted beam was screened using the 0.2 mm wide vertical slit of the
aperture/filter unit of the diffractometer, with a crystal-to-slit distance of 173 mm. Stationary
counts were made at each point along the q-scan, with step widths �h calculated so as to give
a 0.002 Å−1 displacement between points. This value corresponds roughly to the scan length
subtended at the centre of the crystal by the 0.2 mm vertical slit.

The incommensurate misfit parameter � was determined from the positions of the satellite
reflections (−3/2 − �, 6, 0); (−1/2 − �, 6, 0); and (3/2 + �, 6, 0); (1/2 + �, 6, 0) with
respect to the Bragg reflections (−2, 6, 0); (0, 6, 0) and (2, 6, 0), respectively. The temperature
dependence of the �-value, averaged over the four satellite positions, is presented in figure 4.
The curve for x = 0 is taken from figure 3 of [11]. The misfit parameter for x = 0 decreases
monotonically from 0.137 at TI = 117 K to 0.069 at 108 K and then changes abruptly to � = 0
at TL . The �-dependences at different Rb contents show a shift in the temperature scale, in
accordance with the x–T phase diagram (figure 2). The qualitative behaviour of � does not
change noticeably within the experimental error. The phase transition is clearly observed at
all x concentrations. In the vicinity of the transition point the satellites are split into two
components with wavevectors q = 1/2a∗ and q� = (1/2 + �)a∗. However, the temperature
stability in our experiments was not good enough to allow a quantitative estimation of the
breadth of the temperature region where coexistence occurs. The same holds true for the value
of � in the gap, which appears not to change noticeably for different values of x . After the
transition into the normal phase, the incommensurate satellites broaden sharply, transforming
into diffuse spots.

The reflections (hk0) with h = 2n + 1 are systematically absent in the initial Pnma
phase. In the doped crystals, however, we observe the weak reflections (−1, 6, 0) and (1,
6, 0) in the diffraction pattern at room temperature. The space-group-forbidden reflections
have comparable intensities for all of the Rb-ion concentrations studied. One should note that
reflections at the positions of (−1, 6, 0) and (1, 6, 0) are allowed for a modification of the
present structure having space group P21/m and with the a-axis of the unit cell doubled [11].
Measurements of the reflection intensities in the (hk0) net out to 2θ = 50◦ for x = 0.01 and to
2θ = 55◦ for x = 0.025, figure 5, show that the reflections with h �= 2n are systematically very
weak, although some are above background. It is likely that the intensities at these locations are
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Figure 4. The temperature dependence of the wavevector q� = (1/2 + �)a∗ for (Cs1−x Rbx )2ZnI4
(x = 0, 0.01, 0.025 and 0.05); dashed arrows indicate the TI temperature as determined from the
NQR measurements.

caused by factors other than Bragg scattering, and that the space group is still best described
as Pnma. The structure of the sample with x = 0.050 was found to be isotypic with the
structure for β-K2SO4 [12]. The space group, Pnma, is the same for both structures. While
the unit-cell constants differ markedly (a, b, c = 10.7622(14), 8.3087(7), 14.4327(19) Å for
(Cs1−x Rbx)2ZnI4 and a, b, c = 7.476(3), 5.763(2), 10.071(4) Å for β-K2SO4), the positions
of analogous atoms within the cell are similar for the two structures; and the cell length ratios
(a:b:c) for a Pnma setting are (0.746:0.576:1.00) for (Cs1−x Rbx)2ZnI4 and (0.742:0.572:1.00)
for β-K2SO4. Thus, the structure of the sample with x = 0.050 is also isotypic with the
end-member Cs2ZnI4.

In the pure compound, either grown from a melt or from a solution, we could not discern
the fourth transition reported to occur at 104 K [13] by any of the techniques employed in this
work. The doped compounds did not show that transition either.

3. Thermodynamic analysis

The difference in the effective charges and radii of the substitution (Rb) and host (Cs) ions
in our case is small; however, the end members of the solid solution series, Cs2ZnI4 and
Rb2ZnI4, are not isomorphic. The NQR and x-ray measurements show that in the range of
x � 0.01 the substitution is random and does not break the symmetry of the normal phase.
It seems to generate defects of so-called ‘random local transition temperature’ type at these
concentrations. This type of defect usually shifts the transition temperatures and smears
(broadens) the anomalies of physical quantities. Basically, we shall assume that the systems
can be considered as homogeneous.

In the case of a homogeneous system that undergoes successive N–Inc–C transitions,
with the commensurate modulation qC = 1/2a∗, the essential part of the thermodynamical
functional f is

f (x) = α

2
ρ2 +

1

4
β1ρ

4 − 1

4
β2ρ

4 cos(4θ) − δρ2θ̇ +
κ

2
(ρ̇2 + ρ2θ̇2) (1)
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a) x=0.01

b) x=0.025

k
h

Figure 5. Representations of diffracted intensity in the (hk0) plane for (Rbx Cs(1−x))2(ZnI4), with
x = 0.010 (a) and x = 0.025 (b). The index h runs vertically downward from h = 0 at the centre
of the drawing in each case, and k increases to the right beginning with k = 0 at the centre. The
circles represent resolutions of 1.50 (inner) and 1.00 Å.

in terms of the two-dimensional order parameter Q = ρ(z)eiθ(z) where the amplitude and
phase contain the position dependence [14, 15]. The first three terms are characteristic of
crystals with a low-symmetry commensurate phase, the fourth term is the Lifschitz invariant
which stabilizes the incommensurate phase and the fifth term tends to inhibit it. θ̇ and ρ̇ are
the derivatives with respect to the spatial coordinate z.

The free energy functional, the order parameter and the spatial coordinate can be scaled
as f = β1γ

4 f ∗, ρ = γρ∗ and x = κz∗/δ, with γ = δ/
√

κβ1.
The scaled energy density F(α∗, r) then depends on only two parameters, the anisotropy

parameter r = β2/β1 and the α∗ = κα/δ2 [16].
We shall assume that the substitution of Rb has two main consequences in the free energy

of the crystal.
The anisotropy parameter, r , changes when the Rb concentration, x , changes, but

remains homogeneous in the entire crystal and can be determined from experiment using
expression (4) (see below). This approach is similar to the ‘virtual-crystal approximation’
which has been used previously to analyse the x dependence of the N–Inc–C transitions in
[(CH3)4N]2CuBrx Cl4−x [17].
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It is assumed that at fixed concentration α∗ = α∗
0(T − T0), with T0 the hypothetical

commensurate phase transition temperature in the absence of the fourth and fifth terms in f ,
and that r , the anisotropy parameter, does not depend on T .

To calculate the average free energy we have followed the variational method in which
the average potential F is minimized with respect to both q and θ at given temperature, and
yields their equilibrium values [16].

The average potential in the normal, FN (α∗), and commensurate, FC(α∗), phases can be
calculated analytically, giving

FN (α∗) = 0 and FC (α∗) = −α∗2/(4(1 − r))

while the incommensurate phase, FI (α
∗) has to be calculated numerically.

For fixed concentration, the N–Inc transition, when FN (α∗
I ) = FI (α

∗
I ), occurs at α∗

I = 1,
and presents a steplike anomaly with

�Cp(TI ) = α2
0

2β1
. (2)

To calculate the lock-in transition temperature TL , when FI (α
∗
L ) = FC(α∗

L ), needs a numerical
solution.

Besides, in the commensurate transition the excess heat capacity just below TL obeys the
relation

�Cp(TL) = α2
0

2β1(1 − r)
. (3)

From (2) and (3) the coefficient r can be calculated:

r = 1 − TL/TI

�Cp(TL)/�Cp(TI )
. (4)

We note that the determination of r by this procedure only requires us to know the values
of the relative heat capacity anomalies. Consequently, our ac relative measurements give the
necessary information to apply this equation (see table 1).

4. Discussion

The crystals of the A2BX4 family represent the ‘model’ case for the application of the
continuum theory to the interpretation of incommensurate phase transitions. The two-
component order parameter transforms as the two-dimensional irreducible representation of
the symmetry group of the N phase Pnma. The incommensurate modulation arises along a
single direction. In the constant-amplitude approximation the structure of the Inc phase can
be described in terms of a soliton lattice except in the vicinity of the N–Inc transition, in
the single-harmonic limit [18]. The idea of the soliton lattice has been successfully used to
explain very specific phenomena near the Inc–C transition observed in the presence of point
defects. Near the transition the intersoliton distance L diverges logarithmically to ∞ and
intersoliton interaction becomes so weak that the phase of the modulation is determined by
the field of defects. The randomly distributed defects work as traps for the periodicity, then,
the long range order of a soliton lattice is destroyed by the strong ‘pinning’ of the modulation
wave by impurities. The longer L and the narrower the solitons the larger the pinning energy.
Sometimes the natural content of impurities in the crystal is sufficient to induce a steplike
behaviour of q� near the lock-in transition. The values of q� at the steps depends on the path
to the measuring point on the pressure–temperature phase-plane [9]. The pinned wavevector
values in q-domains correspond to non-equilibrium states. When the temperature is changed
the modulation period must take a new equilibrium value corresponding to the new temperature.



Effect of impurities on the successive phase transitions in (Cs1−x Rbx )2ZnI4 compounds 13631

However, defects prevent such processes from proceeding freely. In all known cases a well
defined thermal hysteresis, which rapidly increases with the impurity concentration, has been
observed by measurements of the modulation wavevector or via the temperature behaviour of
different physical properties near the Inc–C transition.

In the context of this paper it is interesting to remember the results of the heat capacity
and incommensurate wavevector study in the (Rb1−x Kx)2ZnCl4 system [6, 7] which may be
considered as a classical scenario for the Inc-modulation evolution at different concentration
of the substituted ions. Both end members in the solution range investigated are isomorphous
to each other and undergo the same type of N–Inc–C transition. The differences in the effective
charge and radii of the host and substituted ions were chosen to be small to reduce side effects
to the minimum. The substitution does not break the symmetry of the normal phase until a
large concentration of substitutes is introduced in the lattice. The heat capacity data in the
(Cs1−x Rbx)2ZnI4 system look similar to those observed in the (Rb1−x Kx)2ZnCl4 system. The
N–Inc transition temperature lies on a straight line connecting the TI values for the pure K
and Rb compounds. The substitution widens this transition somewhat but does not change
the shape of the heat capacity anomaly. In contrast, the Inc–C transition is essentially blurred
by substitution. At intermediate concentrations (for example at x = 0.02) the Inc–C heat
capacity anomaly is still observable. The behaviour of the satellite reflections near the transition
becomes very complicated, showing the coexistence of metastable states with slightly different
q-values. The thermal hysteresis of the Inc–C transition is about 30 K. For larger defect
concentration, in the range 0.1 � x � 0.9, the heat capacity anomaly at TL is completely
suppressed and does not show any sign of the Inc–C transition. The modulation wavevector
q� is fixed at the value found at TI over the whole temperature range below TI . The metastable
Inc state is observed until the lowest investigated temperature.

As it is very easy to see from the temperature dependence of q� (figure 4) our system does
not follow the expected scenario in spite of the heat capacity data looking very similar to that
quoted above. The Inc–C transition is clearly observed on the temperature dependence of q�

at all Rb concentrations including the largest ones x = 0.025 and 0.05 when the heat capacity
anomaly is already smeared. The substitution does not apparently change the character of
the wavevector temperature dependence. Only at the maximal concentration x = 0.05 can
one perceive some hint of non-monotonic q� behaviour in the Inc region. Unfortunately
the available x-ray diffractometer was not specially equipped for a very precise scanning of
the q-space. Thus, information on metastable modulations which possibly coexist close to
the Inc–C transition may be lost. Nevertheless, the obtained results certainly show that the
smearing and disappearance of the heat capacity anomaly at the Inc–C transition in our system
is not connected with strong non-equilibrium processes of the phase modulation pinning. We
have not observed either a clear demonstration of these processes, such as thermal hysteresis
of the Inc–C transition, which usually increases rapidly with x . This is the first case, to our
knowledge, where the interaction of the modulation with defects is so weak even near the
Inc–C transition.

Both the structure of the ‘host’ crystal in the N phase and the kind of defect generated
by the Rb substitution at small x are of the same type as in the earlier studied (A1−x A′

x)2BX4

solid solutions. In spite of these similarities the incommensurate phase in Cs2ZnI4 has certain
special features. The anisotropy invariant rρn cos nθ in the thermodynamic potential has the
integer n = 6 for most of the A2BX4 crystals. In Cs2ZnI4 this integer characterizes the
two-dimensional representation; it is equal to 4 in accordance with the doubling of the unit
cell parameter of the N phase below the TL . The approximation of the soliton lattice is well
applicable in the case of weak anisotropy realized in n = 6 systems. For n = 4 the anisotropy
is not necessarily weak [19]. Cs2ZnI4 is exactly the case of the middle anisotropy condition
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where r ∼= 0.45 as was shown in [15, 16]. In the studied series of the (Cs1−x Rbx)2ZnI4

solutions the parameter r is varied between 0.50 and 0.33. In that case the solution for the
order parameter near Inc–C transition is neither solitonic nor truly sinusoidal [16]. The absence
of the well formed narrow solitons near TL is a critical condition against the presence of a
strong pinning by defects in this region. Additionally one should note that our thermodynamic
prediction overestimates the expected values of the hysteresis; indeed, the supercooling at
x = 0 is estimated as 7 K, while experimentally the coexistence region of commensurate
and incommensurate modulations at TL does not exceed 0.6 K in Cs2ZnI4 [11]. Recent x-ray
data [20] show that in Cs2ZnI4 the interplanar distances and the unit-cell volume do not exhibit
measurable jumps at the Inc–C transition. The overestimation of the first-order nature of the
Inc–C transition in our case may be due to the restriction by the fourth-order terms on the order
parameter in the expansion (1).

The heat capacity anomaly at TL moderately widens, maintaining the outline of the original
shape in the region of x where the NQR shows the random distribution of the Rb ions. No
randomization factor was introduced in our thermodynamic description, in fact the random
distribution was considered to act homogeneously on all parameters. The observed broadening
of the Cp anomaly at TL in the range of x � 0.01 may be explained, in principle, by the
mechanism known for usual commensurate three-dimensional crystals with a one-component
order parameter and non-symmetry-breaking impurities [21].

For x = 0.025 and 0.05 the NQR spectrum shows that the distribution of the defects is no
longer random. In the system under study the end members of the solid solution series are not
isomorphic substances; Rb2ZnI4 is monoclinic at room temperature [22]. Thus mixed crystals
do not form a continuous series of solid solutions. Usually there exists a range of x where
the mixed crystals are not homophase. As is well known from the numerous studies of solid
solutions with diffuse phase transitions a violation of the random distribution of impurities
leads to very abrupt blurring of the physical property anomalies (e.g. [23]). We suppose that
the change in the regime of the interaction between the matrix and defects is responsible for the
smearing of the Inc–C heat capacity anomaly at the large Rb concentrations in our crystals. The
loss of homogeneity generates elastic strains which in all probability lead to the suppression
of the low-temperature first-order transition.

Since Cs2ZnI4 is an improper ferroelastic the possible contribution of fluctuations in
heat capacity anomalies should be noted. However at x = 0 the influence of fluctuations
is negligible as was mentioned in [15, 16]. In the substituted crystal one can expect an
increase of the fluctuation contribution resulting from the decrease of the correlation radius of
fluctuations far from the transition point (see e.g. [25]). The local modes may also contribute
to CP anomalies and simultaneously broaden them. Our measurements in contrast show the
subsequent decrease of the CP value at TL with the growing content of Rb. The second-order
anomaly at the N–Inc transition maintains the steplike shape at all x .

Note that the shifts of the N–Inc and Inc–C phase transitions with x in the higher-
temperature side (figure 2) are in agreement with common regularity established for A2BX4

structures [25, 26]. As shown, the factor determining the stability of these structures is the
height of the potential barriers preventing a certain kind of tetrahedral group motion. The
low-temperature transition has the opposite sign of temperature shift with x . Most probably it
is not caused by the ordering of the tetrahedral groups and has a displacive nature.

5. Conclusion

In the present work the solid solutions of the (Cs1−x Rbx)2ZnI4 series have been studied
experimentally using AC-calorimetric and x-ray measurements. The x–T phase diagram has
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Figure 6. Calculated �C p(T ) with parameters given in the (table 1), compared to experimental
data for x = 0.025.

been determined in the range of Rb concentration between x = 0 and 0.05. The variational
model used allows us to describe the transition for low concentrations of Rb as due to a
reduction of the anisotropy r . The calculated heat capacity peaks, however, remain narrow
and too high, while the experimental anomalies broaden with the Rb content (figure 6). This
discrepancy already appears in the pure compound and becomes larger for larger concentrations
of doping. One should note that it is a natural consequence of the approach that takes account
of the influence of the substitution effectively only through the variation of the parameters for
a homogeneous system. The moderate broadening of the heat capacity anomalies in the range
of x where a distribution of Rb is random can be explained as in usual crystals doped with
non-symmetry-breaking impurities. At the concentrations x > 0.01 a rapid smearing of the
Inc–C anomaly is connected with the violation of the random distribution of defects. In our
opinion, the most interesting results are the facts showing unusually weak interaction of the
incommensurate modulation with point defects even in the region close to the Inc–C transition.
We have not detected any temperature hysteresis, irrespective of the amount of substitution in
this region. The thermodynamic description shows that (Cs1−x Rbx)2ZnI4 crystals correspond
to the case of an intermediate anisotropy in the thermodynamic potential when the solution for
the order parameter is not solitonic near the Inc–C transition. In that case the energy of the
pinning may be too weak to fix the modulation.
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