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Wannier-Stark resonances in semiconductor superlattices
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Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-
Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was
found to show multiscale oscillations as a function of the static field, which is explained by an interaction with
above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in
terms of the resonance Wannier-Stark states, is obtained and used to calculate the absorption spectrum in the
region of high static fields.
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I. INTRODUCTION has a relative meaning and depends on the superlattice pa-
rameters. For example, for shallow GaAs/@&, _,As su-
Semiconductor superlatticéSL's) are the traditional ob- perlattices withd~100 A andx~0.1 the region of strong
ject for studying Wannier-StarkVS) states which, by defi- static field corresponds t6>10 kV/cm.
nition, are the metastable states of a charged particle in a The structure of the paper is as follows. In Sec. Il we
periodic potential plus static electric field, briefly recall the basics of the scattering matrix approach
used to calculate WS resonances. Section Ill discusses the
H=p?2m+V(x)+eFx, V(x+d)=V(x). (1)  general structure of the WS resonances in the SL potential. It
is shown that the SL potential supports many Wannier-Stark
The first observation of the Wannier-Stark spectrum in dadders(WSL's) of resonances which can be classified either
semiconductor superlattice in 198Ref. 2 ended a long as under-barrier or above-barrier WSL's. The interaction of
theoretical discussion about the physical relevance of Wdlifferent WSL's and its effect on the lifetime of WS states is
states. Now it is commonly accepted that they are the rescstudied in Sec. IV. Sections V and VI analyze the density of
nances states of the system. However, in theoretical analysétates and the wave functions of an electfoole) in the SL
of related problems their metastable character is most oftepotential. In Sec. VII we derive an analytical expression for
neglected and they are approximated by stationary statedsorption spectrum of an undoped SL in terms of resonance
(single-band, tight-binding, and similar approximatiprisor WS states and calculate the Wannier-Stark fan diagram for
a weak static field this approximation can be justified bethe semiconductor superlattices with the parameters indi-
cause the tunneling lifetime of WS states essentially exceedsated above. This section is followed by the conclusion sum-
other characteristic times of the system, in particular, themarizing the obtained results.
relaxation time due to scattering of the carriers by impurities.
However, this is not true for strong fields, where the lifetime II. SCATTERING MATRIX APPROACH
of WS states can be considerably shorter than the relaxation

time. Recently this regime has attracted much attention both [N this section we briefly describe the approach of Ref. 11
theoretically* and experimentally:” In particular, it was Used to find the quantum resonances in the sysfgmThis

demonstrated in Ref. 4 that at higlbut realisti¢ field ~@Pproach inverts the traditional solid-state-physics approach,

strengths the concept of localized WS states may completelynere one freats the static fieflas a perturbation to the

fail. leld-free Hamiltonian, and considers the periodic potential
In the present paper we study WS states in SL's beyond (XZ) to be a perturbation to the Stark Hamiltoniad

the finite-band approximation. As an analytical approach be=P/2m+eFx. In this way the notion of the scattering state

hind the numerical results presented below we use a specifi e(X) appears which, in the limx— —< (here and below

scattering theory developed earlier in relation to opticaWe assumeF>0), have an asymptotic similar to the

superlattice§-** Using this approach one finds Wannier- asymptotic of the Airy function. Namely, in the momentum

Stark resonances as the complex-energy ppteE—il'/2 of ~ representation’ g(k) = fdxexp(kX)Vg(x), the asymptotic is

the rigorously constructed scattering matrix. The non- o3

Hermitian eigenstates of the Hamiltoni&h) corresponding lim ¥ (k)zex;{i( A7k _ ﬂ‘ G(E)” )

to these discrete complex energies are the metastable WS K+ o0 E 6meF eF™ '

states with the lifetimer=#/T". In the limit F—0 the life-

time 7 goes to infinity and the resonance WS states approacvhere the phase shifi(E) takes into account the effect of

stationary states predicted by the single-band model. Heréhe periodic potential.Note that the scattering staté:(x)

however, we are mainly interested in the opposite limit of acontinuously depend on the energy and are normalized as

strong field, where the tunneling effects course an essentidlV g (x) W/ (x)dx= 8(E—E').] The phase shifé(E) in Eq.

deviation from the single-bantbr finite-band approxima- (2) defines the scattering matrix of the systei®S(E)

tion. It should be mentioned that the notion of strong field=exd —i26(E)]. By definition, the quantum resonances are
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the poles of the analytical continuation of the scattering ma- 1.2
trix into the complex plané? It has been proved that for the
Wannier-Stark Hamiltoniaril) the resonances are arranged

in the ladder

(b)

&, 1=E,tedFI-il" /2. (3) 0.8} 0.8}
In Eq.(3),1=0,%=1, ... is thesite index, associated witth = =
well of the periodic potential, and=1,2, . .. is theBloch- o 2
band index. It can be also shown that in the lifit-0 the w
following relation holds: 0.4k

EﬁEaEJ E.(x)dxk, (4)

0 , P .
-0.5 05

where E («) stands for the dispersion relation of tlagh
Bloch band at=0, and

dk(/)21r dk921t
I',«sFexp—C,/F), (5)
. . FIG. 1. Bloch-band structure of the electron in the cosine poten-
where the constar@,, is def'nsed by the energy gap between a| v/(x) = Ve[ 0.5+ (2/7) cos(2rx/d)] () and square-box potential
a and B=a+1 Bloch bands® We would like to stress that (g) with equal thickness of the layefb). The parameters arg®
the displayed relations aestimatesDue to the ladder inter- =0 0632 ev,d=114 A, andm®=0.067 of the electron mass. Ad-
action (see Sec. ), the actual dependendg,=TI",(F) has ditionally, the dotted line in the right panel shows the smoothed
oscillations superimposed on the smooth depend&)c&i-  square-box potential used later on.
multaneously, there are deviation from the single-band result
(4) and the resonance positi@), is a function ofF. In Ref.
8 we suggested a simple numerical metljodtified later on j \I,E*I(X)\p; () AX= 8, 58] m- (8
in Ref. 11 which, in principle, allows one to find WS reso- ' ' A
nances for an arbitrary periodic potentilx). This method
maps the eigenvalue problem for the Hamiltonkdrto the
eigenvalue problem for the evolution operattf(Tg) IIl. UNDER- AND ABOVE-BARRIER WS RESONANCES
=exp(—iHTg/%) over the Bloch periodg=2=#/edF. * In

! ; We proceed with the analysis of WS resonances in the SL
other words, one starts from the eigenvalue equation

potential. In the simpledtraditiona) approach the SL poten-
tial is modeled by the periodic square-shaped function

U(Te)Pe(x) =\ D = p( 2TE) 6
(Te)Pe(X)=ADg(x), A=ex 1 edE/ (6)
. . V, |x|=al2,
Then the poles of the scattering matrix are found as the com- X) = )
plex eigenvalues of the matrix of the evolution operator cal- 0, al2<|x|=d/2,

culated in the basis of the periodic function|n)

— -1/2 A H
=(2m) "exp(nx) and truncated to a finite sizg1| <N wherea andb=d—a are the thickness of alternating semi-

—e°. (In practice, it is enough to keep the numerical Param-,nductor layers. To be concrete, we shall analyze the elec-

ete_rN large enough.Note that the energ¥ in Eq. (6) is tron WS resonances and choose the following SL param-
defined up to multiples cAE=edF. Thus the whole ladder ,..c.4=114 A a=b. V*=0.0632 eV. andn®=0.067 of

of resonanceg3) corresponds to a single eigenvahief the the electron mass, and the effective electron mass is assumed

evolution operator matrix. o be independent of the coordinate For the purpose of
A few words.shoulc.i be added about the meltastable Witure use ?he Bloch-band spectrum of the system is depicted
states. As mentioned in Sec. |, these states satisfy the eqUiﬂ'Fig. 1(b).
tion Figure Zb) shows the widthd", of WS resonances be-
HW () =0 P 01 (X), @ :on'ging to thg seven most stable WSL's as a fung:tiorj Bf 1/

t is seen in the figure that for a low static field
whereé, | are the complex energies in E@). Because WS <10 kV/cm the lifetime of the ground WSL essentially ex-
states are non-Hermitian states of the Hamiltor(ip one  ceeds the lifetime of the next six WSL's, which form a wide
should distinguish the Ieftlftm(x) and the right\I’E’,(x) irregular band. However, for a higher fiefi=10 kV/cm
eigenfunctions. Formally they correspond to scattering statethe resonances belonging to different WSL's have compa-
with zero amplitude of incoming or outgoing waves and di-rable widths and, therefore, the notion of the ground WSL
verge exponentially fok— —o (F>0).1? Nevertheless, the loses its absolute meaning. The left panel in Fig. 2 shows the
scalar product of the left and right eigenfunctions is finite. Inrelative energyE; of the most stable WSL, reduced to the
the results presented below we normalize the resonance wafitndamental energy interval edF/2<E<edF/2. The slope
functions as of the straight line approximating the displayed dependence

115302-2



WANNIER-STARK RESONANCES IN SEMICONDUCTOR . .. PHYSICAL REVIEW B5 115302

-2

05— 10" 05 10
\’W\_/\/\_/\_/\
i
a
. (a)
g
1]
i 107}
13
t /\/\%
il
w H ~ - "
< ' 3 2, 933 015 9971 015
W -
il
i
£ I 107}
i
1
H
1
i
!
-05; . 10"’O o5
1/F [kV/cm] 1/F [kV/cm] '

FIG. 2. (a) Level position of the most stable electron WSL re-

duced to the fundamental energy intervah E/2<E<AE/2,AE
=edF. (b) The widths of the first seven most stable WS resonances

as a function of #.

E/AE

I'[eV]

is given by the absolute enerdsf of the ground WS reso-

nances in the limit—0. For the chosen superlattice param-
eter itisE} =0.039 eV, which should be compared with the 05 '
height of the potential barriev¢=0.0632 eV and “mean :

position” of the ground Bloch bandk;=0.0383 eV. Be-

* _E.<\e ; : FIG. 3. A fragment of the dependence Bf, andI", on 1F
causeky ~E; <V, .the.se resonances can pe identified calculated forM =1 (upper row, M =3 (middle row, andM =5
least for a low static fieldsas an under-barrier resonances(lower row), whereM is the upper limit in the sunit0). In the low
originating from the ground Bloch band. row two less stable resonances are marked by smaller dots.

It is also seen in Fig. (&) that for a low field the depen-

10°
0.11
1/F [kV/cm]

1/F [em/kV]

denceE,=E (F) is a continuous function of but it has a 1 M 2

number of discontinuities in the region of high static field. V(X)=Ve = + E vmcos< — x|,

This is explained by the phenomenon of avoided level cross- 2 d

ing in the complex plane. In fact, for the complex eigenval-

ues depending on some control parameter two kinds of such vmzisin( W_m> (10)
mm 2

crossings are possible—either the real parts of the eigenval-
ues cross and the imaginary parts show an avoided crossi . B
or, vice versa, the imaginary parts cross but the real par%ﬁere we consu_jer the cage-b=d/2). Then the _structure Of.
. . e above-barrier resonances can be qualitatively described

show an avoided crossin@ee Ref. 15, for exampleThe . e
depicted it indicates that f low field. whéte<l" in terms of the Landau-Zener theory, where the lifetime of

epicted result indicates that for a fow Tield, w <l s states is determined by the probability of tunneling be-
(a>1), true crossings of the levé&; with other levels oc- tween the adjacent bands.

cur. Opposite 1o this, for a high field, the anticrossing_s The first row in Fig. 3 shows the relative energies and

mainly take place. We shall come back to this problem iniqing of the ground under-barrier and first above-barrier
i.e., a pure cosine potential, and 0.1

Sec. IV. resonances foM =1,
Perhaps the most remarkable feature of the analyzed data; = _ 15 cm/kV The absolute energies of the reso-

e o e 10U hgnces, cbtanec fm the slopes of the Ines, B
b P —0 039 eV ancE} =0.134 eV, which approxmately coin-

general tendencYS) and show an hierarchical structure of
different scales. As shown below, the physical origin of theCide with the mean position of the firsE(=0.0386 eV)

resonance width oscillations is attributed to the large numbeand second E,=0.1370 eV) Bloch bandsee Fig. 13)].

of crossings with WSL's associated with the unstable aboveThe mean slopes of the dependences for the resonance
widthsT'; andI', are given by the values of the energy gaps

barrier resonances.
To understand the structure of the above-barrier resoA; ,=0.0043 andA, ;=1.58X 107% eV at the edge and in

nances in semiconductor superlattices it is convenient to corthe center of the Brillouin zone, respectively. Because the
energy gaps between the other bands are exponentially small,

sider the square-box potentid) as the limitM —c of the
finite Fourier series the next above-barrier resonances have very large widths
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(small lifetimeg and are of a minor physical importance. It is nances can be well modeled by a two-state sygtse Ref.

also seen in the figure that the oscillations of the wilth 15, for examplg In this approach the problem reduces to the

are due to the crossings of the ground WSL with the laddediagonalization of a X2 matrix, where the diagonal matrix

originating from the second Bloch band. Namely, each maxielements correspond to the crossifrpninteracting reso-

mum ofI'; corresponds to a particular crossing of the levelnances. In our case, however, we have ladders of resonances.

E, with the levelE,. This fact can be properly taken into account by introducing
The second row in Fig. 3 correspondsMo=3. Now we  the diagonal matrix in the forfnt!

have two above-barrier resonances and they are actually

more stable than the single above-barrier resonancevfor 2mHg El—ily/2 0
=1. This is explained by the fact that the tetrgcos(6mx/d) Uo=expg —i edF |’ 0= 0 E* —il./2]
in Eq. (10) opens the gap 3 ,=0.0132 between the third and 2 2 (11)

fourth Bloch band at the edges of the Brillouin zdfi¢The
Bloch dispersion relation foM =3 practically coincides for It is easy to see that the eigenvalues; JF)
E<1 eV with the one shown in Fig.() and with the one =exd —i2#(E} ,—iT'; /2)/edF] of U, correspond to the
shown in Fig. 1a) for E>1 eV.] Note that this gap is larger relative energies of WS resonances and, thus, the midtix
than the gag\, ; at the center of the Brillouin zone. Because models two crossing ladders of resonand@fe resonance
of this, the WSL's originating from the second and third widthsI'; , in Eq. (11) actually depend oif¥ in accordance
bands strongly interact and the corresponding above-barriavith Eq. (5), but considering a narrow interval &, this
resonances appear as a “degenerate” pair with the absolutéependence can be neglecigdultiplying the matrixU, by
energyEjs =E% ~(E,+E3)/2 (see next section Similar to ~ the matrix

the caseM =1, the crossings of the above-barrier WSL's o

with the ground WSL results in a variation bf,. However, U =ex;{ie< 0 1) } :( cose | 3'”‘5) (12
since we have two more-or-less stable above-barrier reso- int 1 0 i sine cose/’

nances, the characteristic period of the ground resonance

width oscillation is 2 times smaller. we introduce an interaction between the ladders.

The next nonvanishing termscos(1Grx/d) in the series The valuee=0 obviously corresponds to noninteracting
(10) opens the gap between the fifth and sixth Bloch bandadders. By choosing# 0 bute<m/2 we model the case of
and a new pair of almost degenerate above-barrier resdveakly interacting ladders. In this case the ladders show true
nancesE% =E% , appearsthird row in Fig. 3. The presence crossing and the i_nteracti_or! affects only the stability of the
of these “new” above-barrier resonances affects the width ofadders. Namely, in the limie—0, the eigenvalues of the
the ground resonance in similar way—each crossing of th&atrix UoUj,; are
level E; with levelsE, andE; brings an additional peak to
the dependencE(F).

The described process of the formation of above-barrier

resonances can be continued towalkbis-c which will re- . .
sult in a fractal-like dependence bf(F). We would like to It follows from Eq.(13) that at the points of crossirigihere

stress, however, that this fractal-like behavior is a consethe phases ak; and\, coincidg the more stable laddelet

quence of the nonanalyticity of the square-box potential relt b& WSL with index 1, i.e.]';<I'; or |\ 4|>[\;]) is desta-
flected in the slow M convergence of the Fourier series. Pilizéd (N +<I\4]) and, vice versa, the less stable ladder
For an analytic potential, which is obviously the case real?€comes more stable\_|>[X,|). This situation is illus-

ized in practice, the Fourier seriés0) has an effective cut- rated by the first row in Fig. 3, wh?r.e we have" a we’ak
off. Because of this, the number of physically importammteractlon between the ground and “first excited” WSL's.

above-barrier WSL's is finite and there is some minimum(Additional oscillations ofl", are due to the interaction of
scale of the oscillations it (F). first excited WSLs with the second excited WSL's, not

shown in the figure.
By increasinge abovee,,

tarfe )
. (13

1+ 1_)\1'2/)\2'1

N+ =\ LOS€e

IV. INTERACTION OF RESONANCES P
(INa[=IN2])
As shown in the previous section, WS resonances in SL's ta”zecrzw’
may strongly affect each oth&rHere we study the interac-
tion between different WSL's with the help of a simple two- the case of a moderate interaction, where the true crossing is
state model introduced earlier in Ref. 9 in relation to opticalsubstituted by an anticrossing, is met. As a consequence, the
lattices. This model will allow us to distinguish between theinteracting WSL's exchange their stability index at the point
cases of a weak, moderate, and strong interactions betweefi the avoided crossing. Let us also note that, according to
the ladders. Going ahead, we note that the semiconductdq. (14), at fixede, WS resonances with comparable widths
SL's can show all three regimes of the interaction. This disshould show anticrossings while the resonances with essen-
tinguishes them from the optical lattices, where the case dfially different widths should cross. Indeed, this is the case
weak interaction is realized almost exclusively. we typically observed in our numerical study of WS reso-
It is well known that the interaction between two reso-nances in the SL potential.

(14)
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The maximal possible interaction is achieved by choosing 02
e=ml/2. Then eigenvalues of the matrid,U;,; are \+
= +i(\1\p)Y? which corresponds to the “degenerate” reso-
nances

EX=(E*+E})/2+xedF4, T.=(,+I,)/2. (15

Relation(15) is illustrated by the second row in Fig. 3 where =
the strong interaction between the WSL's associated with the20-
second and third Bloch bands produces a pair of locked
WSL's, where the energy levels of one WSL are situated
exactly in middle between the energy levels of the other
WSL.

In conclusion, we note that in the general case, where on¢
has more than two interacting WSL’s, all three regimes of
interaction(weak, moderate, and strongay be present si- 0 : —_—
multaneously. In particular, for the case depicted in the third = 40 o0 F [kV/cm] &0 700 =
row in Fig. 3 we have a strong interaction between the lad-
ders originating from second, third and fourth, fifth Bloch  FIG. 4. Gray-scaled map of the electron density of staiés
bands, which build two lockedin the sense of Eq(15)]  for the smoothed square-box potentia¥) with o=2d/. The in-
pairs of ladders, a moderate interaction between these twest shows(E) for F around(dashed lingand far(solid line) from
pairs, and a weak interaction of the ground WSL with fourthe anticrossing & ~46 kv/cm.
above-barrier ladders.

nated by the contributions from the under-barrier resonance
V. DENSITY OF STATES E} and a pair of degenerate above-barrier resonaigdes

] ] . =E} . The effect of all other above-barrier resonances ap-
In this section we study the density of states of syst®m  ,o4r5 as weak ripples superimposed on these three fans. It is

The analysis of the density of states is important because iy, interesting to note that the resonaiecan be easily
the laboratory experiments one usually gains |nformatlor]fonow(_:‘d up to the region of a very strong fielé

about the density of states of the system rather than the resQ:100 Kkv/em where the potential wells of the combined po-

nances themselves. - . .
. . tential V(x)+eFx cannot support an under-barrier quasi-
Knowing the resonance energie€, =E,+edFl bound st(at)e in principle PP q

—iI' /2, the fluctuating part of the density of states is given By a closer inspection of Fig. 4, a number of anticrossings

by between the “ground” and first two “excited” WSL's can be
® @ easily identified. These anticrossings are mainly reflected in
p(E)= i s . (16 a decrease of the contrast, which is a consequence of the
27 =115« (E,+edFl- E)2+Fi/4 increase of the resonance width occurring at the points of

] . the avoided crossingsee inset of Fig. ¥ It is also seen in
where the sum ovew is the sum over different WSL's. To  the inset that the naively expected double-peak structure for
avoid the convergence problem discussed in Sec. Ill Wenhe main resonance line may not appear in the energy depen-
smooth the square-box potentid) and substitute the unit gencep=p(E). In this sense, when the density of states is
step by the linear combination of hyperbolic tangents: concerned, there are no big differences between anticrossings
and actual crossings.

V(x)= V—e tank(x+d/4 —tan)—(x_d/4) In conclusion of this section we would like to note that
2 o o ' the results presented above cannot be considered as generic,
_dl2<x<d/2, 17 because the structure of the above-barrier resonances is sen-

sitive to the details of the SL potential. We have considered

where the parameter defines the width of the transition the case of a symmetric potential, where the width of the
region zone between the semiconductor laydfor o  Potential barriers coincides with the width of the potential
=2d/# used below the shape of this potential is depicted inWells. As an example, Fig. 5 shows the density of states for
Fig. 1(b) by a dotted liné. The Fourier series of the function &n asymmetric potential with the well to barrier ratio equal to
(17) has an effective cutoff above which the expansion coef3-4/8 (the lattice periodd is kept the same In this case the
ficients decay exponentially. Then the upper limit in the sumPresence of even harmonics in the se(Ie8 affects the gaps
over a in Eq. (16) can be set equal to this cutoff. For the at the center of the Brillouin zone, which removes the double

sake of presentation it is also convenient to normalize thélegeneracy of the above-barrier resonances. It is seen in Fig.
density of state€16) to its mean valug=(edF) .. 5 that, unlike Fig. 4, the density of states is now dominated

Figure 4 shows the normalized electron density of state§Y the WSLs originating from the first B ~E;
p®(E,F) as a gray-scaled map for strong fields =0.0284 eV) and secondEf~E,=0.1214 eV) Bloch
=20 kV/cm. It is seen in the figure thaf(E,F) is domi-  bands.
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lifetime of the WS state. For some system parametfens
example, smaller value of the potential barNé&) WS states
lose their stability before the Stark localization takes place.
This is also the case for WS states originating from the
higher Bloch bands.

As far as the photocurrent experiments with undoped SL's
are concerned, an important characteristic of SL's is the over-
lap integral between the electron wave functibfj ;(x) and
the hole wave functior‘{f';J(x). An analysis of this integral,
which obviously depends only on the differerice I"—1¢in
————— the site indices of the wave functions, is our next aim. It

. should be noted that for the considered SL parametgrs (
=114 A, a=b, V®=0.0632 eV, V'=-0.0368 eV, m®
=0.067, andn"= —0.45) and the considered interval of the
" static field =5 kV/cm) the hole WS states belonging to

100 120 the ground hole WSL are essentially localized within one
potential well. Thus the properties of the overlap integral
FIG. 5. Same as Fig. 4, but for an asymmetric potential withdiscussed below are mainly defined by the localization of the

[arb.units]

0 0.1 02

F [kV/cm]

a/b=3.4/8. electron WS states.
As already mentioned in Sec. Il, the right and left non-
VI. WAVE FUNCTIONS AND OVERLAP INTEGRAL Hermitian eigenfunctions of the Hamiltonigd) generally

do not coincide and, thus, the overlap integrals
(Wh WS, ) and(¥8,, |¥h ) may differ even in mag-

. . nitude. (Here and below we use the Dirac notation for the
100 kV/cm. For- <25 kV/cm these eigenfunctions resemble right and left eigenfunctionsA physical meaning, however,

those of the tight-binding or single-band ”_‘Odg'%?'” Par  can only be attributed to the product of these integrals:
ticular, the phenomenon of Stark localization is clearly seen

asF is increased. The resonance origin of the depicted wave

functions(i.e., the result beyond the finite-band approxima- Iiyﬁ(L)=(‘PZJ|‘I"fgv|+L)<\Ifzy|+L|‘If2’|). (19
tion) is reflected by the presence of a tail fo< 0. This talil

obviously corresponds to the probability tunneling out of theThe apsolute values dﬁ 5(L), which can be interpreted as

potential wells and its amplitude is directly related to theg,e squared transition matrix elements, define the intensities
lifetime r=4/I" of WS states. Whef is increased, the am- ¢ the apsorption lines. In the low-field limit, the integral

plitude of the probability flow gradually increases and even-, 18) can be calculated on the basis of the tight-binding
tually it becomes impossible to introduce a finite localization,odel. because in this limit both the right and left resonance

length of WS states. This effect is an essence of the phenongjgenstates approach the stationary states of the single-band
enon which is often referred to as the delocalization of WS,54el. For a high field, however, it has to be calculated

states due to the Zener breakdotfit is understood that the numerically.

process OffSta”B I%ﬁalizztion is (;:llwsys accccj)mpanied t;y ﬁm Figure 7 shows the absolute values of the transition ma-
increase of probability flow and, thus, a decrease of the . _
P y Srix elements! a,p(L) =4I za,B(L)

We proceed with analysis of the wave functién, ;(x) of
WS states. Figure 6 showal; ((x)|? for F=5, 10, 25,

for a=B=1 as a function
of L. The chosen values of static field corresponds to the

regimes of low E=5 kV/cm), medium F
F=6 =10,25 kV/cm), and high §=100 kV/cm) fields. It is
seen in the figure that in the low-field regime many transi-
tions are involved. The total number of the transitions is
F=10 obviously given by the localization length of electron WS
states, which can be well estimated by using the tight-
= Ag binding model. When the static field is increas&€d10 and
2 25 kV/cm) the localization length of WS states decreases
F-25 and the vertical transitioh.=0 becomes dominant. How-
ever, in addition to the vertical transition a long tail of tilted
— transition forL>0 appears F=25 and 100 kV/cm). This
F=100 phenomenon is obviously related to a field-induced delocal-
. ization of WS states illustrated in Fig. 6.
‘ . . To conclude this section we shall briefly discuss the phase
S48 2028 4 of the overlap integral
FIG. 6. Wave functions of ground electron WS state for different 5 5 .
values of the static fieldF. |a,ﬁ(|-):||a,5(|—)|exm $a,p(L)]. (19
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electron and holeand omit the sub-indices andg. In other
F=5 F=10 words, here we restrict ourselves by considering only one
particular exciton WSL. The existence of the other exciton
WSL's will be taken into account later on.

T T Using the notion of the exciton states, the Hamiltonian of
1| oI5,

the semiconductor superlattice in the laser field has the
n? Tommm form20

i H=3 fala +ecogwt) X (VF, [¥])a]
=100

+H(WWF, Day), (21)

wherea/ (a,) is the creatior(annihilation operator for the

o T??‘P‘P%m o 1092000009 Lth exciton state with the energy =E_ —iT/2, (¥, | P

10 0 10 is the overlap integral between the electron and hole wave

functions, ance is proportional to the amplitude of the laser

FIG. 7. Square root of the absolute value of the overlap integrafield. Assuming the density of the excitons to be snfiadi.,

(18 for «=p=1 as a function ot for four different values of the  |ow laser intensity the problem in question can be formu-

static fieldF =5,10,25,100 kV/cm. SL parameters ate: 114 A, lated as searching for the correction to the vacuum $falle

a=b, V*=0.0632 eV, andV"=—-0.0368 eV andm*=0.067 ygalence and empty conduction bar{). According to the

andm’=—0.45 of the electron mass. first-order perturbation theory, this correction corresponds to

the quasienergy state
When the transition to an unstable resonance is involved, the

phasesp, z(L) generally differ from zero. Because for large

values of F all WS resonances are actually the unstable (W W) it
above-barrier resonances, this fact should be properly taken |z/;>=|0)—§ ; & —thw |10 (22)
into account when the high-field regime is conside(sele
next section Beside this, the effect of phases was found tOThe second-order correction to the quasieneray is
be extremely important at the point of anticrossings. In fact, q ay

at the points of anticrossings the distance between reso-

nances is typically smaller than the widths of the resonances €? (\Ifh|qr|+|_ |+L|\1fh)

involved and, therefore, an interference may occur. We Ag:—zz : o . (23
mainly met the case of destructive interference; i.e., the -

phases of the corresponding matrix elements tend to be op-

—

posite to each other. The absorptioD (w) is proportional to the decay rate of the
quasienergy stat€22), which is obviously given by the
VII. WANNIER-STARK EAN imaginary part of Eq.23). Finally, summing up over the

different WSL's, we obtain
In this section we use the preceding results to calculate
the absorption spectra of the semiconductor superlattice. As
it was already mentioned in the Introduction, in the high-p()~> >

field regime the tunneling lifetime of WS states is the aB L
electron-hole pairgexcitong and the decay rate of these 12 (L)
states. <Im a.p
To simplify an analysis we shall neglect the Coulomb (E§—Eh+edFL+Ey—fw)—i(IG+Th)/2]
interaction. Then the exciton wave function is just the prod- (24)
uct of the electron and hole wave functions, i.e.,
|1L>:|‘I’2,|+L>|‘I’2,|> (200  where the coefficients? s(L) are defined in Eq(18). To

avoid a mlsunderstandlng we stress that @9) refers to the
(in the following, the index which labels the position of the  so-called one-dimensional absorption. The actual absorption,
exciton inside the crystal is irrelevant for the absorption andyhich accounts for the in-plane motion, is proportional to the
will be omitted. The energy of this state i§ =E5—E}  integralf“.dw’'D(w’).® We also would like to note that Eq.
+Egt+edFL, whereEy stands for the energy gap between (24) generalizes an analytical expression derived earlier for
the conductance and valence bands in the bulk sem|condughe decay spectra in the optical superlattites the case of
tor, and the lifetime is inversely proportional tB= F semiconductor superlattices.
+Fe. In Eq.(20) we label the exciton state by a single mdex Equation(24) has a simple physical meaning. In fact, by
L (which has the meaning of a mean distance between theeglecting the phases of the overlap integrals, it reduces to
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0.12 with two above-barrier WS resonancé$ =E} . These an-
ticrossings originate a characteristic “broken feather” struc-
ture of theL=0 absorption line, recently detected in the
experiment’

D [arb.units]

008 VIIl. CONCLUSION

Let us summarize the results obtained.
L~ We calculated the resonance WS states in a semiconductor
‘ SL and studied the dependence of the resonance wiiakth
0.04 " w\ ‘ verse lifetime of WS stateson the amplitude of the static
‘ e ™ ‘ field. When the static field is varied, the resonance width is
. found to show multiscale oscillations, which are superim-
posed on the smooth overall behavior predicted by Landau-
Zener theory. We explain these multiscale oscillations by the
s 5 0 i = = = interaction. betwegn diffgrent WSLis, which is studied in
F [kV/cm] some detail by using a simple matrix model.
Although the general structure of the electron or hole den-
FIG. 8. Gray-scaled map of the one-dimensional absorptiorsity of states is obvioug periodic sequence of peaks asso-
spectra as a function of the static fi¢idand photon energlyv. The  ciated with WS resonancgghere were no general methods
inset shows the shape of absorption linesFer25 kv/cm. to calculate i£? Section V, where we analyzed the depen-
dence of the density of states on both the energy and ampli-
tude of the static field, fills this gap in the theory.

hv-E_[eV]
\
\

D(“’)”azﬁ EL: ||§,B(L)| Next we studied the overlap integral between the electron
' and hole resonance WS states. In particular, it was shown
rh+ re that in the high-field regime the transitions “up the ladder”
Pm— 5 e are enhanced in comparison with the transitions “down the
(Eg—EgtedFL+Eg—fio)™+ (I +1p)%4 ladder.” This asymmetry is a consequence of the field-

(25)  induced delocalization of WS states and has to be distin-
guished from the asymmetry caused by the electron-hole
Then the absorption spectra is a sum of the Lorentzians agoulomb interactiot® We also stressed the importance of
sociated with vertical (=0) and tilted (#0) transitions  the complex phases of the overlap integral which are respon-
betweenath hole andgth electron WS states. Being in- sible for interference effects, occurring @nticrossings of
cluded, the phases of the overlap integrals typically causgifferent WSL's, and the non-Lorentzian shape of the absorp-
non-Lorentzian shapes of the absorption lines—a phenontion lines.
enon referred to as Fano resonances in the semiconductor A method of calculating the shape of absorption line is
superlattices! Beside this, as mentioned above, they takesuggested. Using this method one can easily construct the
into account the destructive interference occurring at thevannier-Stark fan for an arbitrary wide range of the static
points of avoided crossings. field. Previously this was done only by a numerical evalua-
As an example, Fig. 8 shows the one-dimensional absorion of Fermi's golden rulé. However, the Fermi's golden

tion D(w,F) calculated on the basis of E@®4) for SL with  rule approach gives little insight into the physics of Wannier
the parameters of Fig. 7. Because in the high-field regime theesonances. Beside this, the numerical method of Ref. 4 is
ground electron and hole wave functions are essentially loessentially a finite-size-box quantization method, where the
calized within one wellL =0 transitions between the ground results should be controlled against variation of the box size.
electron and hole states dominate in the absorption spectrunh contrast, the method described in Sec. VIl relies on the
The weak feathers above and below the main feather obviesonance WS states, which assumes an infinite size of the
ously correspond to the==1 andL=*2 transition be- system from the very beginning.
tween the same WSL'HAlso a sign of another fan, associ- A final remark concerns the Coulomb interaction, which
ated withae=2,8=1 transitions, is seenlt is interesting to  was neglected throughout the paper. Because we were
note that, although there are no absorption lines associatadainly interested in the regime of high static field where the
with 8>1 electron WSL's in Fig. 8, the existence of these Coulomb binding energy is smaller than the electrostatic en-
above-barrier WSL's is confirmed indirectly by the compli- ergy AE=edF, this assumption is partially justified. Never-
cated structure of the visible absorption lines. In particulartheless, it would be interesting to study the effect of the
comparing Fig. 8 with Fig. 4, one can easily identify the Coulomb interaction on the lifetime of the exciton WS states.
anticrossings of under-barriéfior F—0) WS resonance&} This problem is reserved for the future.
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