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Wannier-Stark resonances in semiconductor superlattices

M. Glück, A. R. Kolovsky,* H. J. Korsch, and F. Zimmer
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Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-
Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was
found to show multiscale oscillations as a function of the static field, which is explained by an interaction with
above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in
terms of the resonance Wannier-Stark states, is obtained and used to calculate the absorption spectrum in the
region of high static fields.
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I. INTRODUCTION

Semiconductor superlattices~SL’s! are the traditional ob-
ject for studying Wannier-Stark~WS! states which, by defi-
nition, are the metastable states of a charged particle
periodic potential plus static electric field,1

H5p2/2m1V~x!1eFx, V~x1d!5V~x!. ~1!

The first observation of the Wannier-Stark spectrum in
semiconductor superlattice in 1988~Ref. 2! ended a long
theoretical discussion about the physical relevance of
states. Now it is commonly accepted that they are the re
nances states of the system. However, in theoretical ana
of related problems their metastable character is most o
neglected and they are approximated by stationary st
~single-band, tight-binding, and similar approximations!. For
a weak static field this approximation can be justified b
cause the tunneling lifetime of WS states essentially exce
other characteristic times of the system, in particular,
relaxation time due to scattering of the carriers by impuriti
However, this is not true for strong fields, where the lifetim
of WS states can be considerably shorter than the relaxa
time. Recently this regime has attracted much attention b
theoretically3,4 and experimentally.5–7 In particular, it was
demonstrated in Ref. 4 that at high~but realistic! field
strengths the concept of localized WS states may comple
fail.

In the present paper we study WS states in SL’s bey
the finite-band approximation. As an analytical approach
hind the numerical results presented below we use a spe
scattering theory developed earlier in relation to opti
superlattices.8–11 Using this approach one finds Wannie
Stark resonances as the complex-energy polesE5E2 iG/2 of
the rigorously constructed scattering matrix. The no
Hermitian eigenstates of the Hamiltonian~1! corresponding
to these discrete complex energies are the metastable
states with the lifetimet5\/G. In the limit F→0 the life-
time t goes to infinity and the resonance WS states appro
stationary states predicted by the single-band model. H
however, we are mainly interested in the opposite limit o
strong field, where the tunneling effects course an esse
deviation from the single-band~or finite-band! approxima-
tion. It should be mentioned that the notion of strong fie
0163-1829/2002/65~11!/115302~9!/$20.00 65 1153
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has a relative meaning and depends on the superlattice
rameters. For example, for shallow GaAs/AlxGa12xAs su-
perlattices withd;100 Å andx;0.1 the region of strong
static field corresponds toF.10 kV/cm.

The structure of the paper is as follows. In Sec. II w
briefly recall the basics of the scattering matrix approa
used to calculate WS resonances. Section III discusses
general structure of the WS resonances in the SL potentia
is shown that the SL potential supports many Wannier-St
ladders~WSL’s! of resonances which can be classified eith
as under-barrier or above-barrier WSL’s. The interaction
different WSL’s and its effect on the lifetime of WS states
studied in Sec. IV. Sections V and VI analyze the density
states and the wave functions of an electron~hole! in the SL
potential. In Sec. VII we derive an analytical expression
absorption spectrum of an undoped SL in terms of resona
WS states and calculate the Wannier-Stark fan diagram
the semiconductor superlattices with the parameters i
cated above. This section is followed by the conclusion su
marizing the obtained results.

II. SCATTERING MATRIX APPROACH

In this section we briefly describe the approach of Ref.
used to find the quantum resonances in the system~1!. This
approach inverts the traditional solid-state-physics approa
where one treats the static fieldF as a perturbation to the
field-free Hamiltonian, and considers the periodic poten
V(x) to be a perturbation to the Stark HamiltonianH0
5p2/2m1eFx. In this way the notion of the scattering sta
CE(x) appears which, in the limitx→2` ~here and below
we assumeF.0), have an asymptotic similar to th
asymptotic of the Airy function. Namely, in the momentu
representationCE(k)5*dx exp(ikx)CE(x), the asymptotic is

lim
k→6`

CE~k!5expF i S \2k3

6meF
2

Ek

eF
6u~E! D G , ~2!

where the phase shiftu(E) takes into account the effect o
the periodic potential.@Note that the scattering statesCE(x)
continuously depend on the energy and are normalized
*CE* (x)CE8(x)dx5d(E2E8).# The phase shiftu(E) in Eq.
~2! defines the scattering matrix of the system,S(E)
5exp@2i2u(E)#. By definition, the quantum resonances a
©2002 The American Physical Society02-1
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the poles of the analytical continuation of the scattering m
trix into the complex plane.12 It has been proved that for th
Wannier-Stark Hamiltonian~1! the resonances are arrang
in the ladder

Ea,l5Ea1edFl2 iGa/2. ~3!

In Eq. ~3!, l 50,61, . . . is thesite index, associated withl th
well of the periodic potential, anda51,2, . . . is theBloch-
band index. It can be also shown that in the limitF→0 the
following relation holds:

Ea'Ēa[E Ea~k!dk, ~4!

where Ea(k) stands for the dispersion relation of theath
Bloch band atF50, and

Ga}F exp~2Ca /F !, ~5!

where the constantCa is defined by the energy gap betwe
a andb5a11 Bloch bands.13 We would like to stress tha
the displayed relations areestimates. Due to the ladder inter-
action ~see Sec. III!, the actual dependenceGa5Ga(F) has
oscillations superimposed on the smooth dependence~5!. Si-
multaneously, there are deviation from the single-band re
~4! and the resonance positionEa is a function ofF. In Ref.
8 we suggested a simple numerical method~justified later on
in Ref. 11! which, in principle, allows one to find WS reso
nances for an arbitrary periodic potentialV(x). This method
maps the eigenvalue problem for the HamiltonianH to the
eigenvalue problem for the evolution operatorU(TB)
5exp(2iHTB /\) over the Bloch periodTB52p\/edF.14 In
other words, one starts from the eigenvalue equation

U~TB!FE~x!5lFE~x!, l5expS 2 i
2pE

edFD . ~6!

Then the poles of the scattering matrix are found as the c
plex eigenvalues of the matrix of the evolution operator c
culated in the basis of the periodic functionŝxun&
5(2p)21/2exp(inx) and truncated to a finite sizeunu,N
→`. ~In practice, it is enough to keep the numerical para
eter N large enough.! Note that the energyE in Eq. ~6! is
defined up to multiples ofDE5edF. Thus the whole ladde
of resonances~3! corresponds to a single eigenvaluel of the
evolution operator matrix.

A few words should be added about the metastable
states. As mentioned in Sec. I, these states satisfy the e
tion

HCa,l~x!5Ea,lCa,l~x!, ~7!

whereEa,l are the complex energies in Eq.~3!. Because WS
states are non-Hermitian states of the Hamiltonian~1!, one
should distinguish the leftCa,l

L (x) and the rightCa,l
R (x)

eigenfunctions. Formally they correspond to scattering st
with zero amplitude of incoming or outgoing waves and
verge exponentially forx→2` (F.0).12 Nevertheless, the
scalar product of the left and right eigenfunctions is finite.
the results presented below we normalize the resonance w
functions as
11530
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E Ca,l
R* ~x!Cb,m

L ~x!dx5da,bd l ,m . ~8!

III. UNDER- AND ABOVE-BARRIER WS RESONANCES

We proceed with the analysis of WS resonances in the
potential. In the simplest~traditional! approach the SL poten
tial is modeled by the periodic square-shaped function

V~x!5H V, uxu<a/2,

0, a/2,uxu<d/2,
~9!

wherea andb5d2a are the thickness of alternating sem
conductor layers. To be concrete, we shall analyze the e
tron WS resonances and choose the following SL para
eters:d5114 Å, a5b, Ve50.0632 eV, andme50.067 of
the electron mass, and the effective electron mass is assu
to be independent of the coordinatex. For the purpose of
future use the Bloch-band spectrum of the system is depi
in Fig. 1~b!.

Figure 2~b! shows the widthsGa of WS resonances be
longing to the seven most stable WSL’s as a function of 1F.
It is seen in the figure that for a low static fieldF
&10 kV/cm the lifetime of the ground WSL essentially e
ceeds the lifetime of the next six WSL’s, which form a wid
irregular band. However, for a higher fieldF*10 kV/cm
the resonances belonging to different WSL’s have com
rable widths and, therefore, the notion of the ground W
loses its absolute meaning. The left panel in Fig. 2 shows
relative energyE1 of the most stable WSL, reduced to th
fundamental energy interval2edF/2<E,edF/2. The slope
of the straight line approximating the displayed depende

FIG. 1. Bloch-band structure of the electron in the cosine pot
tial V(x)5Ve@0.51(2/p)cos(2px/d)# ~a! and square-box potentia
~9! with equal thickness of the layers~b!. The parameters areVe

50.0632 eV,d5114 Å, andme50.067 of the electron mass. Ad
ditionally, the dotted line in the right panel shows the smooth
square-box potential used later on.
2-2
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is given by the absolute energyE1* of the ground WS reso
nances in the limitF→0. For the chosen superlattice param
eter it isE1* 50.039 eV, which should be compared with th
height of the potential barrierVe50.0632 eV and ‘‘mean

position’’ of the ground Bloch band,Ē150.0383 eV. Be-

causeE1* 'Ē1,Ve, these resonances can be identified~at
least for a low static fields! as an under-barrier resonanc
originating from the ground Bloch band.

It is also seen in Fig. 2~a! that for a low field the depen
denceE15E1(F) is a continuous function ofF but it has a
number of discontinuities in the region of high static fie
This is explained by the phenomenon of avoided level cro
ing in the complex plane. In fact, for the complex eigenv
ues depending on some control parameter two kinds of s
crossings are possible—either the real parts of the eigen
ues cross and the imaginary parts show an avoided cros
or, vice versa, the imaginary parts cross but the real p
show an avoided crossing~see Ref. 15, for example!. The
depicted result indicates that for a low field, whereG1!Ga

(a.1), true crossings of the levelE1 with other levels oc-
cur. Opposite to this, for a high field, the anticrossin
mainly take place. We shall come back to this problem
Sec. IV.

Perhaps the most remarkable feature of the analyzed
is the strong oscillation of the resonance width of the grou
WS resonances. These oscillations are superimposed o
general tendency~5! and show an hierarchical structure
different scales. As shown below, the physical origin of t
resonance width oscillations is attributed to the large num
of crossings with WSL’s associated with the unstable abo
barrier resonances.

To understand the structure of the above-barrier re
nances in semiconductor superlattices it is convenient to c
sider the square-box potential~9! as the limitM→` of the
finite Fourier series

FIG. 2. ~a! Level position of the most stable electron WSL r
duced to the fundamental energy interval2DE/2<E,DE/2,DE
5edF. ~b! The widths of the first seven most stable WS resonan
as a function of 1/F.
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2
1 (

m51

M

vmcosS 2pm

d
xD G ,

vm5
2

pm
sinS pm

2 D ~10!

~here we consider the casea5b5d/2!. Then the structure of
the above-barrier resonances can be qualitatively descr
in terms of the Landau-Zener theory, where the lifetime
WS states is determined by the probability of tunneling b
tween the adjacent bands.

The first row in Fig. 3 shows the relative energies a
widths of the ground under-barrier and first above-barr
resonances forM51, i.e., a pure cosine potential, and 0
,1/F,0.15 cm/kV. The absolute energies of the res
nances, obtained from the slopes of the lines, areE1*
50.039 eV andE2* 50.134 eV, which approximately coin

cide with the mean position of the first (Ē150.0386 eV)
and second (Ē250.1370 eV) Bloch band@see Fig. 1~a!#.
The mean slopes of the dependences for the reson
widthsG1 andG2 are given by the values of the energy ga
D1,250.0043 andD2,351.5831026 eV at the edge and in
the center of the Brillouin zone, respectively. Because
energy gaps between the other bands are exponentially s
the next above-barrier resonances have very large wi

s

FIG. 3. A fragment of the dependence ofEa and Ga on 1/F
calculated forM51 ~upper row!, M53 ~middle row!, andM55
~lower row!, whereM is the upper limit in the sum~10!. In the low
row two less stable resonances are marked by smaller dots.
2-3
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~small lifetimes! and are of a minor physical importance. It
also seen in the figure that the oscillations of the widthG1
are due to the crossings of the ground WSL with the lad
originating from the second Bloch band. Namely, each ma
mum of G1 corresponds to a particular crossing of the le
E1 with the levelE2.

The second row in Fig. 3 corresponds toM53. Now we
have two above-barrier resonances and they are actu
more stable than the single above-barrier resonance foM
51. This is explained by the fact that the termv3cos(6px/d)
in Eq. ~10! opens the gapD3,450.0132 between the third an
fourth Bloch band at the edges of the Brillouin zone.16 @The
Bloch dispersion relation forM53 practically coincides for
E,1 eV with the one shown in Fig. 1~b! and with the one
shown in Fig. 1~a! for E.1 eV.# Note that this gap is large
than the gapD2,3 at the center of the Brillouin zone. Becau
of this, the WSL’s originating from the second and thi
bands strongly interact and the corresponding above-ba
resonances appear as a ‘‘degenerate’’ pair with the abso
energyE2* 5E3* '(Ē21Ē3)/2 ~see next section!. Similar to
the caseM51, the crossings of the above-barrier WSL
with the ground WSL results in a variation ofG1. However,
since we have two more-or-less stable above-barrier r
nances, the characteristic period of the ground resona
width oscillation is 2 times smaller.

The next nonvanishing termv5cos(10px/d) in the series
~10! opens the gap between the fifth and sixth Bloch ba
and a new pair of almost degenerate above-barrier r
nances,E4* 5E5* , appears~third row in Fig. 3!. The presence
of these ‘‘new’’ above-barrier resonances affects the width
the ground resonance in similar way—each crossing of
level E1 with levelsE4 andE5 brings an additional peak to
the dependenceG1(F).

The described process of the formation of above-bar
resonances can be continued towardsM→` which will re-
sult in a fractal-like dependence ofG1(F). We would like to
stress, however, that this fractal-like behavior is a con
quence of the nonanalyticity of the square-box potential
flected in the slow 1/M convergence of the Fourier serie
For an analytic potential, which is obviously the case re
ized in practice, the Fourier series~10! has an effective cut-
off. Because of this, the number of physically importa
above-barrier WSL’s is finite and there is some minimu
scale of the oscillations inG1(F).

IV. INTERACTION OF RESONANCES

As shown in the previous section, WS resonances in S
may strongly affect each other.17 Here we study the interac
tion between different WSL’s with the help of a simple tw
state model introduced earlier in Ref. 9 in relation to opti
lattices. This model will allow us to distinguish between t
cases of a weak, moderate, and strong interactions betw
the ladders. Going ahead, we note that the semicondu
SL’s can show all three regimes of the interaction. This d
tinguishes them from the optical lattices, where the case
weak interaction is realized almost exclusively.

It is well known that the interaction between two res
11530
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nances can be well modeled by a two-state system~see Ref.
15, for example!. In this approach the problem reduces to t
diagonalization of a 232 matrix, where the diagonal matri
elements correspond to the crossing~noninteracting! reso-
nances. In our case, however, we have ladders of resona
This fact can be properly taken into account by introduc
the diagonal matrix in the form9,11

U05expS 2 i
2pH0

edF D , H05S E1* 2 iG1/2 0

0 E2* 2 iG2/2
D .

~11!

It is easy to see that the eigenvaluesl1,2(F)
5exp@2i2p(E1,2* 2 iG1,2/2)/edF# of U0 correspond to the
relative energies of WS resonances and, thus, the matrixU0
models two crossing ladders of resonances.@The resonance
widths G1,2 in Eq. ~11! actually depend onF in accordance
with Eq. ~5!, but considering a narrow interval ofF, this
dependence can be neglected.# Multiplying the matrixU0 by
the matrix

Uint5expF i eS 0 1

1 0D G5S cose i sine

i sine cose D , ~12!

we introduce an interaction between the ladders.
The valuee50 obviously corresponds to noninteractin

ladders. By choosingeÞ0 bute!p/2 we model the case o
weakly interacting ladders. In this case the ladders show
crossing and the interaction affects only the stability of t
ladders. Namely, in the limite→0, the eigenvalues of the
matrix U0Uint are

l65l1,2coseS 11
tan2e

12l1,2/l2,1
D . ~13!

It follows from Eq.~13! that at the points of crossing~where
the phases ofl1 andl2 coincide! the more stable ladder~let
it be WSL with index 1, i.e.,G1,G2 or ul1u.ul2u) is desta-
bilized (ul1u,ul1u) and, vice versa, the less stable ladd
becomes more stable (ul2u.ul2u). This situation is illus-
trated by the first row in Fig. 3, where we have a we
interaction between the ground and ‘‘first excited’’ WSL’
~Additional oscillations ofG2 are due to the interaction o
first excited WSL’s with the second excited WSL’s, n
shown in the figure.!

By increasinge aboveecr ,

tan2ecr5
~ ul1u2ul2u!2

4ul1l2u
, ~14!

the case of a moderate interaction, where the true crossin
substituted by an anticrossing, is met. As a consequence
interacting WSL’s exchange their stability index at the po
of the avoided crossing. Let us also note that, according
Eq. ~14!, at fixede, WS resonances with comparable widt
should show anticrossings while the resonances with es
tially different widths should cross. Indeed, this is the ca
we typically observed in our numerical study of WS res
nances in the SL potential.
2-4
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The maximal possible interaction is achieved by choos
e5p/2. Then eigenvalues of the matrixU0Uint are l6

56 i (l1l2)1/2 which corresponds to the ‘‘degenerate’’ res
nances

E6* 5~E1* 1E2* !/26edF/4, G65~G11G2!/2. ~15!

Relation~15! is illustrated by the second row in Fig. 3 whe
the strong interaction between the WSL’s associated with
second and third Bloch bands produces a pair of loc
WSL’s, where the energy levels of one WSL are situa
exactly in middle between the energy levels of the ot
WSL.

In conclusion, we note that in the general case, where
has more than two interacting WSL’s, all three regimes
interaction~weak, moderate, and strong! may be present si
multaneously. In particular, for the case depicted in the th
row in Fig. 3 we have a strong interaction between the l
ders originating from second, third and fourth, fifth Bloc
bands, which build two locked@in the sense of Eq.~15!#
pairs of ladders, a moderate interaction between these
pairs, and a weak interaction of the ground WSL with fo
above-barrier ladders.

V. DENSITY OF STATES

In this section we study the density of states of system~1!.
The analysis of the density of states is important becaus
the laboratory experiments one usually gains informat
about the density of states of the system rather than the r
nances themselves.

Knowing the resonance energiesEa,l5Ea1edFl
2 iGa/2, the fluctuating part of the density of states is giv
by

r~E!5
1

2p (
a51

`

(
l 52`

`
Ga

~Ea1edFl2E!21Ga
2/4

, ~16!

where the sum overa is the sum over different WSL’s. To
avoid the convergence problem discussed in Sec. III
smooth the square-box potential~9! and substitute the uni
step by the linear combination of hyperbolic tangents:

V~x!5
Ve

2 F tanhS x1d/4

s D2tanhS x2d/4

s D G ,
2d/2,x,d/2, ~17!

where the parameters defines the width of the transitio
region zone between the semiconductor layers.@For s
52d/p used below the shape of this potential is depicted
Fig. 1~b! by a dotted line.# The Fourier series of the functio
~17! has an effective cutoff above which the expansion co
ficients decay exponentially. Then the upper limit in the s
over a in Eq. ~16! can be set equal to this cutoff. For th
sake of presentation it is also convenient to normalize
density of states~16! to its mean valuer̄5(edF)21.

Figure 4 shows the normalized electron density of sta
re(E,F) as a gray-scaled map for strong fieldsF
>20 kV/cm. It is seen in the figure thatre(E,F) is domi-
11530
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nated by the contributions from the under-barrier resona
E1* and a pair of degenerate above-barrier resonancesE2*
5E3* . The effect of all other above-barrier resonances
pears as weak ripples superimposed on these three fans
also interesting to note that the resonanceE1* can be easily
followed up to the region of a very strong fieldF
.100 kV/cm where the potential wells of the combined p
tential V(x)1eFx cannot support an under-barrier qua
bound state in principle.

By a closer inspection of Fig. 4, a number of anticrossin
between the ‘‘ground’’ and first two ‘‘excited’’ WSL’s can be
easily identified. These anticrossings are mainly reflected
a decrease of the contrast, which is a consequence of
increase of the resonance widthG1 occurring at the points of
the avoided crossings~see inset of Fig. 4!. It is also seen in
the inset that the naively expected double-peak structure
the main resonance line may not appear in the energy de
dencer5r(E). In this sense, when the density of states
concerned, there are no big differences between anticross
and actual crossings.

In conclusion of this section we would like to note th
the results presented above cannot be considered as ge
because the structure of the above-barrier resonances is
sitive to the details of the SL potential. We have conside
the case of a symmetric potential, where the width of
potential barriers coincides with the width of the potent
wells. As an example, Fig. 5 shows the density of states
an asymmetric potential with the well to barrier ratio equal
3.4/8 ~the lattice periodd is kept the same!. In this case the
presence of even harmonics in the series~17! affects the gaps
at the center of the Brillouin zone, which removes the dou
degeneracy of the above-barrier resonances. It is seen in
5 that, unlike Fig. 4, the density of states is now domina
by the WSL’s originating from the first (E1* 'Ē1

50.0284 eV) and second (E2* 'Ē250.1214 eV) Bloch
bands.

FIG. 4. Gray-scaled map of the electron density of states~16!
for the smoothed square-box potential~17! with s52d/p. The in-
set showsr(E) for F around~dashed line! and far~solid line! from
the anticrossing atF'46 kV/cm.
2-5
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VI. WAVE FUNCTIONS AND OVERLAP INTEGRAL

We proceed with analysis of the wave functionCa,l(x) of
WS states. Figure 6 showsuC1,0(x)u2 for F55, 10, 25,
100 kV/cm. ForF,25 kV/cm these eigenfunctions resemb
those of the tight-binding or single-band models.18,19 In par-
ticular, the phenomenon of Stark localization is clearly se
asF is increased. The resonance origin of the depicted w
functions~i.e., the result beyond the finite-band approxim
tion! is reflected by the presence of a tail forx,0. This tail
obviously corresponds to the probability tunneling out of t
potential wells and its amplitude is directly related to t
lifetime t5\/G of WS states. WhenF is increased, the am
plitude of the probability flow gradually increases and eve
tually it becomes impossible to introduce a finite localizati
length of WS states. This effect is an essence of the phen
enon which is often referred to as the delocalization of W
states due to the Zener breakdown.4,6 It is understood that the
process of Stark localization is always accompanied by
increase of probability flow and, thus, a decrease of

FIG. 5. Same as Fig. 4, but for an asymmetric potential w
a/b53.4/8.

FIG. 6. Wave functions of ground electron WS state for differe
values of the static fieldF.
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lifetime of the WS state. For some system parameters~for
example, smaller value of the potential barrierVe) WS states
lose their stability before the Stark localization takes pla
This is also the case for WS states originating from
higher Bloch bands.

As far as the photocurrent experiments with undoped S
are concerned, an important characteristic of SL’s is the o
lap integral between the electron wave functionCa,l

e (x) and
the hole wave functionCa,l

h (x). An analysis of this integral,
which obviously depends only on the differenceL5 l h2 l e in
the site indices of the wave functions, is our next aim.
should be noted that for the considered SL parametersd
5114 Å, a5b, Ve50.0632 eV, Vh520.0368 eV, me

50.067, andmh520.45) and the considered interval of th
static field (F>5 kV/cm) the hole WS states belonging
the ground hole WSL are essentially localized within o
potential well. Thus the properties of the overlap integ
discussed below are mainly defined by the localization of
electron WS states.

As already mentioned in Sec. II, the right and left no
Hermitian eigenfunctions of the Hamiltonian~1! generally
do not coincide and, thus, the overlap integra
^Ca,l

h uCb,l 1L
e & and ^Cb,l 1L

e uCa,l
h & may differ even in mag-

nitude. ~Here and below we use the Dirac notation for t
right and left eigenfunctions.! A physical meaning, however
can only be attributed to the product of these integrals:

I a,b
2 ~L !5^Ca,l

h uCb,l 1L
e &^Cb,l 1L

e uCa,l
h &. ~18!

The absolute values ofI a,b
2 (L), which can be interpreted a

the squared transition matrix elements, define the intens
of the absorption lines. In the low-field limit, the integr
~18! can be calculated on the basis of the tight-bindi
model, because in this limit both the right and left resonan
eigenstates approach the stationary states of the single-
model. For a high field, however, it has to be calculat
numerically.

Figure 7 shows the absolute values of the transition m
trix elementsI a,b(L)5AI a,b

2 (L) for a5b51 as a function
of L. The chosen values of static field corresponds to
regimes of low (F55 kV/cm), medium (F
510,25 kV/cm), and high (F5100 kV/cm) fields. It is
seen in the figure that in the low-field regime many tran
tions are involved. The total number of the transitions
obviously given by the localization length of electron W
states, which can be well estimated by using the tig
binding model. When the static field is increased (F510 and
25 kV/cm) the localization length of WS states decrea
and the vertical transitionL50 becomes dominant. How
ever, in addition to the vertical transition a long tail of tilte
transition forL.0 appears (F525 and 100 kV/cm). This
phenomenon is obviously related to a field-induced deloc
ization of WS states illustrated in Fig. 6.

To conclude this section we shall briefly discuss the ph
of the overlap integral

I a,b
2 ~L !5uI a,b

2 ~L !uexp@ ifa,b~L !#. ~19!
t
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When the transition to an unstable resonance is involved,
phasesfa,b(L) generally differ from zero. Because for larg
values of F all WS resonances are actually the unsta
above-barrier resonances, this fact should be properly ta
into account when the high-field regime is considered~see
next section!. Beside this, the effect of phases was found
be extremely important at the point of anticrossings. In fa
at the points of anticrossings the distance between r
nances is typically smaller than the widths of the resonan
involved and, therefore, an interference may occur.
mainly met the case of destructive interference; i.e.,
phases of the corresponding matrix elements tend to be
posite to each other.

VII. WANNIER-STARK FAN

In this section we use the preceding results to calcu
the absorption spectra of the semiconductor superlattice
it was already mentioned in the Introduction, in the hig
field regime the tunneling lifetime of WS states is t
electron-hole pairs~excitons! and the decay rate of thes
states.

To simplify an analysis we shall neglect the Coulom
interaction. Then the exciton wave function is just the pro
uct of the electron and hole wave functions, i.e.,

u1L&5uCb,l 1L
e &uCa,l

h & ~20!

~in the following, the indexl which labels the position of the
exciton inside the crystal is irrelevant for the absorption a
will be omitted!. The energy of this state isEL5Eb

e2Ea
h

1Eg1edFL, whereEg stands for the energy gap betwe
the conductance and valence bands in the bulk semicon
tor, and the lifetime is inversely proportional toG5Ga

h

1Gb
e . In Eq.~20! we label the exciton state by a single ind

L ~which has the meaning of a mean distance between

FIG. 7. Square root of the absolute value of the overlap inte
~18! for a5b51 as a function ofL for four different values of the
static fieldF55,10,25,100 kV/cm. SL parameters ared5114 Å,
a5b, Ve50.0632 eV, andVh520.0368 eV andme50.067
andmh520.45 of the electron mass.
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electron and hole! and omit the sub-indicesa andb. In other
words, here we restrict ourselves by considering only o
particular exciton WSL. The existence of the other excit
WSL’s will be taken into account later on.

Using the notion of the exciton states, the Hamiltonian
the semiconductor superlattice in the laser field has
form20

H5(
L

ELaL
†aL1e cos~vt !(

L
~^C l 1L

e uC l
h&aL

†

1^C l
huC l 1L

e &aL!, ~21!

whereaL
† (aL) is the creation~annihilation! operator for the

Lth exciton state with the energyEL5EL2 iG/2, ^C l 1L
e uC l

h&
is the overlap integral between the electron and hole w
functions, ande is proportional to the amplitude of the lase
field. Assuming the density of the excitons to be small~i.e.,
low laser intensity! the problem in question can be formu
lated as searching for the correction to the vacuum state~full
valence and empty conduction band! u0&. According to the
first-order perturbation theory, this correction corresponds
the quasienergy state

uc&5u0&2
e

2 (
L

^C l 1L
e uC l

h&
EL2\v

e2 ivtu1L&. ~22!

The second-order correction to the quasienergy is

DE52
e2

4 (
L

^C l
huC l 1L

e &^C l 1L
e uC l

h&
EL2\v

. ~23!

The absorptionD(v) is proportional to the decay rate of th
quasienergy state~22!, which is obviously given by the
imaginary part of Eq.~23!. Finally, summing up over the
different WSL’s, we obtain

D~v!;(
a,b

(
L

3ImF I a,b
2 ~L !

~Eb
e2Ea

h1edFL1Eg2\v!2 i ~Gb
e1Ga

h !/2G ,
~24!

where the coefficientsI a,b
2 (L) are defined in Eq.~18!. To

avoid a misunderstanding we stress that Eq.~24! refers to the
so-called one-dimensional absorption. The actual absorp
which accounts for the in-plane motion, is proportional to t
integral*2`

v dv8D(v8).6 We also would like to note that Eq
~24! generalizes an analytical expression derived earlier
the decay spectra in the optical superlattices10 to the case of
semiconductor superlattices.

Equation~24! has a simple physical meaning. In fact, b
neglecting the phases of the overlap integrals, it reduces

al
2-7
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D~v!;(
a,b

(
L

uI a,b
2 ~L !u

3
Ga

h1Gb
e

~Eb
e2Ea

h1edFL1Eg2\v!21~Ga
h1Gb

e !2/4
.

~25!

Then the absorption spectra is a sum of the Lorentzians
sociated with vertical (L50) and tilted (LÞ0) transitions
betweenath hole andbth electron WS states. Being in
cluded, the phases of the overlap integrals typically ca
non-Lorentzian shapes of the absorption lines—a phen
enon referred to as Fano resonances in the semicond
superlattices.21 Beside this, as mentioned above, they ta
into account the destructive interference occurring at
points of avoided crossings.

As an example, Fig. 8 shows the one-dimensional abs
tion D(v,F) calculated on the basis of Eq.~24! for SL with
the parameters of Fig. 7. Because in the high-field regime
ground electron and hole wave functions are essentially
calized within one well,L50 transitions between the groun
electron and hole states dominate in the absorption spect
The weak feathers above and below the main feather o
ously correspond to theL561 and L562 transition be-
tween the same WSL’s.~Also a sign of another fan, assoc
ated witha52,b51 transitions, is seen.! It is interesting to
note that, although there are no absorption lines associ
with b.1 electron WSL’s in Fig. 8, the existence of the
above-barrier WSL’s is confirmed indirectly by the comp
cated structure of the visible absorption lines. In particu
comparing Fig. 8 with Fig. 4, one can easily identify th
anticrossings of under-barrier~for F→0) WS resonancesE1*

FIG. 8. Gray-scaled map of the one-dimensional absorp
spectra as a function of the static fieldF and photon energyhn. The
inset shows the shape of absorption lines forF525 kV/cm.
11530
s-

e
-

tor
e
e

p-

e
-

m.
i-

ed

r,

with two above-barrier WS resonancesE2* 5E3* . These an-
ticrossings originate a characteristic ‘‘broken feather’’ stru
ture of the L50 absorption line, recently detected in th
experiment.7

VIII. CONCLUSION

Let us summarize the results obtained.
We calculated the resonance WS states in a semicondu

SL and studied the dependence of the resonance width~in-
verse lifetime of WS states! on the amplitude of the static
field. When the static field is varied, the resonance width
found to show multiscale oscillations, which are superi
posed on the smooth overall behavior predicted by Land
Zener theory. We explain these multiscale oscillations by
interaction between different WSL’s, which is studied
some detail by using a simple matrix model.

Although the general structure of the electron or hole d
sity of states is obvious~a periodic sequence of peaks ass
ciated with WS resonances!, there were no general method
to calculate it.22 Section V, where we analyzed the depe
dence of the density of states on both the energy and am
tude of the static field, fills this gap in the theory.

Next we studied the overlap integral between the elect
and hole resonance WS states. In particular, it was sh
that in the high-field regime the transitions ‘‘up the ladde
are enhanced in comparison with the transitions ‘‘down
ladder.’’ This asymmetry is a consequence of the fie
induced delocalization of WS states and has to be dis
guished from the asymmetry caused by the electron-h
Coulomb interaction.19 We also stressed the importance
the complex phases of the overlap integral which are resp
sible for interference effects, occurring at~anti!crossings of
different WSL’s, and the non-Lorentzian shape of the abso
tion lines.

A method of calculating the shape of absorption line
suggested. Using this method one can easily construct
Wannier-Stark fan for an arbitrary wide range of the sta
field. Previously this was done only by a numerical evalu
tion of Fermi’s golden rule.4 However, the Fermi’s golden
rule approach gives little insight into the physics of Wann
resonances. Beside this, the numerical method of Ref.
essentially a finite-size-box quantization method, where
results should be controlled against variation of the box s
In contrast, the method described in Sec. VII relies on
resonance WS states, which assumes an infinite size o
system from the very beginning.

A final remark concerns the Coulomb interaction, whi
was neglected throughout the paper. Because we w
mainly interested in the regime of high static field where t
Coulomb binding energy is smaller than the electrostatic
ergy DE5edF, this assumption is partially justified. Neve
theless, it would be interesting to study the effect of t
Coulomb interaction on the lifetime of the exciton WS stat
This problem is reserved for the future.

n
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