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Spin rotation for ballistic electron transmission induced by spin-orbit interaction
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We study spin-dependent electron transmission through one- and two-dimensional curved waveguides and
quantum dots with account of spin-orbit interaction. We prove that for a transmission through an arbitrary
structure there is no spin polarization provided the electron transmits in an isolated energy subband and only
two leads are attached to the structure. In particular there is no spin polarization in the one-dimensional wire,
for which a spin-dependent solution is found analytically. The solution demonstrates the spin evolution as
dependent on a length of wire. The numerical solution for transmission of electrons through the two-
dimensional curved waveguides coincides with the solution for the one-dimensional wire if the energy of
electron is within the first energy subband. In the vicinity of edges of the energy subbands there are sharp
anomalies of spin flipping.
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I. INTRODUCTION

The electron-spin precession phenomena at zero mag
field induced by a variable spin-orbit interaction~SOI! in
two-dimensional electron gas,~2DEG! systems were firs
proposed by Datta and Das1 as a way for the realization o
the spin transistor. For this, the spin precession is contro
via the Razhba SOI associated with the interface elec
field present in GaAs heterostructures that contains
2DEG channel:2

VSO
a 5\a@ p̂xsy2 p̂ysx#. ~1!

The reason for the spin precession is that the spin opera
do not commutate with the SOI operator, which leads to s
evolution for the electron transport. In particular the SOI h
a polarization effect on particle scattering processes,3 and
this effect was considered for different geometries of c
finement of the 2DEG.4–9

The most simple case of the stripe geometry, with thx
axis along the stripe and thez axis perpendicular to the
stripe, gives the following transformation of a spin state af
transmission:

S 1

0D⇒S cosu/2

sinu/2D , ~2!

where1,9

u52m* aL, ~3!

andL is the length of the stripe. Therefore, the Razhba S
induces a spin precession of the transmitted electrons. N
that the spin precession is energy independent. This resu
valid if the confinement energy\2/2m* d2, whered is the
width of the stripe, is much larger than the spin-splitti
energy induced by the SOI; therefore, the intersubband m
ing is negligible.9 For a strong SOI the spin rotation angleu
comes to depend on the Fermi energy for ballistic transp
of electrons in the quasi-one-dimensional wires a
stripes.6,9 The Razhba SOI leads to spin precession in
0163-1829/2002/66~7!/075331~11!/$20.00 66 0753
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(x,z) plane. Here we consider similar phenomena for el
tron transmission through the curved waveguide and qu
tum dots. The main difference between straight wavegu
and curved wave guides is that the spin rotation is given
two angles.

Next we find the conditions under which there is no sp
polarization of transmitted electrons. We imply that a flow
incident electrons has no spin polarization. For the spin
larization we consider the mean spin^sa&, a5x,y,z, aver-
aged over the electron flow. In particular, for transmiss
through a quantum dot we show the principal role of t
third lead for the spin polarization.

II. SPIN-ORBIT INTERACTION IN THE
INHOMOGENEOUS TWO-DIMENSIONAL CASE

We write the total Hamiltonian of a confined 2DEG as

H52
\2

2m*
S ]

]x2
1

]

]y2D 1V~x,y!1VSO, ~4!

whereV(x,y) is the lateral confining potential. Following t
Moroz and Barnes6 we assume that the SOI operatorVSO is
formed by three contributions:

VSO5VSO
a 1VSO

g 1VSO
aa .

The firstVSO
a is related to the Razhba SOI@Eq. ~1!#, in which

the SOI constanta proportional to the macroscopi
interface-induced electric field is considered as constant.
second contributionVSO

g to the SOI comes from the electri
field E(x,y) related to the confining potential.

In order to derive the second contribution to the SOI
begin with a general description of the SOI,10

VSO52
e

4m2c2 H s~E3p̂!1
i\

2
s~¹3E!J . ~5!

For a microscopic electric fieldE the second term in Eq.~5!
is equal to zero. However, for model cases of the confin
potentialV(x,y) the electric field can violate an equality¹
©2002 The American Physical Society31-1
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3E50. In this case the second term in Eq.~5! is necessary
to provide the hermiticity of the total SOI operator.

For a 2DEG confined at a semiconductor heterostruc
interface we can reduce thez-coordinate, performing an av
erage over an electron wave functionc0(z) strongly local-
ized along thez direction:

VSO⇒E dzc0~z!VSOc0~z!. ~6!

As a result we obtain

VSO
g 52gH sz~Exp̂y2Eyp̂x!2Ez~sxp̂y2syp̂x!

2
i

2
\szS ]Ex

]y
2

]Ey

]x D2
i

2
\S sy

]Ez

]x
2sx

]Ez

]y D J .

~7!

Here the electric-field components have the meaning of i
gral ~6!, and depend onx andy only.

For a particular case of a straight wire directed along
y axis with a lateral confining potentialU5U(x), from Eq.
~7! we obtain the expression given by Moroz and Barn
@formula ~5! in Ref. 6#. They used a parabolic approximatio
for the confining potential. Here we consider a popular h
wall approximation and imply the following confining poten
tial

U~x!5H 0 if uxu,d/2

U0 if uxu>d/2.

Then, substituting the electric fieldEx52U8(x) into Eq.
~7!, we have

VSO
g ~x!5\kgszsign~x!U0d~x7d/2!. ~8!

For uxu.d/2, from the Schro¨dinger equation we have th
solution

c~x!5C expS 2
A2m* ~U02E!

\
xD , ~9!

whereC is the normalization constant. Using a property
the delta function that a difference between derivatives of
wave function at the right and left of the delta function ob
Dc8(6d/2)562m* kszgU0c(6d/2), we have from Eq.
~9! that

Dc8~6d/2!→0

for U0→`. Therefore, in the hard wall approximation a
effect of the second contributionVSO

g is limited to zero.
Next, for a numerical computation of the transmissi

through the semiconductor heterostructure we assume a
nection to at least two electrodes in which there is no S
Then we can specify the electron state by quantum numb
the number of the energy subbandn, and the spin projection
s5sz . This assumption implies that far from waveguides
quantum dots the SOI constanta is equal to zero in the
electrodes. Neglecting the real-space behavior of the mi
07533
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scopic electric field at the edge of the heterestructure,
assume that the field is directed normal to the plane of
heterostructure everywhere, and has a stepwise behavi
the edges. As a result we obtain the stepwise behavior for
Razhba SOI constanta. Such a model was used by Hu an
Matsuyama.11 Similar to Eq. ~7! we obtain that the third
contribution to the SOI takes the following form:

VSO
aa52\2

i

2 S sy

]a

]x
2sx

]a

]y D . ~10!

III. TRANSMISSION THROUGH A BILLIARD
WITH THE SOI

In this section we prove that the SOI gives no spin pol
ization for electron transmission through arbitrary billiards
the energy of the incident electron belongs to the first ene
subband. In a dimensionless form the stationary Schro¨dinger
equation has the following form:

$2¹21vSO%c5ec, c5S u1~x,y!

u2~x,y!
D . ~11!

Heree5E/E0 , E05\2/2m* L2, and

vSO5bS isx

]

]y
2 isy

]

]xD2
i

2 S sy

]b

]x
2sx

]b

]y D . ~12!

L is a characteristic scale of the system, andb52m* aL is
the dimensionless SOI constant. Correspondingly in E
~11! and ~12! coordinatesx andy are also dimensionless.

Let S be an area of the structure under considerat
which involves a billiard the SOI and leads, as shown in F
1. Let G denote a boundary which crosses input and out
leads atG1 andG2, respectively. We suppose that there is
spin-orbit interaction in the leads, i.e.,b50 atG i , i 51 and
2. At boundaryG we imply Dirichlet boundary conditions
for a solution of Schro¨dinger equation~11! cuG50. As the
scaleL we takeL5d.

Therefore we can write a solution in the electrodes as

u inc,n,s&5A2 sin~pny!exp~ iknx!us&,

FIG. 1. Schematical view of a two-dimensional billiard with tw
attached leads. The dashed area shows a region with the SOI.
S has a boundaryG which crosses the input and output leads atG1

andG2, respectively.
1-2
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ure f l,n,s&5A2 (
m,s8

r mn,s,s8sin~pmy!exp~2 ikmx!us8&,

~13!

utr ,n,s&5A2 (
m,s8

tmn,s,s8sin~pmy8!exp~ ikmx8!us8&

whereus& is a spin-state defined spin projections along so
axis, say thez axis. The energy is

e5kn
21p2n2, ~14!

wheren51,2, . . . numerates a number of the energy su
bands.

Introducing complex derivatives

]

]z
5

1

2 S ]

]x
2 i

]

]yD , ~15!

we write the Schro¨dinger equation~11! as

S ]2

]z]z*
1

1

4
e D u11

b

2

]u2

]z
1

u2

4

]b

]z
50,

S ]2

]z]z*
1

1

4
e D u22

b

2

]u1

]z*
2

u1

4

]b

]z*
50, ~16!

whereu1 and u2 are components of the spin state. We a
sume that there is an auxiliary degenerated state with c
ponentsv1 andv2. In particular, it might be a Kramers de
generated state. Then for these two states the Green for
follows

E
S
~uDv2vDu!dS5 R

G
S u

]v
]n

2v
]u

]nDdl, ~17!

wheren is an exterior normal to the boundaryG.
From the Schro¨dinger equation we have

v2S ]2

]z]z*
1

1

4
e D u11

b

2
v2

]u2

]z
1

1

4
u2v2

]b

]z
50,

u2S ]2

]z]z*
1

1

4
e D v11

b

2
u2

]v2

]z
1

1

4
u2v2

]b

]z
50, ~18!

u1S ]2

]z]z*
1

1

4
e D v22

b

2
u1

]v1

]z*
2

1

4
u1v1

]b

]z*
50,

v1S ]2

]z]z*
1

1

4
e D u22

b

2
v1

]u1

]z*
2

1

4
u1v1

]b

]z*
50.

Combining each pair of equations in Eqs.~18!, we obtain

v2

]2u1

]z]z*
1u2

]2v1

]z]z*
1

1

4
e~u1v21u2v1!1

1

2

]~bu2v2!

]z
50,
07533
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u1

]2v2

]z]z*
1v1

]2u2

]z]z*
1

1

4
e~u1v21u2v1!2

1

2

]~bu1v1!

]z*
50.

~19!

Extracting the second equation from the first one in Eq.~19!,
we obtain

v2

]2u1

]z]z*
2u1

]2v2

]z]z*
1u2

]2v1

]z]z*
2v1

]2u2

]z]z*
1

1

2

]~bu1v1!

]z*

1
1

2

]~bu2v2!

]z
50. ~20!

Integration of this equation over the billiard areaS with
use of Green formula~17! gives

R
G
S v2

]u1

]n
2u1

]v2

]n Ddl1 R
G
S u2

]v1

]n
2v1

]u2

]n Ddl

1E
S

]~2bu1v1!

]z*
dS1E

S

]~2bu2v2!

]z
dS50. ~21!

Since atG eitheru150, v150, or b50, the last two inte-
grals in Eq.~21! are equal to zero, and formula~21! can be
rewritten as follows:

(
i 51,2

E
G i

S v2

]u1

]n
2u1

]v2

]n Ddlb f1 (
i 51,2

E
G i

S u2

]v1

]n

2v1

]u2

]n Ddl50. ~22!

This formula is sufficient to establish some symmetry ru
between ingoing and outgoing states. In what follows
function u, describes the transmission through the wa
guide, while the functionv is auxiliary. Let us consider the
first-channel transmission fore,4p2. In order to ignore
evanescent modes we will consider that boundariesG i cross
the leads far from the scattering region, as shown in Fig
Electrons incident from the input lead are completely s
polarized up. This means that for the incident state@Eq. ~13!#
us&5(0

1). We denote the corresponding state interior t
structureSas (u2↑(x,y)

u1↑(x,y)
) which is used as theu solution in Eq.

~22!. Correspondingly (u2↓(x,y)
u1↓(x,y)) denotes thev solution in Eq.

~22! for the case of electron spin polarized down. We su
pose that boundariesG1 andG2 cross the leads normally th
leads and that thex axis is parallel to the leads. Hence th
normaln is parallel to thex axis. Then from Eq.~13! at the
boundaryG2, which crosses the output lead, we obtain t
relation

] f

]n
5 ik1f , ~23!

where functionf refers to all componentsu1↑ , u2↑ , u1↓ ,
andu2↓ .
1-3
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These relations allow us to exclude the boundaryG2 from
Eq. ~22!. At the boundaryG1 which crosses the input lead w
have

]u1↑
]n

5 ik1u1↑22ik1sin~py!,

]u2↑
]n

5 ik1u2↑ ,

~24!
]u1↓
]n

5 ik1u1↓ ,

]u2↓
]n

5 ik1u2↓22ik1sin~py!.

We imply here that the origin of thex, y coordinate system is
at the boundaryG1. Substituting relations~24! into Eq. ~22!,
we obtain

E
G1

~u1↑2u2↓!sin~py!dy50. ~25!

Since at the boundaryG1,

u1↑5ũ1↑~x!sin~py!, u2↓5ũ2↓~x!sin~py!.

From Eq.~25! we obtain

u1↑5u2↓ .

Thus from Eq.~13! it follows that the amplitudes of the
reflection are

r ↑,↑5r ↓,↓ . ~26!

Next, we take that the state (u2

u1)5(u2↑
u1↑) coincides with the

state (v2

v2) in Eq. ~22!. Then Eq.~22! simplifies as follows:

(
i 51,2

E
G i

S u2

]u1

]n
2u1

]u2

]n Ddl50.

Substituting relations~24! into this formula, we obtain

22ikE
G1

u2↑sin~py!dy50. ~27!

This gives us thatu2↑50, or, according to Eq.~13!, r ↑↓50 .
Also, we similarly obtain thatu1↓50 at the boundaryG1.
Thus we can write the second symmetry rule for reflect
amplitudes:

r ↑,↓5r ↓,↑50. ~28!

From symmetry rules~26! and ~28! and from the current
preservation, it follows that the transmission probabilities

Ts5(
s8

uts,s8u
25T ~29!
07533
n

do not depend on the spin polarization of the incident el
tron.

Up to now we considered incident waves as spin po
ized along thez axis at the boundaryG1. Let us now consider
a flow of incident electrons which have no averaged s
polarization. In particular we can show that half of the ele
trons have an incident state with spin-up and half have
incident state with spin-down. Let us consider correspond
transmitted waves at the boundaryG2. We prove that for a
transmission through a billiard with two attached leads th
is no averaged spin polarization, i.e.,^sa&50, a5x,y,z if
electrons are spin unpolarized in the first energy subband
previously we take the incident state in the form of Eq.~13!,
and write the states in the leads as

uc↑&5S u1↑
u2↑

D , uc↓&5S u1↓
u2↓

D ~30!

where the up and down arrows indicate that electrons
incident with spins up and down. In the Green formulas~22!
we take the first functionu asuc↑& and the second functionv
as ŝyĈuc↓&, whereĈ is a complex conjugation. This mean
that the second function is a Kramers degenerated s
which responds to transmission from the output lead to
input lead. However as we noted below formula~22! the
second state in Eq.~30! is auxiliary and does not reflect th
real physical transmission described by the first state in
~30!. Hence

S u1

u2
D 5S u1↑

u2↑
D , S v1

v2
D 5S iu2↓*

2 iu1↓*
D . ~31!

Let us calculate integral~22!. As it was derived above for
the first-channel transmission there is no reflection with s
flipping. Therefore at a boundaryG1 crossing the input lead
u2↑50, u1↓50, therefore, sinceu250 andv250, integrals
in Eq. ~22! are equal to zero. The second contribution
integral ~22! relates to the boundaryG2 crossing the output
lead. Using the transmitted solution@Eq. ~13!#, one can write
Eq. ~22! as follows:

E
G2

S v2

]u1

]n
2u1

]v2

]n Ddl1E
G2

S u2

]v1

]n
2v1

]u2

]n Ddl

52ik R
G2

~v2u12u2v1!dy50.

Thereforeu1v25u2v1, or in terms of notation~31!,

u1↑u1↓* 52u2↑u2↓* . ~32!

From Eq.~32! it obviously follows that

uu1↑uuu1↓u5uu2↑uuu2↓u.

Moreover relation~29! implies that

uu1↑u21uu2↑u25uu1↓u21uu2↓u2.

From these two relations one can obtain that
1-4
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uu2↑u5uu1↓u, uu1↑u5uu2↓u. ~33!

Finally, relations~32! and ~33! give

u1↑u2↑* 52u1↓u2↓* . ~34!

Mean values of the spin components in correspond
states@Eqs.~30!# are

^sx&↑5Re~u1↑u2↑* !, ^sy&↑5Im~u1↑u2↑* !,

^sz&↑5uu1↑u22uu2↑u2,
~35!

^sx&↓5Re~u1↓u2↓* !, ^sy&↓5Im~u1↓u2↓* !,

^sz&↓5uu1↓u22uu2↓u.

Equations~33!–~35! give rise to

^sa&↑52^sa&↓ , a5x,y,z, ~36!

i.e., the spin polarizations are exactly opposite in sign for
transmission of electrons incident in corresponding sp
polarized states.

Thus, for transmission through any billiard with a SO
with two attached leads, the spin polarization does not e
if the flow of electrons is incident in the first energy subba
e,4p2 and has no spin polarization. This result is rath
unexpected, since transmission through the four-term
structure5,7 gives rise to a positive/negative spin polarizati
of electrons flowing to the left/right outgoing electrode
Hence we could expect a similar effect for electron transm
sion through aG -type structure. However, as shown in Fi
2, a numerical computation of the electron transmiss
through a structure with two leads orthogonal to each ot

FIG. 2. Spin polarizations of electrons transmitted through
two-terminal quantum dot vs the energy of the electron in the fi
energy subband and partially in the second energy subband.~a! A
solid line showŝ Sx& if there are electron incidents in the spin-u
polarized state (10). A dashed line shows^Sx& for an incoming
electron in a spin-down polarized state (01).~b! The total spin
polarization@Eq. ~37!#. ~c! Geometry of the structure of a quantu
dot with two orthogonal leads.
07533
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~see the inset of Fig. 2! in fact demonstrates the absence
spin polarization, in complete correspondence to relati
~36!. In Fig. 2~a! the outgoing mean spin component^sx& is
shown versus energy provided, that the electron is inciden
a spin-up polarized state@Eq. ~10!# ~solid line!. Correspond-
ingly, the dashed line shows the case of an incoming elec
in a spin-down polarized state (01). The mean spin com
nents^sy& and ^sz& have similar but not the same energ
dependencies, and are not shown in Fig. 2. The total s
polarization

P5(
a

@^sa&↑1^sa&↓# ~37!

is shown in Fig. 2~b!. One can see that the spin polarizatio
arises only if the energy exceeds the edge of the sec
subband 4p,2 in complete agreement with analysis above

Also, if there is no intersubband transmissiontmn,ss8
50, mÞn, the spin polarization is equal to zero for an a
bitrary energy. It takes place approximately, for example,
adiabatic structures similar to curved waveguides~Sec. V!.
However, in the vicinity of edges of the energy subban
p2n2 the SOI gives rise to intersubband mixing. As a resu
in numerical calculations we obtain a strong spin polari
tion near the edges. Moreover, if the billiard is connected
three or more leads, the spin polarization of the transmit
electrons exists even for the transmission in the first ene
subband. The effect of the third lead is demonstrated in F
3. Hence this effect proposes a method of the spin transi
complementary to the way proposed by Datta and Das.1 The
spin polarization of transmitted electrons can be governed
a value of the connection of the third lead with the quant
dot. The most simple way is to apply a local electric field
the vicinity of the connection, which implies a potential ba
rier closing the connection of the dot with the third lead.

e
t

FIG. 3. Spin polarization of electrons transmitted through
three-terminal quantum dot vs the energy of an electron in the
energy subband. The upper inset shows the geometry of the s
ture.
1-5
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IV. ONE-DIMENSIONAL CURVED WIRE

A model in which only single-channel transmission tak
place is a one-dimensional wire. Therefore, for a transm
sion through a one-dimensional wire of any form the S
cannot give rise to the spin polarization. However, this mo
is interesting in that it allows one to find spin evolution an
lytically. A case of a straight wire was considered by in Re
1 and 9. Here we consider a curved wire consisting o
segment of a circle with a radiusR attached to an infinite
straight one-dimensional wires, as shown in Fig. 4.

We take a length of the segment to beL5f0R and the
position coordinate to bes5fR. The Hamiltonian of the
wire has the form12,13

H5
\2

2m* R2
H̃,

~38!

H̃5F ]

i ]f
1

b

2
~sycosf1sxsinf!G2

2
b2

4
,

whereb52m* aR is the dimensionless SOI constant. Sin
@Jz ,H#50 where Jz52 i (]/]f)2 1

2 sz , a particular solu-
tion of the stationary Schro¨dinger equationH̃uc&5euc& has
the following form:12–14

uc&5S Aeimf

Bei (m21)fD . ~39!

The parameterm defines the dimensionless wave number
k5m/R, and is arbitrary until boundary conditions are im
posed. Substituting state~39! into the Schro¨dinger equation,
one can obtain a relation between the energy of electroe
and the wave numberm,

~e2m2!@e2~m21!2#2b2~m21/2!250, ~40!

which gives

FIG. 4. Schematical view of a one-dimensional curved wire.
07533
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s

en5~m21/2!211/41num21/2uAb211, n561.
~41!

Spectrum~41! is shown in Fig. 5.
For a fixed energye, Eq. ~41! gives four solutions for the

wave numberm. It is well known that3 for electron transmis-
sion through a potential profile a reflection is negligib
small if the characteristic length of the inhomogeneity mu
exceeds the wavelength~the adiabatic regime!. For our case
we assume that the radius of curvature of the wire is m
larger in comparison with the electron wavelength. Thus
can ignore the reflection for electron transmission throu
the quasi-one-dimensional waveguide.

Since there is no reflection for transmission through
one-dimensional waveguide, we need only those value
the wave numberm which correspond to a clockwise move
ment of the electron for the wire shown in Fig. 4. We deno
its m1 andm2 as shown in Fig. 5. In what follows we use th
following relation betweenm1 andm2:

2l5m12m25A11b2. ~42!

For eachm1 andm2 the normalized eigenstates follow from
Eqs.~39! and ~41!:

^fu1&5
1

A11j2 S i jeim1f

ei (m121)fD , ~43!

^fu2&5
1

A11j2 S eim2f

i jei (m221)fD ,

where

j5
b

11A11b2
. ~44!

FIG. 5. The energy spectrum defined by formula~41! for a
51. Values ofm1 and m2 are shown by thick points, and corre
spond to a clockwise movement of the electron along the cur
wire.
1-6



rit

e
b

.

if
d
id

a

ic
fo

ts:

n

it-
e

in

in

re-

SPIN ROTATION FOR BALLISTIC ELECTRON . . . PHYSICAL REVIEW B66, 075331 ~2002!
Therefore, a general solution of the Schro¨dinger equation
for the electron transmission without reflection can be w
ten as

uc~f!&5 (
n51,2

an^fun&. ~45!

where coefficientsan can be found in accordance with th
incident state. To begin with we follow a case considered
Mireles and Kirczenow,9 which took an incident electron
with a spin state polarized along thez axis. An equality
^c(0)u5(1,0) yields

uc~f!&5
ei (m11m221)f/2

11j2 S j2e.i (l11/2)f1e2 i (l21/2)f

2 i jei (l21/2)f1 i je2 i (l11/2)fD ,

~46!

from which we obtain

z^~1,0!uc~f!& z2512
4j2

~11j2!2
sin2

~m12m2!f

2
. ~47!

For the limit of a straight wireR→`, the dimensionless
SOI constant isb→`. Therefore, in accordance with Eq
~44!, j→1. Then from Eq.~47! we obtain from the same
result as in Ref. 9. It might be thought that there is no d
ference between the curved and straight wires considere
Ref. 9 except inessential factors. However, let us cons
the initial spin polarization along thex axis as (1,1)/A2,
which is not equivalent to thez axis in the geometry shown
in Fig. 4. Then it follows from Eqs.~43! and ~45! that

uc~f!&5
1

A2

ei (m11m221)f/2

11 i j S i jei (l11/2)f1e2 i (l21/2)f

ei (l21/2)f1 i je2 i (l11/2)fD ,

~48!

and, correspondingly,

1

2
z^~1,1!uc~f!& z25

1

~11j2!
,

@cos2~l21/2!f1j2cos2~l11/2!f#. ~49!

Substituting Eq.~42! and f5L/R into Eqs. ~49!, we have
the following expression for the probability of detection
spin polarized along thex axis:

z^~11!uc~f!& z25
1

~11j2!
H cos2S ~k12k2!L

2
2

L

2RD
1j2cos2S ~k12k2!L

2
1

L

2RD J . ~50!

One can see that forR@L probabilities~49! limit one to
the case of the straight wire considered in Ref. 9, for wh
we have a simple spin precession. The spin evolution
state~48! is given by mean values of the spin componen
07533
-

y

-
in

er

h
r

^sx&5
cos~2l21!f1j2cos~2l11!f

11j2
,

^sy&5
sin~2l21!f2j2sin~2l11!f

11j2
, ~51!

^sz&5
2j sin 2lf

11j2
.

For the straight wire (R@L,j51) we again obtain a simple
spin precession

^sx&5cos~2lf!, ^sy&50, ^sz&5sin~2lf!, ~52!

with the angular velocity of the precession equal to 2l
5m12m2. The spin evolution for the curved wire is show
in Fig. 6 for differentb ’s ~correspondingly differentR’s!.
One can see that the spin evolution is simple only for lim
ing cases ofb, and correspondingly so is the radius of th
curved wire@Figs. 6~a! and 6~d!#. However for intermediate
values ofb the spin evolution is not so simple as shown
Figs. 6~b! and 6~c!.

In conclusion let us introduce unitary matrix of the sp
evolution as

uc~f!&5T~f!uc~0!&, ~53!

and find to which rotation of the coordinate system it cor
sponds. Substituting Eqs.~45! and ~43! into Eq. ~53! we
present the evolution as

uc~f!&5
1

A11j2
ei (m11m221)f/2U~f!Fa1eilf/2S i j

1 D
1a2e2 ilf/2S 1

i j D G , ~54!

where

FIG. 6. Spin evolution given by formulas~51! for ~a! b50.2,
~b! b51, ~c! b53, and~d! b5100.
1-7
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U~f!5S exp~ if/2! 0

0 exp~2 if/2!
D . ~55!

Finally we can rewrite Eq.~54! as

uc~f!&5
1

A11j2
ei (m11m221)f/2U~f!LU22l~f!S a2

a1
D ,

~56!

where

L5S 1 i j

i j 1 D . ~57!
f
n
t

i
e-

ys
th

th

07533
Since from Eq.~56! it follows that

uc~0!&5
1

A11j2
LS a2

a1
D , ~58!

we find the matrix of the spin evolution comparing Eq.~56!
to Eq. ~53! as follows:

T~f!5ei (m11m221)f/2U~f!LU22l~f!L21. ~59!

Substituting matrixes~55! and~57! in Eq. ~59! we can write
the spin evolution matrix as
ngles
T~f!5
1

11j2 S e2 i (l21/2)f1j2ei (l11/2)f 22j sin~lf!

2j sin~lf! ei (l21/2)f1j2e2 i (l11/2)fD . ~60!

Because transformation~53! is unitary it corresponds to a rotation of the coordinate system defined by the Eulerian a
angles (w,g,u) ~Ref. 15!:

R~w,u,g!5e2 iw(1/2)sze2 iu(1/2)sye2 ig(1/2)sz.5S cosS 1

2
u DexpF2 i

1

2
~w1g!G 2sinS 1

2
u DexpF2

1

2
i ~w2g!G

sinS 1

2
u DexpF i

1

2
~w2g!G cosS 1

2
u DexpF i

1

2
~w1g!G D . ~61!
ve-

e-

n-

h

Therefore equationR5T gives the following equations:

g5w1f,

sinS 1

2
u D5

2j

11j2
sin~lf!, ~62!

tanw5
12j2

11j2
tanlf.

For the limiting caseR→` or j→1 from Eq.~62! we have,
w50, u52lf, andg5f. In accordance to the definition o
the Eulerian angles@Eq. ~61!# we therefore have a fast spi
precession with an angular velocity 2l with a consequen
slow rotation of the precession plane by an angleg5f
!lf around thez axis. This result is in full coincidence
with the evolution of the mean spin components shown
Fig. 6~d!. Obviously, the slow rotation of the plane spin pr
cession around thez axis, defined by the angleg5f, di-
rectly corresponds to a rotation of the local coordinate s
tem for electron transmission along a curved wire in
geometry shown in Fig. 4. However, for a finite radiusR of
the curved wire a spin state of the electron evolves in a ra
complicated form, as seen from Eq.~62! and Fig. 6~b!.
n

-
e

er

V. TWO-DIMENSIONAL CURVED WAVEGUIDE

For a consideration of the two-dimensional curved wa
guide we introduce the curved coordinate system (s,u),16,17

wheres is the coordinate of central line along of the wav
guide shown in Fig. 7.

We express the Hamiltonian of the waveguide in dime
sionless form by

FIG. 7. A fragment of a two-dimensional curved wire wit
width d51.
1-8
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H5
\2

2m* d2
~H̃01vSO!,

where

H̃052D52g21/2
]

]s
g21/2

]

]s
2g21/2

]

]u
g1/2

]

]u
, ~63!

and d is the width of the waveguide. In what follows w
consider a segment of the two-dimensional ring with a c
stant curvatureg51/R attached to straight leads with th
same width as shown in Fig. 7. Therefore, for the segm
we can write
in

07533
-

nt

x5a~s!2ub8~s!,

y5b~s!1ua8~s!, ~64!

a~s!52R cos~s/R!,b~s!5R sin~s/R!,

g1/2511ug~s!5
u1R

R
,

with g(s) the curvature of the curved waveguide which
taken below to be constant. The SOI takes the follow
form at the curved part of the waveguide:
vSL5bS 0 eis/RS ]

]u
1 ig21/2

]

]sD
2e2 is/RS ]

]u
2 ig21/2

]

]sD 0
D . ~65!
ons
s.
ion
es
spin
ng
At the leads we assume that there is no the spin-orbital
teraction (b50) as well asg50, g1/251.

The Schro¨dinger equation

H̃S c↑
c↓

D 5eS c↑
c↓

D ,

with the total Hamiltonian asH̃5H̃01vSO, takes the fol-
lowing forms

g21/2
]

]s S g21/2
]c↑
]s D1g21/2

]

]u S g1/2
]c↑
]u D1ec↑

2beis/RS ]c↓
]u

1 ig21/2
]c↓
]s D50,

~66!

g21/2
]

]s S g21/2
]c↓
]s D1g21/2

]

]u S g1/2
]c↓
]u D1ec↓

1be2 is/RS ]c↑
]u

2 ig21/2
]c↑
]s D50.

The solutions of Eqs.~66! which satisfy to the Dirichlet
boundary conditions (u561/2) can be presented as16,17

c↑~u,s!5 (
n51

`

A↑n~s!sin@pn~u11/2!#,

~67!

c↓~u,s!5 (
n51

`

A↓n~s!sin@pn~u11/2!#.

Substitution of Eq.~67! into Eqs.~66! gives
-
(
n51

`

@LmnA↑n9 ~s!1PmnA↑n~s!2beigsQmnA↓n~s!

2 ibeigsRmnA↓n8 ~s!#5@~pm!22e#A↑m ,
~68!

(
n51

`

@LmnA↓n9 ~s!1PmnA↓n~s!1be2 igsQmnA↑n~s!

2 ibe2 igsRmnA↑n8 ~s!#5@~pm!22e#A↓m .

Here we introduced the following notations:

Lmn52E
21/2

1/2 sin@pm~u11/2!#sin@pn~u11/2!#

~11ug!2
du,

Pmn52pnE
21/2

1/2 g sin@pm~u11/2!#cos@pn~u11/2!#

11ug
du,

~69!

Rmn52E
21/2

1/2 sin@pm~u11/2!#sin@pn~u11/2!#

11ug
du,

Qmn52pnE
21/2

1/2

sin@pm~u11/2!#cos@pn~u11/2!#du.

VI. NUMERICAL RESULTS

In numerical practice we solve the systems of equati
~68! and ~69! taking a finite number of waveguide mode
This number of modes was controlled by the normalizat
condition, and the sum of the total reflection probabiliti
and the total transmission ones was equal to a unit. The
componentŝ sa& were calculated at an attached outgoi
1-9
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straight electrode, in which we assumed that there was
spin-orbit interaction, by the following formula:

^sb~s!&5
*21/2

1/2 du^c~u,s!uŝbuc~u.s!&

*21/2
1/2 du^c~u,s!uc~u.s!&

. ~70!

In Fig. 7 the outgoing electrode as well as the incoming o
are not shown. Figure 8 shows the evolution of the s
components@Eq. ~70!# versus the longitudinal coordinates.

It is surprising that for an energy of incident electron f
from the edge of the energy subband, the spin evolution
most coincides with the one-dimensional curved wire~shown
in Fig. 8 by squares, triangles, and circles!. In Fig. 9~a! the
energy dependence of the spin components is shown, w
demonstrates the remarkable phenomenon of spin flippin

FIG. 8. The spin components dependent on the lengths of a
curved two-dimensional waveguide. The result of a calculat
based on state~48! for the curved one-dimensional wire is show
by squares (sz), triangles (sx), and circles (sy). The radius of the
wire is R5d, whered is the width of the waveguide. The dimen
sionless spin-orbit constantb52m* ad equals a unit.~a! The di-
mensionless energye525 ~the first channel transmission! and ~b!
e539.25~near an edge of the second subband!.
,

07533
o

e
n

l-

ch
at

the edge of the second energy subbandE25(2p)2'39.4. It
is interesting that increasing the region of the SOI by
creasing the length of the curved waveguide or increasing
spin-orbit constant leads to a double flipping of the electr
spin for transmission through the waveguide, as shown
Fig. 9~b! . This phenomenon is a consequence of the int
subband mixing by the SOI, as discussed in Sec. III.

Therefore, one can expect a strong deviation of the cur
two-dimensional waveguides from the one-dimensional o
for the spin evolution near edges of the subbandsp2n2. In
fact, one can see from Fig. 9~b! that for an energy of the
incident electron ofE'4p2, the spin evolution with the
length of the curved waveguide strongly deviates from
case of a one-dimensional curved wire.
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