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Effects of one- and three-dimensional inhomogeneities on the wave spectrum of multilayers
with finite interface thicknesses

V. A. Ignatchenko and Yu. I. Mankov
L. V. Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia

A. A. Maradudin
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 12 July 2001; published 19 December 2001!

To describe a partially randomized multilayer structure with arbitrary thicknesses of the interfaces between
layers, we introduce a model in which the dependence of a material parameter along the axis of such a
superlattice is described by a Jacobian elliptic sine function with a random spatial modulation of its period.
Both one- and three-dimensional inhomogeneities of the period are considered. We develop the correlation
function for this model, and investigate the dispersion law and damping of averaged waves in this superlattice.
The dependencies of the widths of the gaps in the spectrum and the damping at the boundaries of all odd
Brillouin zones, on the thicknesses of the interfaces, and on the dimensionality, intensity, and correlation wave
number of the inhomogeneities are found. It is shown that experimental investigations of the widths of the gaps
and damping for several Brillouin zones could permit, in principle, determining all parameters of the super-
lattice as well as the parameters of the inhomogeneities from these spectral characteristics.
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I. INTRODUCTION

Multilayered media—one-dimensional superlattices—
promising materials for use in various devices of high te
nology such as resonators, filters, mirrors, etc., for elec
magnetic, spin, and elastic waves. However, real multilay
are not ideal periodic systems: they contain random vio
tions of the periodicity caused by technological and ot
reasons. That is why investigations of the spectrum of wa
in partially randomized superlattices have been carried
very intensively in recent years. Several methods exist n
for developing a theory of such superlattices.

The modeling of the randomization by altering the ord
of successive layers of two different materialsA and B ~of
different or the same thickness! is in wide use now. It is
assumed that neither the parameters of the materials no
layer thicknesses change when the system is random
only the periodicityABAB . . . in the arrangement of th
layers corresponding to the ideal superlattice is destroy
The different versions of this method differ in the types
disruptions of the periodicity in the arrangement of the la
ers: in some versions the layersA andB are arranged accord
ing to the Fibonacci or Thue-Morse sequence rule; in oth
they form either partially correlated or totally uncorrelat
random sequences. A number of important and interes
results have been derived with the help of this method
studies of the propagation of elastic,1–3 spin4–6 and
electromagnetic7 waves. In several papers the study of wa
propagation in a superlattice was conducted in the fra
work of a method that consists in the numerical modeling
the random deviations of the interfaces from their initial p
riodic arrangement.8–10Another method was suggested ind
pendently in Refs. 11 and 12, where a form of the correlat
function of a superlattice with inhomogeneities was pos
lated and then the wave spectrum and damping were ca
lated analytically. In Ref. 13 the propagation of the elect
0163-1829/2001/65~2!/024207~9!/$20.00 65 0242
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magnetic waves in disordered media was considered in
frameworks of geometrical optics. In Ref. 14 the dynam
composite elastic medium theory was suggested for calcu
ing the wave spectrum in randomly layered one-dimensio
media and media with three-dimensional inclusions.

One more method for investigating the influence of inh
mogeneities on the wave spectrum of a superlattice was
gested in Ref. 15, the method of the random spatial mod
tion ~RSM! of the period of the superlattice. This method
an extension of the well-known theory of the random fr
quency~phase! modulation of a radio signal16,17 to the case
of spatial inhomogeneities in the superlattice. Laws of
dispersion and damping of the averaged spin, elastic,
electromagnetic waves were determined by this method
two models of superlattices: superlattices with an initial sin
soidal dependence of material parameters on
coordinate,15,18 and superlattices with a dependence in t
form of rectangular spatial pulses.19,20 These models corre
spond to the two limiting cases of the relation between
thickness of the interfacesd and the periodl of the multilayer
structure. For the second model~the model of the sharp in
terface! d/ l 50. For the first model, which is the limiting
case of smooth interfaces, the thickness of the ‘‘layers’’ a
‘‘interfaces’’ is the same; the ratiod/ l 51/4 corresponds to
this model. It must be emphasized that not only in o
papers15,18–20but in practically all works carried out to dat
only these two models have been used in studies of the w
spectrum in ideal as well as in randomized superlattices.

However, in real multilayers the ratiod/ l can have an
arbitrary value between these limiting cases. To desc
such multilayer structures we have introduced in Ref. 2
model in which the dependence of a material parame
along the superlattice axis is described by a Jacobian elli
function. Depending on the value of the modulusk of the
elliptic function, the model describes the limiting cases
multilayers with sharp interfaces (k51,d/ l 50) and of sinu-
©2001 The American Physical Society07-1
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soidal superlattices (k50,d/ l 51/4), as well as all interme
diate situations. We have also investigated the wave s
trum for this model in the absence of any inhomogeneitie

The aim of the present paper is to calculate the spect
and damping of the averaged waves in a partially rando
ized superlattice by the method of RSM15 using the model of
a superlattice21 with an arbitrary ratiod/ l . In Sec. II we
develop a correlation function for such a superlattice for o
and three-dimensional inhomogeneities. In Sec. III we
velop the analytical equations for the spectrum and damp
of the superlattice. In Sec. IV we calculate the width of t
gaps in the spectrum and the damping at the boundarie
odd Brillouin zones due to one- and three-dimensional in
mogeneities, and discuss the results obtained.

II. CORRELATION FUNCTION

Any superlattice is characterized by the dependence
some material parameterA on coordinatesx5$x,y,z%. The
physical nature of the parameterA(x) can be different. This
parameter can be a density of matter or a force constan
the elastic system of a medium, the value of the magnet
tion, anisotropy, or exchange for a magnetic system, and
on. We representA(x) in the form

A~x!5A@11gr~x!#, ~1!

whereA is the average value of the parameter,g is its rela-
tive rms variation,r(x) is a centered (̂r(x)&50) and nor-
malized (̂ r(x)2&51) function. The functionr(x) describes
the periodic dependence of the parameter along the supe
tice axisz, as well as the random spatial modulation of th
parameter which, in the general case, can be a function o
three coordinatesx5$x,y,z%. We represent this function in
the form

r~x!5kS K

K2ED 1/2

snF p

2d
„z2u~x!…1c G , ~2!

which has the form of the Jacobian elliptic sine function
the absence of disorder (u[0). HereK andE are the com-
plete elliptic integrals of the first and second kind, resp
tively, k is the modulus of these integrals, andl is the period
of the superlattice. The coefficient multiplying the ellipt
function is the normalization constant, which follows fro
the condition̂ r(x)2&51. The parameterd5p l /8K has been
introduced in Ref. 21 as an effective thickness of the in
faces in the initial ideal superlattice; the numerical coe
cient has been chosen so thatd/ l 51/4 for the limiting case
of the sinusoidal superlattice; in so doing the main variat
of the value of the parameterA(x) occurs over the lengthd
for all values ofd/ l . As in Refs. 19,20 for the superlattic
with sharp interfaces we assume here that the functionr(x)
can be represented in the form of a Fourier series even
u(x)Þ0

r~x!.A2 (
m50

`

Bp sinp@q„z2u~x!…1c#. ~3!
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This can be done if the functionu(x) is smoother in all
directions than the first harmonic of the Fourier series. H
q52p/ l , p52m11, andA2Bp are the exact Fourier coef
ficients for the functionr(z) of the ideal superlattice,

Bp5
A2p

AK ~K2E!

Rp/2

12Rp
, ~4!

where

R5expS 2
pK 8

K D , K 8~k!5K ~k8!, k85A12k2.

~5!

As in Refs. 15,19,20 we have introduced a coordin
independent random phasec, which is characterized by a
uniform distribution in the interval (2p,p). This permits us
to satisfy the condition of ergodicity even in the case wh
u[0.

The product of the functionr(x) and r(x1r ) can be
represented in the form

r~x1r !r~x!

5 (
m50

`

(
m850

`

BpBp8$cosq@prz2p8u~x!1pu~x1r !

1~p2p8!~z1c/q!#1cosq@prz2p8u~x!

2pu~x1r !1~p1p8!~z1c/q!#%, ~6!

wherep852m811. The second summand vanishes after
eraging over the phasec. The terms withp8Þp in the first
summand vanish as well, and after this averaging we ha

^r~x1r !r~x!&c5 (
m50

`

Bp
2 cosp~qrz1x!, ~7!

where

x~x,r !5q@u~x1r !2u~x!#. ~8!

Averaging Eq.~7! over x with a Gaussian distribution func
tion for x, we obtain a general expression for the correlat
function in the form

K~r !5 (
m50

`

Bp
2 cospqrz expF2

p2

2
Q~r !G , ~9!

where

Q~r !5q2^@u~x1r !2u~x!#2& ~10!

is the structure function of the random displacementsu(x).
This function does not depend on the model of a superlatt
It has been found in Ref. 15 for the cases of one-, two-, a
three-dimensional inhomogeneities.

In Ref. 22 some refinements of these results have b
carried out, according to which the parameters figuring in
Ref. 15 has been represented in the form

s5gu~ki
212k'

2 !1/2/q, ~11!
7-2
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whereki and k' are the correlation wave number of inh
mogeneities along thez axis and in thexy plane, respec-
tively, and gu5pgu8 , where gu8 is the rms fluctuation of
u(z). Taking into account Eq.~11! the structure function for
the case of one-dimensional inhomogeneities obtained
Ref. 15 can be represented in the form

Q~r z!52gu
2@exp~2kir z!1kir z21# ~12!

or in the limiting cases of large and smallr z

Q~r z!'H 2gu
2~kir z21!, kir z@1,

~gukir z!
2, kir z!1.

~13!

According to the results of Ref. 15 the approximate eq
tions ~13! can be used for the superlattice in the entire reg
of variation of the variabler z for the limiting cases of smal
(pgu!1) and large (pgu@1) rms fluctuation ofu(z). They
lead to the following approximate expression for the cor
lation function of the superlattice in the one-dimension
case

K~r z!5 (
m50

`

Bp
2 cospqrzFp , ~14!

where

Fp5H exp@2p2gu
2~kir z21!#, pgu!1,

exp@2~pgukir z!
2/2#, pgu@1.

~15!

For isotropic three-dimensional inhomogeneities
structure function has the form

Q~r !56gu
2F12

2

k0r
1S 11

2

k0r Dexp~2k0r !G , ~16!

or in the limiting cases of large and smallr

Q~r !'H 2gu
2S 12

2

k0r D , k0r @1,

~guk0r !2, k0r !1,

~17!

wherek05ki5k' is the correlation wave number of the ra
dom functionu(x).

An approximate equation for the correlation function
the superlattice in the three-dimensional case forpgu@1 can
be written in the entire region of variation of the variabler in
the same way as this has been done in the one-dimens
case. But forpgu!1 this way is impossible in the three
dimensional case, because the equation forQ(r ) diverges
when r→0. To overcome this difficulty we used in Ref. 2
the exact Eq.~16! for Q(r ), and represented the exponent
Eq. ~9! for K(r ) as a power series ingu . Here we use an-
other approach that leads to a simpler form of the equa
for the wave spectrum of the superlattice. Namely, we
proximate the correlation function forpgu!1 by the sum of
an exponential function and a constant. In so doing we ob
an approximate equation forK(r ) in the form
02420
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K~r !5 (
m50

`

Bp
2 cospqrzFp , ~18!

where

Fp5H ~12Dp!exp~2p2gu
2k0r !1Dp , pgu!1,

exp@2~pguk0r !2/2#, pgu@1,
~19!

where Dp5exp(23gu
2p2). Numerical analysis shows tha

these expressions approximate the exact expression ofK(r )
well enough for the corresponding values ofpgu .

III. SPECTRUM AND DAMPING OF WAVES

We consider the equation for waves in the superlattice
the form

¹2m1„n2«r~z!…m50, ~20!

where the expressions for the variablem and the parameter
« andn are different for waves of different nature. For sp
waves whenm5Mx1 iM y describes the circular projectio
of the transverse components of the magnetizationM , and
the parameter of the superlatticeA(x) is the magnetic anisot
ropy b(x), we have15

n5
v2v0

agM0
, «5

gb

a
, ~21!

wherev is the frequency,v05g(H1bM0), g is the gyro-
magnetic ratio,a is the exchange parameter,M0 is the value
of the magnetization,b is the average value of the aniso
ropy, andg is its relative rms variation. We assume here th
only the value of the anisotropy depends on coordina
while the direction of the anisotropy axis coincides with t
direction of the external magnetic fieldH and does not de-
pend on coordinates. In the scalar approximation both
spectrum of elastic waves in a medium with an inhomo
neous density and the spectrum of electromagnetic wave
a medium with an inhomogeneous dielectric permeability
also described by this equation with redefinitions of the
rameters. For elastic waves we have

n5~v/v !2, «5ng, ~22!

whereg is the rms fluctuation of the density of the mater
andv is the wave velocity. For an electromagnetic wave
have

n5«e~v/c!2, «5ng, ~23!

where«e is the average value of the dielectric permeabili
g is its rms deviation, andc is the speed of light. Equation
~20! becomes more complicated when inhomogeneities
the elastic modulus, of the exchange parameter, or of
magnetization are considered: terms of the form (¹m)(¹r)
appear in the equation in these cases. Inhomogeneities o
direction of the anisotropy axis also complicate the equat
because they lead to the appearance of a stochastic mag
structure in a ferromagnet, which interacts with spin wav
In this paper we do not concern ourselves with such cas
7-3
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Replacing to the right hand side of Eq.~20! by the density
of a point sourced(x2x0) we obtain the equation for th
Green functionG(x,x0)

¹2G~x,x0!1@n2«r~x!#G~x,x0!5d~x2x0!. ~24!

Representing the Green function in the form of a Four
integral,

G~x,x0!5E Gke
ikx dk, ~25!

we obtain the integral equation for the Fourier compone
of the Green function

~n2k2!Gk5«E Gk1
rk2k1

dk11eikx0. ~26!

Averaging this equation over the ensemble of the rand
realizations of the functionr(x) we obtain

~n2k2!^Gk&5«E ^Gk1
rk2k1

&dk11eikx0. ~27!

Increasing the subscripts onk by unity in Eq.~26!, express-
ing Gk1

from this equation, and substituting it into Eq.~27!,
we obtain

~n2k2!^Gk&5«2E E ^rk2k1
rk12k2

Gk2
&

n2k1
2

dk1 dk21eikx0.

~28!

Decoupling the averaged product in the integrand of Eq.~28!
in an approximation corresponding to the Bour
approximation,23

^rk2k1
rk12k2

Gk2
&.^rk2k1

rk12k2
&^Gk2

&, ~29!

we obtain the averaged Green function in the form

^Gk&5F n2k22e2E S~k2k1!dk1

n2k1
2 G21

eikx0. ~30!

Here S(k) is the spectral density of the superlattice d
fined by the formula

^rkrk8&5S~k!d~k1k8!, ~31!

or by the inverse Fourier transformation of the correlat
function of the superlatticeK(r ):

S~k!5
1

~2p!3E K~r !e2 ikr dr . ~32!

Laws of the dispersion and damping of the averag
waves are determined by the equation for the complex
quencyn5n81 i j, which follows from the vanishing of the
denominator of the Green function:

n2k25e2E S~k2k1!dk1

n2k1
2

. ~33!
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We restrict ourselves to the case of small values of
function u(x) corresponding topgu!1. First we consider
one-dimensional inhomogeneities. Substituting Eq.~14! with
Fp corresponding to the upper line of Eq.~15! into Eq. ~32!
and performing the integration we obtain the spectral den

S~k!5d~kx!d~ky!S0~kz!, ~34!

whered(ki) are Dirac delta functions, and

S05
gu

2ki

2p (
p

Bupu
2 exp~pgu!2

~p2gu
2ki!

21~kz2pq!2
. ~35!

Herep561, 63, . . . . Substituting Eqs.~34! and~35! into
Eq. ~33! and performing the integration with respect tok1 we
obtain the equation for the complex variablen5n81 i j in
the form

n2k25
L2

4 (
p

Bupu
2

exp~pgu!2~12 ip2gu
2ki /An1!

~An12 ip2gu
2ki!

21~kz2pq!2
,

~36!

whereL5A2«, n15n2kx
22ky

2 . In the case of the absenc
of inhomogeneities (gu50) this equation reduces to th
equation obtained in Ref. 21 for the wave spectrum in
ideal superlattice with finite thicknesses of interfaces.

The complete equation~36! is very complicated for ana
lytical analysis. But with the proviso thatL/n!1, the reso-
nances corresponding to differentp in the sum in Eq.~36!
influence one another only slightly. That is why we can
strict ourselves to the two-wave approximation in the vic
ity of each odd Brillouin zone boundaryk.krn5nq/2, keep-
ing in the sum only the termp5n corresponding to the
Brillouin zonen considered:

~n2k2!@~An12 in2gu
2ki!

22~nq2kz!
2#

5
L2

4
Bunu

2 exp~ngu!2~12 in2gu
2ki /An1!. ~37!

Let us make some further simplifications in this equation.
will consider the waves to be propagating along thez axis
(kz5k, n15n). Under the conditionngu

2ki /q!1 we can
neglect both the imaginary part of the coupling parame
and the shift of the crossing resonance point and obtain
equation in the form

~n2k2!@n2 in3gu
2kiq2~nq2k!2#5

L2

4
Bunu

2 exp~ngu!2.

~38!

Solutions of this equation have been well investigated for
case of the model of the sinusoidal superlattice15 (n51,
Bunu51) as well as for the model of the sharp interfaces19,20

(Bunu52A2/pn). In the absence of inhomogeneities (gu
50) the gapsDnn5n12n25LBunu exist in the wave spec
trum at the Brillouin zone boundariesk5krn5nq/2; heren6

are the solutions of Eq.~38!. In the vicinity of krn the spec-
trum has the form shown schematically in Fig. 1 by two so
curves~we use the extended zone scheme!. When inhomo-
geneities appear the solutions become complex. The ga
7-4
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the spectrumDnn5n18 2n28 decreases with the increasin
gu ~dashed curves in Fig. 1!, and at last closes: the spectru
of the averaged waves is described now by a continu
curve with a point of inflection atk5krn ~the dotted-dashed
curve in Fig. 1!. Simultaneously with the increase ofgu the
dampingj increases, whose dependence onk has a maxi-
mum at k5krn . So, the Brillouin zone boundaries are th
most sensitive points of the spectrum with respect to
influence of inhomogeneities. At these points the express
for Dnn andjn have the forms

Dnn

L
5ReLn , ~39!

jn

L
5

1

2
~n3gu

2h6Im Ln!. ~40!

Here

Ln5@Bunu
2 exp~ngu!22~n3gu

2h!2#1/2, ~41!

whereh5kiq/L. Both the width of the gapDnn and value
of the dampingjn depend on the parameters of the init
ideal superlattice (q, L, andd/ l ), characteristics of the in
homogeneities (gu andh), and the Brillouin zone numbern.

We come now to a consideration of the case of thr
dimensional inhomogeneities. Substituting Eq.~18!, with Fp
corresponding to the upper line of Eq.~19!, into Eq. ~32!,
and performing the integration we obtain the spectral den

S~k!5
1

2p2 (
p

Bupu
2 H gu

2p2k0~12Dp!

@~gu
2p2k0!22~k2pq!2#2

1p2Dpd~k2pq!J , ~42!

wherep561, 63, . . . . Substituting Eq.~42! into Eq.~33!
and performing the integration with respect tok1 we obtain
the equation for the complex variablen in the form

FIG. 1. Dispersion curves near the Brillouin zone boundar
k5krn for the ideal superlattice~solid curves! and for partially ran-
domized superlattices~dashed curve for the small and dotte
dashed curve for large intensity of inhomogeneities!.
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n2k25
«2

2 (
p

Bupu
2 F 12Dp

~An2 igu
2p2k0!22~k2pq!2

1
Dp

n2~k2pq!2G . ~43!

In the two-wave approximation in the vicinity of each od
Brillouin zone boundaryk'krn5nq/2, keeping in the sum
only the termp5n, and using the same simplification th
yielded Eq.~38!, we obtain

n2k25
L2

4
Bunu

2 F 12Dn

n2 igu
2n3k0q2~k2nq!2

1
Dn

n2~k2nq!2G .

~44!

This equation is a cubic equation inn and in contrast to Eq.
~38! for the one-dimensional case its solution cannot be r
resented in an explicit form analogous to Eqs.~39!–~41!.

s FIG. 2. The dependencies of the gap widths in the spectrumDnn

on d/ l for the different Brillouin zonesn51, 3, 5, and 7~solid
curves! for the ideal superlattice. The relationsnDnn /Dn1 are also
shown forn53 ~dashed curve!, n55 ~dotted-dashed curve!, and
n57 ~dotted curve!.

FIG. 3. The dependence of the width of the gapDn1 on d/ l and
gu

2 at h54 for the 1D case.
7-5
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IV. NUMERICAL RESULTS AND THEIR DISCUSSION

The quantityBunu in Eqs. ~38!–~44! is a transcendenta
function of d/ l . That is why we investigate these equatio
by numerical methods. Results of these investigations at
pointskrn5nq/2 are shown in Figs. 2–8.

The spectrum of waves in an ideal superlattice with
arbitrary ratio d/ l in the absence of inhomogeneities (gu
50) has been studied in Ref. 21. Widths of the gaps in
case are determined by the dependence onn andd/ l of the
coefficients of the expansion of the functionr(z) in the Fou-
rier series:

Dnn

L
5Bunu . ~45!

These dependencies are depicted in Fig. 2 forn51, 3, 5, and
7 ~solid curves!. From this figure we notice that the width o
the gap for the first Brillouin zone depends slightly ond/ l
because the coefficient before the first Fourier harmonic
pends slightly on the form of the functionr(z):B1

52A2/p'0.9 for the limiting case of a superlattice wit
sharp interfaces (d/ l 50), andB151 for the other limiting
case of the sinusoidal superlattice (d/ l 51/4). The widths of
the gapsDnn for n.1 strongly depend onn as well as on

FIG. 4. The dependence of the width of the gapDn1 on gu
2 at

h54 for the 1D and 3D cases for the superlattice with sharp in
faces (d/ l 50, solid curves! and sinusoidal superlattice (d/ l 51/4,
dashed curves!.

FIG. 5. The dependence of the dampingj1 on d/ l andgu
2 at h

54 for the 1D case.
02420
he
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d/ l . The dependence onn for the limiting cased/ l 50 is
determined by the expressionBunu52A2/pn, and in the lim-
iting case of the sinusoidal superlattice (d/ l 51/4) all the
Fourier harmonics, except the first, vanish. This means
in this case the first order of perturbation theory does
give a contribution to the gap widths. The latter are det
mined by terms of higher orders which were not taken in
account in our analysis. The ratiosnDnn /Dn1 are shown
also in Fig. 2 forn53, 5, and 7. As has been noticed in Re

r-
FIG. 6. The dependence of the dampingj1 on gu

2 at h54 for
the 1D and 3D cases for the superlattice with sharp interfa
(d/ l 50, solid curves! and sinusoidal superlattice (d/ l 51/4, dashed
curves!. The scales for the 1D and 3D cases are shown by
arrows.

FIG. 7. The dependence of the width of the gapDn3 on d/ l and
gu

2 at h54 for the 1D~a! and 3D~b! cases.
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21, the experimental measurement of the ratio between
widths of the gaps at the boundaries of the first and any o
Brillouin zones offers the possibility of determining th
thickness of the interfaces in a multilayered medium.

When inhomogeneities appear the width of the gap
addition to its dependence ond/ l andn, now depends also on
the intensity of the inhomogeneitiesgu

2 and on their dimen-
sionless correlation wave numberh. The latter is determined
for the one-dimensional~1D! and three-dimensional~3D! in-
homogeneities by the expressions

h5H kiq/L, 1D,

k0q/L, 3D.
~46!

In Figs. 3, 4, 5, and 6 the dependencies ofDn1 andj1 on
d/ l andgu

2 are shown forh54. The width of the gapDn1

for the first zone for the one-dimensional inhomogeneit
~Fig. 3! decreases with the increase ofgu

2 , andDn1 closes at
some critical value ofgu

2 that is approximately the same fo
the superlattice with any ratiod/ l . In Fig. 4 the dependencie
of Dn1 on gu

2 are depicted for the one- and three-dimensio
inhomogeneities for the limiting cases of the superlatt
with the sharp interfaces (d/ l 50, solid curves! and the sinu-
soidal superlattice (d/ l 51/4, dashed curves!. All curves cor-
responding to intermediate values ofd/ l align themselves
between these two limiting curves. One can see thatDn1
decreases much more slowly with the increase of 3D in
mogeneities as compared with the 1D case: the gap for
has a rather large value when the gap for 1D is alre
closed.

In Fig. 5 the dampingj1 is shown for the 1D case as
function of d/ l and gu

2 for h54. The graph in this figure
corresponds to the choice of the minus sign before the
ond term in Eq.~40!. This choice of the sign is justified in
Ref. 18, where susceptibilities of the sinusoidal superlat
are investigated. With the increase ofgu

2 a linear increase o
the dampingj1 occurs at the beginning, which results fro
the first term of Eq.~40!; the second term of this equation
equal to zero this time becauseLn has only a real componen
The gap closes at some criticalgu

2 and the second term of Eq
~40! subtracts from the first one leading to a decrease of

FIG. 8. The dependence of the dampingj3 on d/ l andgu
2 at h

54 for the 3D case.
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e

damping with the further increase ofgu
2 . In Fig. 6 the depen-

dencies ofj1 on gu
2 are depicted for both the 1D and 3

cases for the limiting casesd/ l 50 ~solid curves! and d/ l
51/4 ~dashed curves!. The dependence ofj1 for the 1D case
has a sharp peak at the same value ofgu

2 where the gapDn1

closes~Fig. 4!. It should be noted that the scales for the 1
and 3D cases on the graph are different, and the differe
between the values of the damping for the cases of one-
three-dimensional inhomogeneities reaches an order of m
nitude.

We come now to a consideration of the values ofDnn and
jn for the third Brillouin zone (n53). In Fig. 7 the depen-
dencies ofDn3 on d/ l and gu

2 are shown forh54 for the
one- and three-dimensional cases@Figs. 7~a! and 7~b!, re-
spectively#. The width of the gapDn3 for the 1D case@Fig.
7~a!# strongly depends ond/ l as well as ongu

2 . That is why
the surfaceDnn(d/ l ,gu

2) for the 1D case has a more comp
cated form forn53 than forn51 ~see Fig. 3!. The closing
of the gapDn3 occurs at a much smallergu

2 than the closing
of the gapDn1, in our case (h54), for instance, by two
orders of magnitude. The gapDn3 for the 3D case@Fig. 7~b!#
depends ond/ l as strongly as in the 1D case@Fig. 7~a!#. But
its dependence ongu

2 is not so strong, and the surfac
Dn3(d/ l ,gu

2) has a simpler form in the 3D case than in t
1D case. In Fig. 8 the dampingj3 in the one-dimensiona
case is shown as a function ofd/ l and gu

2 . The surface
j3(d/ l ,gu

2) has a much more complicated form than the s
face j1(d/ l ,gu

2) ~see Fig. 5! because of the strong depe
dence ofj1 on d/ l . In Fig. 9 the dependencies ofj3 on gu

2

are shown atd/ l 50 for both the 1D and 3D cases. Th
dependence in the 1D case has a sharp peak just at the
value ofgu

2 at which the corresponding gap closes. Note t
the scales for the 1D and 3D cases on the graph are diffe
and the difference between the values of the damping for
cases of one- and three-dimensional inhomogeneities is
orders of magnitude. All graphs in Figs. 3–9 correspond
the value of the dimensionless correlation wave numbeh
54. In Fig. 10 the phase diagram for the existence of
open gapDn3 in the 1D case is shown in the coordinatesd/ l
andgu

2 for h52, 4, and 6~the region of existence of an ope

FIG. 9. The dependence of the dampingj3 on gu
2 at h54 and

d/ l 50 for the 1D and 3D cases. The scales for the 1D and 3D ca
are shown by the arrows.
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gap is situated under the corresponding curve!. This diagram
is the solution of the equationLn50 whereLn is defined by
Eq. ~41!. The curve withh54 corresponds to the cross se
tion of the surfaceDn3 in Fig. 7~a! with the planed/ l ,gu

2 in
this figure. The other curves in Fig. 10 show how this cro
section changes ash changes.

As noted above the solution of Eq.~44! for the 3D case
cannot be represented in an explicit form, and this equa
has been solved numerically. But the following approxim
analytical solution of Eq.~44! can be used for small value
of n2gu

2!1:

Dnn

L
'BnF12

3

2

~ngu!2~2n3gu
2h/Bn!2

11~2n3gu
2h/Bn!2 G , ~47!

jn

L
'

3

2

n5gu
4h

11~2n3gu
2h/Bn!2

. ~48!

Equation~47! describes well the dependencies ofDnn on n,
d/ l , andgu

2 which were shown in Figs. 4 and 7~b! for the 3D

FIG. 10. The phase diagram for the existence of an open
Dn3 in the spectrum in the coordinatesd/ l andgu

2 for h52, 4, and
6.
l.

u-

ys

02420
s

n
e

case. Equation~48! describes the dependencies ofjn on n,
d/ l , andgu

2 that were shown in Figs. 6 and 9, but only in th
regions ofgu

2 wherejn increases with increasinggu
2 .

Let us summarize the results obtained. The widths of
gapsDnn at the boundaries of Brillouin zones are the mo
sensitive points of the spectrum of a superlattice in relat
to the influence of inhomogeneities~to the increase of their
rms deviationsgu). This sensitivity depends on the numb
of the Brillouin zonen and on the relative thickness of th
interfacesd/ l . The width Dn1 of the first zone practically
does not depend ond/ l , and has the least sensitivity to th
influence of inhomogeneities. Forn.1 the sensitivity is
higher the largern and the smallerd/ l . That is why with
increasing disorder the successive closing of the gaps in
spectrum takes place beginning with large values ofn down
to n51. The effects of inhomogeneities on the wave sp
trum depend on their dimensionality: the one-dimensio
inhomogeneities affect the spectrum more strongly than
the three-dimensional ones. A gap in the spectrum decre
much more slowly with increasinggu for the case of three-
dimensional inhomogeneities than it does for on
dimensional inhomogeneities with the same correlation w
numberh. A gap in the 3D case still has enough large val
when the gap corresponding in the 1D case is already clo
The damping induced by three-dimensional inhomogenei
can be smaller by several orders of magnitude than
damping induced by one-dimensional inhomogeneities w
the same values ofgu andh.

From this entire analysis we can conclude that a deta
investigation ofDnn andjn permits, in principle, determin-
ing from these spectral characteristics all the parameter
the superlattice,L, l , andd, as well as the parameters of th
inhomogeneities,gu andh.
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