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Spin rotation for ballistic electron transmission induced by spin-orbit interaction
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We study spin-dependent electron transmission through one- and two-dimensional curved waveguides and
quantum dots with account of spin-orbit interaction. We prove that for a transmission through an arbitrary
structure there is no spin polarization provided the electron transmits in an isolated energy subband and only
two leads are attached to the structure. In particular there is no spin polarization in the one-dimensional wire,
for which a spin-dependent solution is found analytically. The solution demonstrates the spin evolution as
dependent on a length of wire. The numerical solution for transmission of electrons through the two-
dimensional curved waveguides coincides with the solution for the one-dimensional wire if the energy of
electron is within the first energy subband. In the vicinity of edges of the energy subbands there are sharp
anomalies of spin flipping.
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I. INTRODUCTION (x,z) plane. Here we consider similar phenomena for elec-
The electron-spin precession phenomena at zero ma netlrc:On transmission through the curved waveguide and quan-
pin p P 9 ttum dots. The main difference between straight waveguide

field induced by a variable spin-orbit interactig8Ol) in . . i A
two-dimensional electron gas2DEG) systems were first :/I\;]g grt:gllsg wave guides is that the spin rotation is given by

proposed by Datta and Daas a way for the realization of Next we find the conditions under which there is no spin

the spin transistor. For this, the spin precession is controlled |~~~ . . :
via the Razhba SOI associated with the interface electrigOIanzatlon of transmitted electrons. We imply that a flow of
! : . incident electrons has no spin polarization. For the spin po-
field present in GaAs heterostructures that contains the . : . .
arization we consider the mean sgiar,), @=X,y,z, aver-
2DEG channef: : -
aged over the electron flow. In particular, for transmission

through a quantum dot we show the principal role of the

o g orn
Vso=thalpxoy=Ppyoyl. () third lead for the spin polarization.

The reason for the spin precession is that the spin operators

do not commutate with the SOI operator, which leads to spin Il. SPIN-ORBIT INTERACTION IN THE

evolution for the electron transport. In particular the SOl has ~ INHOMOGENEOUS TWO-DIMENSIONAL CASE
a polarization effect on particle scattering processesd

. . . ; We write the total Hamiltonian of a confined 2DEG as
this effect was considered for different geometries of con-

finement of the 2DEG™® 52 J
The most simple case of the stripe geometry, withthe H=———| —+— +V(X,y)+Vso, 4
axis along the stripe and the axis perpendicular to the 2m* \ 9x* 4

stripe, gives the following transformation of a spin state after,,

IV hereV(x,y) is the lateral confining potential. Following to
transmission:

Moroz and Barnéswe assume that the SOI operaits, is
formed by three contributions:

1 cosh/2 )
0=\ sinar2)" @ Vso=Véot Vio+VEd.
wherd?® The firstVg is related to the Razhba S(Eq. (1)], in which
the SOl constanta proportional to the macroscopic
6=2m*al (3) interface-induced electric field is considered as constant. The

second contributioV{ to the SOI comes from the electric
andL is the length of the stripe. Therefore, the Razhba SOfield E(x,y) related to the confining potential.
induces a spin precession of the transmitted electrons. Note In order to derive the second contribution to the SOI we
that the spin precession is energy independent. This result isegin with a general description of the S¥I,
valid if the confinement energf?/2m* d2, whered is the
width of the stripe, is much larger than the spin-splitting e ~ i
energy induced by the SOI; therefore, the intersubband mix- Vso=— am2e? o(EXp)+ 5 a(VXE) . ®)
ing is negligible® For a strong SOI the spin rotation angle
comes to depend on the Fermi energy for ballistic transporEor a microscopic electric fielg the second term in Eq5)
of electrons in the quasi-one-dimensional wires ands equal to zero. However, for model cases of the confining
stripes®® The Razhba SOl leads to spin precession in thepotentialV(x,y) the electric field can violate an equali®y
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XE=0. In this case the second term in K§) is necessary
to provide the hermiticity of the total SOI operator.

For a 2DEG confined at a semiconductor heterostructure
interface we can reduce tlzecoordinate, performing an av-
erage over an electron wave functigi(z) strongly local-
ized along thez direction:

Vso:f dzipo(2)Vsoho(2). (6)

As a result we obtain

Vio=— 'y[ o Expy_ Eypx) - Ez(o'xpy_ O'ypx)
FIG. 1. Schematical view of a two-dimensional billiard with two
; ; attached leads. The dashed area shows a region with the SOI. Area
i JEy dEy| i JE, JE, ) ;
—-ho, . Shas a boundary which crosses the input and output leadd at
2 andI,, respectively.

9y ox Tox Ty

(7 . .
o ) _scopic electric field at the edge of the heterestructure, we
Here the electric-field components have the meaning of inteyssme that the field is directed normal to the plane of the
gral (6), and depend ox andy only. heterostructure everywhere, and has a stepwise behavior at
For a particular case of a straight wire directed along thene edges. As a result we obtain the stepwise behavior for the
y axis with a lateral confining potenti&l =U(x), from EQ.  Razhba SOI constant. Such a model was used by Hu and
(7) we obtain the expression given by Moroz and Bamesyiatsuyamd?! Similar to Eq.(7) we obtain that the third

[formula(5) in Ref. 6]. They used a parabolic approximation contribution to the SOI takes the following form:
for the confining potential. Here we consider a popular hard

wall approximation and imply the following confining poten- i da da
tial Vg‘5=—h2§(aya—x—axw>. (10
0 if |x|<d/2
U(x)= Up if |X|>d/2_ I1l. TRANSMISSION THROUGH A BILLIARD

WITH THE SOl

Then, substituting the electric fiele,=—U’'(x) into Eq.

(7). we have In this section we prove that the SOI gives no spin polar-

ization for electron transmission through arbitrary billiards if
y _ . — the energy of the incident electron belongs to the first energy

VEdX) =hkyozsign(x)Upd(x+df2). ®) subband. In a dimensionless form the stationary Stihger

For |x|>d/2, from the Schidinger equation we have the equation has the following form:

solution

{=V+vsaoty=ei, ¢=< (11)

U1(XaY))
U2(X,Y) -

V2 (Ug—E)
zp(x):Cexr{—Tx , 9
Here e=E/E,, Eq=%2%/2m*L?, and
whereC is the normalization constant. Using a property of
the delta function that a difference between derivatives of the v 2,3( i i_ i i
wave function at the right and left of the delta function obey SO Y Y ox
Ay’ (£d/f2)=*2m*ko,yUoy(*=d/2), we have from Eq.
(9) that

i J J
- Iz( Uyg—a'xg). (12

L is a characteristic scale of the system, gw2m* oL is
the dimensionless SOI constant. Correspondingly in Egs.
Ay (£dI2)—0 (11) and(12) coordinatesx andy are also dimensionless. .
Let S be an area of the structure under consideration
for Uy—cc. Therefore, in the hard wall approximation an which involves a billiard the SOI and leads, as shown in Fig.
effect of the second contributior, is limited to zero. 1. LetI" denote a boundary which crosses input and output
Next, for a numerical computation of the transmissionleads afi’; andI,, respectively. We suppose that there is no
through the semiconductor heterostructure we assume a cogpin-orbit interaction in the leads, i.¢8=0 atI';, i=1 and
nection to at least two electrodes in which there is no SOI2. At boundaryl’ we imply Dirichlet boundary conditions
Then we can specify the electron state by quantum numbergor a solution of Schidinger equatior(11) #|-=0. As the
the number of the energy subbandand the spin projection scaleL we takelL =d.
o= 0,. This assumption implies that far from waveguides or  Therefore we can write a solution in the electrodes as
guantum dots the SOI constant is equal to zero in the
electrodes. Neglecting the real-space behavior of the micro- linc,n, o) =2 sin wny)expik,x)| o),
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. . , 7 Pu, 1 1 d(Bu
|ref|,n,0’>:\/52 rmn,a,o’sm('”'my)exli_lka)|0' >’ Ul 02 U1 2 +_€(U1U2+U2Ul)__—(IB 101): .
m,o’ 929z* dzaz* 4 2 9z*
(13 (19
) , ) o Extracting the second equation from the first one in @&§),
tr,n,0Y =2 >, tmno.orSiN(mmy )exp(ikx')| ") we obtain
m,o’
where|o) is a spin-state defined spin projections along some 52, 9?v, v, u, 1 d(Buivq)
axis, say thez axis. The energy is v —u +u -v 5
Y 9 2ozaz*  tazozt  Cozoz*  ‘ozazt 2 oz
— 1,2 212
E—kn+7T n-, (14) _’_EM_O (20)
wheren=1,2, ... numerates a number of the energy sub- 2 Jz '
bands.
Introducing complex derivatives Integration of this equation over the billiard ar8awith
use of Green formulél?7) gives
J _ 1/ 0 15
a2 2\x oyl 9 é %_u@dufﬁu@— M2 ) g1
w1 Y2%9n " r\ 29 YTn

we write the Schrdinger equatior(11) as

a(2Buy;) 3(2Buy)
+L pe ds+fS ~,ds=0. (21

M3 T e

2 +1) Bus Ui
9zoz* 4

Since atl’ eitheru;=0, v,;=0, or =0, the last two inte-

2 1 Baou;, u; I8 grals in Eq.(21) are equal to zero, and formu(@l) can be
+—€e|Upy— 5 ————=0, (16)  rewritten as follows:
gzozt A7 2 9% 4 gz
whereu,; andu, are components of the spin state. We as- f v %—u % dibf+ E u E
sume that there is an auxiliary degenerated state with com- <72 Jr, 2 on Lon i=12 Jr; 2 4n
ponentsv, anduv,. In particular, it might be a Kramers de-
generated state. Then for these two states the Green formula o dup)
v,——|dI=0. (22
follows an
v au This formula is sufficient to establish some symmetry rules
L(UAU—UAU)dSI é; u--—v-jdl, (17 between ingoing and outgoing states. In what follows the

guide, while the function is auxiliary. Let us consider the
first-channel transmission foe<472. In order to ignore
evanescent modes we will consider that bounddriesross

wheren is an exterior normal to the boundaky
From the Schrdinger equation we have

Electrons incident from the input lead are completely spin
polarized up. This means that for the incident sf&g. (13)]
|a>=($). We denote the corresponding state interior the

#? 1 B du, 1 B
Uz( +—6)U1+5025+ZU2025—0,

dzoz* 4

? 1 v, 1 4 1YY which i .
u2< —gefoit §u2(9_22+ 2”2”2(9_[::0' (19  StuctureSas CZT(W)) which is used as the solution in Eq.
9297 (22). Correspondingly:ﬁ;&z;) denotes the solution in Eq.
) (22) for the case of electron spin polarized down. We sup-
u J +£E 00— éu ﬂ_ Eu v ﬁzo pose that boundarids; andI’, cross the leads normally the
Noozorr 4 2 27 4TV ’ leads and that th& axis is parallel to the leads. Hence the

normaln is parallel to thex axis. Then from Eq(13) at the

52 1 B au 1 B boundaryI',, which crosses the output lead, we obtain the
+o€elup— ~v;— — —Ujp— = relation
1( gzozr A4 )2 2 oy AT oy
Combining each pair of equations in E¢$8), we obtain %:iklf, (23
2 2
v, ! + U, ! +Ee(ulv2+uzvl)+EM:0, where functionf refers to all components;;, Uy, Uy,
9297* dzoz* 4 2 oz anduy, .

075331-3

function u, describes the transmission through the wave-

the leads far from the scattering region, as shown in Fig. 1.
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These relations allow us to exclude the boundasyfrom  do not depend on the spin polarization of the incident elec-
Eq. (22). At the boundan]™; which crosses the input lead we tron.
have Up to now we considered incident waves as spin polar-
ized along thez axis at the boundar¥/,. Let us now consider

duyp . o a flow of incident electrons which have no averaged spin
a_n:'klulT_z'klsm(”y)’ polarization. In particular we can show that half of the elec-
trons have an incident state with spin-up and half have an
;. incident state with spin-down. Let us consider corresponding
Wzlkluzm transmitted waves at the bounddry. We prove that for a
(24) f[ransmission throu_gh a biII_iard_ with two attached Ieads_ there
auy, is no averaged spin polarization, i.€g,)=0, a=x,y,z if
——=ikuy, electrons are spin unpolarized in the first energy subband. As
an previously we take the incident state in the form of E),
U and write the states in the leads as
&—slzikluZl—Ziklsin(wy). 0, 0,
. - . . |¢¢>:< ) |¢¢>=< ) (30)
We imply here that the origin of the y coordinate system is Uzq Uz|

at the boundary,;. Substituting relation$24) into Eq.(22),

: where the up and down arrows indicate that electrons are
we obtain

incident with spins up and down. In the Green formul23)
we take the first functiom as| ;) and the second functian
f (Ug;—Ug|)sin(wy)dy=0. (25 asa,C|y), whereC is a complex conjugation. This means
! that the second function is a Kramers degenerated state
which responds to transmission from the output lead to the
input lead. However as we noted below formy2?) the
second state in Eq30) is auxiliary and does not reflect the
real physical transmission described by the first state in Eq.

Since at the boundarly,

Up=Ug (X)SIN(Y), Uy = Uy (X)sin(my).

From Eq.(25) we obtain (30). Hence
ulTZUZL' Uq _(ulT) (Ul)_( |U’2\—l ) (31)
Thus from Eq.(13) it follows that the amplitudes of the uz Uz \vaz —iug, )
reflection are ) ) .
Let us calculate integrdR2). As it was derived above for
ra=rp,. (26) the first-channel transmission there is no reflection with spin

flipping. Therefore at a boundally, crossing the input lead
Next, we take that the stat€'j= (') coincides with the ~ Uz; =0, U =0, therefore, since;,=0 andv,=0, integrals
2 21 in Eq. (22) are equal to zero. The second contribution to
integral (22) relates to the boundary, crossing the output
lead. Using the transmitted solutipBq. (13)], one can write
j ( dug &uz)dl—o Eg. (22) as follows:
i=12 Jr,

state Ci) in Eqg. (22). Then Eq.(22) simplifies as follows:

Y2on Y10

&ul (?02 (9U1 (9U2
Substituting relation$24) into this formula, we obtain , vy Ui o ldi+ r Up— = —vy— - dl
_2|kfr UZTS”'(’]Ty)dy:O (27) =2ik é (vzul—UZUl)dy=0.
1 I
This gives us thati,; =0, or, according to Eq13),r; ;=0 .  Thereforeu;v,=u,v4, or in terms of notatior31),
Also, we similarly obtain that;| =0 at the boundary’;.
Thus we can write the second symmetry rule for reflection UpjUT) = —Up Uy, . (32
amplitudes:

From Eq.(32) it obviously follows that
r=r;,=0. (28

lugy[lugy|=lug[luz|.
From symmetry ruleg26) and (28) and from the current

preservation, it follows that the transmission probabilities Moreover relation29) implies that
2 2__ 2 2
lugg |+ [ug[*=ug |*+[uz [

To=2 [teo|*=T (29 _ .
o’ From these two relations one can obtain that

075331-4



SPIN ROTATION FOR BALLISTIC ELECTRON. .. PHYSICAL REVIEW B6, 075331 (2002

<0_>

02 b

0.1

q 7 18 19 20 21 22
0 €
10 20 30 40 50

€

FIG. 3. Spin polarization of electrons transmitted through the
FIG. 2. Spin polarizations of electrons transmitted through thethree-terminal quantum dot vs the energy of an electron in the first

two-terminal quantum dot vs the energy of the electron in the firstenergy subband. The upper inset shows the geometry of the struc-
energy subband and partially in the second energy subljand. ture.

solid line shows(S,) if there are electron incidents in the spin-up

polarized state (10). A dashed line sho¢s,) for an incoming . .
electron in a spin-down polarized state (01)) The total spin (see the inset of Fig.)dn fact demonstrates the absence of

polarization[Eq. (37)]. (c) Geometry of the structure of a quantum spin polarization, in complete correspondence to relations

dot with two orthogonal leads. (36). In Fig. 2a) the outgoing mean spin compongat,) is
shown versus energy provided, that the electron is incident in
ug|=lug |, Jugg]=]uyy. (33 a spin-up polarized staf&q. (10)] (solid line). Correspond-
ingly, the dashed line shows the case of an incoming electron
Finally, relations(32) and (33) give in a spin-down polarized state (01). The mean spin compo-
. % nents(oy) and(o,) have similar but not the same energy
Upjlzy =~ Uy Uz . (34) dependencies, and are not shown in Fig. 2. The total spin

Mean values of the spin components in correspondiné)OIar'Zat'on

stateg Egs. (30)] are

<Ux>T=Re(U11U’2CT)' <Uy>T=|m(U1TU§1), PZE [<UQ>T+<UQ>l] (37)
<Uz>T:|U11|2_|U21|2:
(35 - . o
<Ux>¢:Re(“1¢U§¢)’ <Uy>l:|m(ullu;l)’ is _shown in I_:|g. ). One can see that the spin polarization
arises only if the energy exceeds the edge of the second
<Uz>1:|uli|2_|uzi|- subband 4,2 in complete agreement with analysis above.
) . Also, if there is no intersubband transmissitgy ;.
Equations(33)—(39) give rise to =0, m#n, the spin polarization is equal to zero for an ar-
(o)1=—(00),, a=xy.z, (36) bitrary energy. It takes place approximately, for example, for

adiabatic structures similar to curved waveguidgsc. \j.
i.e., the spin polarizations are exactly opposite in sign for thedowever, in the vicinity of edges of the energy subbands
transmission of electrons incident in corresponding spin-r2n? the SOI gives rise to intersubband mixing. As a result,
polarized states. in numerical calculations we obtain a strong spin polariza-
Thus, for transmission through any billiard with a SOI tion near the edges. Moreover, if the billiard is connected to
with two attached leads, the spin polarization does not existhree or more leads, the spin polarization of the transmitted
if the flow of electrons is incident in the first energy subbandelectrons exists even for the transmission in the first energy
e<4x? and has no spin polarization. This result is rathersubband. The effect of the third lead is demonstrated in Fig.
unexpected, since transmission through the four-termina. Hence this effect proposes a method of the spin transistor
structur@’ gives rise to a positive/negative spin polarization complementary to the way proposed by Datta and ‘DEse
of electrons flowing to the left/right outgoing electrodes. spin polarization of transmitted electrons can be governed by
Hence we could expect a similar effect for electron transmisa value of the connection of the third lead with the quantum
sion through d” -type structure. However, as shown in Fig. dot. The most simple way is to apply a local electric field in
2, a numerical computation of the electron transmissiorthe vicinity of the connection, which implies a potential bar-
through a structure with two leads orthogonal to each otherier closing the connection of the dot with the third lead.
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YA A

input

o=s/R

output FIG. 5. The energy spectrum defined by form@H) for «
=1. Values ofu, and u, are shown by thick points, and corre-
FIG. 4. Schematical view of a one-dimensional curved wire. spond to a clockwise movement of the electron along the curved
wire.

IV. ONE-DIMENSIONAL CURVED WIRE

A model in which only single-channel transmission takes ~ €»~ (n=12°+ VAt v|p—124Vp*+1, v==1.
place is a one-dimensional wire. Therefore, for a transmis-
sion through a one-dimensional wire of any form the SOI
cannot give rise to the spin polarization. However, this modeiS
is interesting in that it allows one to find spin evolution ana-
lytically. A case of a straight wire was considered by in Refs.
1 and 9. Here we consider a curved wire consisting of
segment of a circle with a radiuR attached to an infinite

straight one-dimensional wires, as shown in Fig. 4. we assume that the radius of curvature of the wire is much
V.V.e take a Igngth of the segment to be:. ¢°R and the larger in comparison with the electron wavelength. Thus we
position coordmatelgto be=¢R. The Hamiltonian of the . ignore the reflection for electron transmission through

wire has the forrff the quasi-one-dimensional waveguide.
Since there is no reflection for transmission through the

(41)

pectrum(41) is shown in Fig. 5.

For a fixed energy, Eq. (41) gives four solutions for the
wave numbep. It is well known that for electron transmis-
sion through a potential profile a reflection is negligibly
%mall if the characteristic length of the inhomogeneity much
exceeds the wavelengtthe adiabatic regime For our case

_ 12 f one-dimensional waveguide, we need only those values of
JM*R2 the wave numbep which correspond to a clockwise move-
(39) ment of the electron for the wire shown in Fig. 4. We denote
i B 2 g2 its w, andu, as shown in Fig. 5. In what follows we use the
Laqs 2 5 (oyCosp+ a,sing) R following relation between; and u,:
where3=2m* aR is the dimensionless SOI constant. Since 2= py— puo=V1+ B (42)
[J,,H]=0 whereJ,=—i(dldp)—20,, a particular solu- ) )
tion of the stationary Schdinger equatlomlzﬂ)—ew) has For eachu, and u, the normalized eigenstates follow from
the following form2-14 Egs.(39) and (41):
AdH? i celrat
Ilﬁ):(Bei(u—l)d')' 39 (#l1)= Ji+ 62 gllmmno) “
The parametep defines the dimensionless wave number as ok
k=u/R, and is arbitrary until boundary conditions are im- ($]2)= 1
posed. Substituting stat89) into the Schrdinger equation, V1t \igeltha Do
one can obtain a relation between the energy of elecéron
and the wave numbeu, where
(e—u?)[e—(n—1)%1-B*(n—1/2%=0,  (40)
b (44)
which gives 1+1+8°
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Therefore, a general solution of the Safirger equation . a - b
for the electron transmission without reflection can be writ- o
ten as

()= 212av<¢|v>- (45)

v=4,
where coefficientsa, can be found in accordance with the
incident state. To begin with we follow a case considered by

Mireles and Kirczenow, which took an incident electron
with a spin state polarized along tteaxis. An equality

((0)|=(1,0) yields

gilhit =182 | 210 +112)6 1 o=i(A=112)¢

[b($))=

—1+§2 —igel (VDb eI |
(46)
from which we obtain FIG. 6. Spin evolution given by formula$l) for (a) 8=0.2,
(b) B=1, (c) B=3, and(d) B=100.
- 488 L (pi—po)¢
K(LOlw(#)l =1~ (1+§2)2°|n2 > (47 oy ST D D £2c042\ +1) ¢
X 1+§2 )

For the limit of a straight wirdR— <, the dimensionless
SOl constant isB—. Therefore, in accordance with Eq. SiN(2A—1)p— £2sin(2A+1) ¢
(44), é—1. Then from Eq.(47) we obtain from the same (oy)= 5 : (51)
result as in Ref. 9. It might be thought that there is no dif- 1+¢
ference between the curved and straight wires considered in
Ref. 9 except inessential factors. However, let us consider 28 sin2\ ¢
the initial spin polarization along the axis as (1,1){2, (o9)= 1+ ¢2
which is not equivalent to the axis in the geometry shown
in Fig. 4. Then it follows from Eqs(43) and (45) that For the straight wire R>L,£=1) we again obtain a simple

spin precession
gi1t up- 112 [ gl U =i =112)0
|¢(¢)>:El+—i§ (126 4 | gomi+12)0 ) (o =co42\¢), (0,)=0, (0)=siN(2r¢), (52

(48  with the angular velocity of the precession equal tv 2
) = uq1— M. The spin evolution for the curved wire is shown
and, correspondingly, in Fig. 6 for different8’s (correspondingly differenR’s).
One can see that the spin evolution is simple only for limit-
1 2 ing cases of3, and correspondingly so is the radius of the
EK(LDM( )l :(1+§2)’ curved wire[Figs. §a) and d)]. However for intermediate
values of3 the spin evolution is not so simple as shown in
Figs. &b) and c).
In conclusion let us introduce unitary matrix of the spin
Substituting Eq.(42) and ¢=L/R into Egs.(49), we have evolution as

the following expression for the probability of detection a
spin polarized along the axis: |(#))=T($)|4(0)), (53

ko) and find to which rotation of the coordinate system it corre-
1 (ki—k)L L sponds. Substituting Eq$45) and (43) into Eq. (53) we
2_ _

KAD[w(e)] _(1+§2) (C()SZ( 2 ZR) present the evolution as

[COS(\—1/2) p+ £2coF(N+ 1/2) ¢]. (49

ki—k)L L i
+ fzcosz(% +ﬁ) ] B0 )= —%gzeiwwzlw’zwcm aleM/Z( 'f)

One can see that fdR>L probabilities(49) limit one to Cingl2
the case of the straight wire considered in Ref. 9, for which taze ig) | (54)
we have a simple spin precession. The spin evolution for
state(48) is given by mean values of the spin components: where

075331-7
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exp(i ¢/2) 0 Since from Eq.(56) it follows that
VD=l o exp—i ¢/2)) ' 59
1
Finally we can rewrite Eq(54) as |4(0))= WA( ai), (58)
. a
|p(p))= e'("l**‘Zl)‘ﬁ’ZU((ﬁ)AU2>‘(¢)( ) we find the matrix of the spin evolution comparing E§6)
Vi+¢ & to Eq. (53) as follows:
(56)
where T(¢p)=e'r1tr= D2y ) AU~ M)A L. (59)
_ 1 i¢ (57) Substituting matrixe$55) and(57) in Eq. (59) we can write
i& 1) the spin evolution matrix as
|
1 e—i(}\—1/2)¢+ gZei()\+1/2)¢ _ 2§ SIn(Ad))
T(¢)= 1+—§2( 2¢sin(\ ) Qi -112) gze—i(x+1/2)¢) : (60)

Because transformatiai®3) is unitary it corresponds to a rotation of the coordinate system defined by the Eulerian angles
angles ¢, y,0) (Ref. 15:

1 1 (1 1
co 50 ex —|§(<p+y) —sin 50 ex —§|(<p—y)
R((P, 0, ,y) — e—i<p(1/2)aze—i0(1/2)0'ye—i 7(1/2)172. — 1 1 1 1 (61)
SIh(EG)eX[{IE(QD—'y)} COS(Et?)eX[{IE(QD-I—'y)
|
Therefore equatio®R=T gives the following equations: V. TWO-DIMENSIONAL CURVED WAVEGUIDE
For a consideration of the two-dimensional curved wave-
y=o+ b, guide we introduce the curved coordinate systesnu),6

wheres is the coordinate of central line along of the wave-
guide shown in Fig. 7.

1 2¢ We express the Hamiltonian of the waveguide in dimen-
sm(§0> = 1+§25|n()\¢), (62 sionless form by
_ 2
tane= tann. )
@ 142 ¢

For the limiting cas&R— or é—1 from Eq.(62) we have,

¢=0, =2\ ¢, andy= ¢. In accordance to the definition of
the Eulerian anglefEq. (61)] we therefore have a fast spin
precession with an angular velocityx 2with a consequent
slow rotation of the precession plane by an angte ¢

<\ ¢ around thez axis. This result is in full coincidence :
with the evolution of the mean spin components shown in s
Fig. 6(d). Obviously, the slow rotation of the plane spin pre- l :

cession around the axis, defined by the angle= ¢, di-
rectly corresponds to a rotation of the local coordinate sys-
tem for electron transmission along a curved wire in the
geometry shown in Fig. 4. However, for a finite radR®f

the curved wire a spin state of the electron evolves in arather FIG. 7. A fragment of a two-dimensional curved wire with
complicated form, as seen from E&2) and Fig. Gb). width d=1.
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e x=a(s)—ub’(s),
= (Hot+vso),
* 2
zmd y=b(s)+ua'(s), (64)
where
a(s)=—Rcogs/R),b(s)=Rsin(s/R),
! :_A:_g—l/zig—llzi_g—llziguzi 63)
0 Js s au> au’ U+R

1/2__ —
and d is the width of the waveguide. In what follows we g7 =1+uy(s)= 7~
consider a segment of the two-dimensional ring with a con-
stant curvaturey=1/R attached to straight leads with the with y(s) the curvature of the curved waveguide which is

same width as shown in Fig. 7. Therefore, for the segmentaken below to be constant. The SOI takes the following

we can write form at the curved part of the waveguide:

. 17 14

0 islR| _—  i~n—12 "
TR as)
vs =B ‘ 3 9 (65
_e—IS/R __ig—1/2_ 0
Ju Js
|

At the leads we assume that there is no the spin-orbital in- o '
teraction 8=0) as well asy=0, g*?=1. > (LA () + PrneApn(S) — B °QppA  n(S)

n=1

The Schrdinger equation
—i B Ry Al (S)]=[(7m)*— €]A;m,
(2] m
ne 2 [LmeAn(8)+ P in(8)+ B Qe n(9)

with the total Hamiltonian a$l=H,+vso, takes the fol- .
lowing forms —ipe Ry AlL(S)]=[(mm) = €]A .

Here we introduced the following notations:

g1/21(91/2§_‘/’T)+gllzi(gl/zﬁ_%)+€¢T
Js Js Ju Ju Ly fuz sinf mm(u+1/2)]sin 7n(u+1/2)] g
= u,
oy A SR TP (1+uy)?
_ pais/iRl Z71 —1271) _
pe (&u+lg &s) 0, i 12)]cod 2]
12 ysif mm(u+1/2)Jcog 7n(u+1/2)
d Y d Y 0 Pmn=27rnf 12 1+uy du.
—12 % [ —12%Y1 —12 % | 12?1 B
g as(g s ) 9 au(g w)“wl (69)
- [a Y 172 sif mwm(u+ 1/2)]sin 77n(u+1/2) ]
—is/R| I i 127 7T — R :2f dU,
+Be ( ou 'Y ﬁs) 0. T 1+uy
The solutions of Eqs(66) which satisfy to the Dirichlet 2
boundary conditionsy= *+ 1/2) can be presented*8s’ Qmn=2mn f_l/25|r{7rm(u+1/2)]cos{77n(u+1/2)]du.
P (u,8)= 2, Ap(s)sin7n(u+1/2)], VI. NUMERICAL RESULTS
n=1
(67) In numerical practice we solve the systems of equations

(68) and (69) taking a finite number of waveguide modes.
This number of modes was controlled by the normalization
condition, and the sum of the total reflection probabilities
and the total transmission ones was equal to a unit. The spin
Substitution of Eq(67) into Egs.(66) gives components o ,) were calculated at an attached outgoing

¥ (u,8)= }_}l A n(s)sifmn(u+1/2)].
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FI(;' 8. Tdhe spir_l colmponents_ddep_(l?rr:dent oln thfe Ielsgfm? . FIG. 9. The spin components dependent on the energy of inci-
curved two-dimensional waveguide. he re;ut of a caleu ationyant electron for(a) ¢o=90° (curved waveguideand (b) &,
based on staté48) for the curved one-dimensional wire is shown ~180°. =1

by squares ¢,), triangles @), and circles ). The radius of the
wire is R=d, whered is the width of the waveguide. The dimen- 2
sionless spin-orbit constagt=2m* ad equals a unit(a) The di-  the edge of the second energy subbier (27)°~39.4. It
mensionless energy=25 (the first channel transmissipand (b) 1S interesting that increasing the region of the SOI by in-
€=239.25(near an edge of the second subband creasing the length of the curved waveguide or increasing the
spin-orbit constant leads to a double flipping of the electron

straight electrode, in which we assumed that there was ngpin for transmission through the waveguide, as shown in

spin-orbit interaction, by the following formula: Fig. ab) . This phenomenon is a consequence of the inter-
subband mixing by the SOI, as discussed in Sec. lIl.
TV AW g(u,8)|aglyu.9)) Therefore, one can expect a strong deviation of the curved
(04(8))=—112 . (700 two-dimensional waveguides from the one-dimensional one
“Adu(g(u,s)[¢(u.s)) for the spin evolution near edges of the subbands?. In

In Fig. 7 the outgoing electrode as well as the incoming ond@ct, one can see from Fig(19 that for an energy of the

N ) A ] . — 2 - . .
are not shown. Figure 8 shows the evolution of the spifncident electron ofE~4=*, the spin evolution with the

component$Eq. (70)] versus the longitudinal coordinase length of the cqrved yvaveguide strqngly deviates from the
It is surprising that for an energy of incident electron far ¢@se of a one-dimensional curved wire.

from the edge of the energy subband, the spin evolution al-

mos_t coincides with the_one-dimensional curvgd Vileown ACKNOWLEDGMENTS
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