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Conductance of open quantum billiards and classical trajectories
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We analyze the transport phenomena of two-dimensional quantum billiards with convex boundary of differ-
ent shape. The quantum mechanical analysis is performed by means of the polesSahdlrx while the
classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different
number of bounces at the boundary. The value of the conductance depends on the manner in which the leads
are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of
the classical paths. There is good agreement between classical and quantum mechanical results when the
conductance is achieved mainly by special short-lived states such as whispering gallery modes and bouncing
ball modes. In these cases, also the localization of the wave functions agrees with the picture of the classical
paths. TheS matrix is calculated classically and compared with the transmission coefficients of the quantum
mechanical calculations for five modes in each lead. The number of modes coupled to the special states is
effectively reduced.
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[. INTRODUCTION sible. The most transparent answers are expected from a
study of microwave cavities which simulate well the features
The problem of whether and how classical dynamics ofof real quantum systenfs.In this case, the shape of the
mesoscopic systems is manifest in quantum mechanical chagystem is well defined and two-body forces do not exist.
acteristics is studied intensively during the past decade. It is Generic features of regular and chaotic dynamics in quan-
well established that the statistical fluctuations of quantumum transport have been found in open quantum billiards of
systems whose associated classical dynamics is chaotic adéferent shape at energies whemanychannels are open. If
well described by random matrix theory, see Ref. 1 and théhe scattering dynamics is classically chaotic, conductance
recent reviewé* This approach treats the spectra of manyfluctuations exibit an universial behavidrdescribable by
dense lying states by means of statistical methods neglectirthe random matrix theory, see the revie?w$.The fluctua-
the individual properties of the staté$n other studies, the tions are related to long classical trajectories. The analysis of
relation between the quantum conductance fluctuations antie conductance fluctuations of a stadiumaklycoupled to
the classical chaotic dynamics has been established on tleesmall number of channels shows, however, that the con-
basis of the semiclassical approach to Swatrix 5’ ductance fluctuations carry clear signatures of classical tra-
In quantum systems with low-level densitgeviations jectories with short path lengtfisThese trajectories have
from the randomnesare observed and discussed, both theobeen associated with those of whispering gallery type. A
retically and experimentalf§2°The results point at quantum similar conclusion has been drawn on the basis of the gen-
mechanical interference effects between the quantum statesalized semiclassical scattering approach applied to the
which may become important under certain conditionsanalysis of transport through a circular billidftin this case,
These effects are displayed, e.g., in the transport phenomeiaaterisk trajectories dominate in the power spectrum, while
through quantum dots, when the leads are configured in sudhe whispering gallery ones are not important. That means,
a manner that one or a few propagating modes ar¢he short trajectories contribute essentially to the conduc-
supported?~®The underlying processes are not fully under-tance fluctuations at low energy. It should be mentioned,
stood, up to now. A detailed analysis of the internal structuréhowever, that the relation of these trajectories to the eigen-
of the corresponding Hamiltonian is therefore required. Herestates and eigenfunctions of the corresponding quantum
new questions arise such @g which role do the individual Hamiltonian of the closed system has not been discussed in
properties of the states play whose small number in a certaithese papers.
energy region does, generally, not allow a statistical descrip- Theoretical and experimental studies on microwave cavi-
tion, (ii) which states survive when the system is embeddedies and also on quantum dots which are coulednglyto
into an environment, andii) what is the relation between a smallnumber of channels, have shown that the individual
classical and quantum mechanical characteristics under thepeoperties of the states and their matching to the wave func-
conditions. tions of the environment play an important role under these
A study of these problems in real systems is difficult sinceconditions**>22-25 Analytical considerations show that a
their separation from other questions such as many-body colevel repulsion as well as a level clustering may appear. The
relations and the shape of the effective potential is imposrepulsion of the states in energy is accompanied by adjusting
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their widths (inverse lifetimes of the statesvhile the clus-  ferences with the long-lived trapped states. Accordingly, a
tering of levels is accompanied by a bifurcation of theFourier analysis of the transmission spectrum contains infor-
widths. Both phenomena are observed, in fact, in numericamation not only on the long-lived states but also on the spe-
studies on rectangular billiards in which the matching of thecial states.

wave functions is varied by means of enlargiiog reducing In the present paper, we consider quantum billiards of
the area of the cavit§? Clusters in the tunneling resonance Bunimovich type with different positions of the attached

spectra of ultrasmall metallic particles of the size of a fewl!€@ds under the condition strong couplingetween billiard
nanometers have been observed experimetfatind ex- and leads. Since the closed Bunimovich billiard shows the

plained theoretically? features of chaotic dynamics, this system is especially suited
The wave-function statistics for ballistic quantum trans-for the study of the question of which states survive after

port through chaotic open billiards is investigated in Ref. 20mPedding it into an environment. We will show that an
Here, the chaotic-scattering wave functions in open system@PPropriate attachment of the leads selects special states,
are interpreted quantitatively in terms of statistically inde-Which énhances the conductance as compared to the predic-
pendent reaind imaginary random fields in the same man- ions of random matrix theory. Further, we compare the re-
ner as for wave-function statistics of closed systems. Thi§ults of @ Fourier analysis of the transmission spectra with
result may be compared with a similar one obtained from athe results of classical calculations for the conductance of
analysis of the nuclear coupling to the one-channeFaV't_'eS hav_mg the same geometry. .Th|s comparison will
continuum? The Gaussian distribution of both, the real andProvide us information on the question of the degree to

imaginary parts, seems therefore to be a common feature (Whlch classical properties of dynamical systems are manifest

the wave-function statistics of small open quantum systemdl guantum mechanical characteristics, in particular in the

The role of the matching of the wave functions for the phenomenon of transport through strongly opened billiards

dynamics of the system is studied further in Ref. 24. HereWith both a small number of states and a small number of
pen channels.

some special states are shown to accumulate the total cofl > ) ,
The paper is organized as follows. In Sec. Il, the basic

pling strength between system and environment, which is - i ) o
expressed by the sum of the widths of all states lying in the¢guations underlying the quantum mechanical description
e given. In Sec. lll, we provide the results obtained nu-

energy region considered. The accumulation takes place : T ) X i
1erically for quantum billiards of Bunimovich type to which

resonance trapping, i.e., all states but the special ones d ) ) )
couple more or less from the environment while the widthstN€ 1€ads are coupled in a different manner. They are config-

of the special states reach the maximum possible value, Uréd to support a small number of propagating modes

The quantum billiard considered in Ref. 24 has the shapé$5)' We repres_ent the eigenvalue pictures toge_ther with
of a semicircle with an internal scatteré81S). It is coupled ~ SOMe wave functions and the power spectra obtained from
strongly to the attached leads. Here, bands of overlapping; .Fourler analysis of the transmission and reflection fluc-
resonance states appear whose wave functions are localizE&#tions. The values are compared with those calculated clas-
either along the convex boundary of the cavity or along thesically. Furtherm.ore, th&s matrlx is calcul_a_ted classically
direct connection between the two attached leads. The fir&"d compared with the transmission coefficients of the quan-
type of resonances is related to whispering gallery modelm mechanical c_alculatlon_ for five modes in each cha_nnel.
(WGM) and the other one to bouncing ball mod&SsM). The resu_lts are discussed in Sec. IV and summarized in the
The transition from one type to the other is traced in Ref. 248t section.
by varying the position of one of the two attached leads. As
a result, the BBM being special states at a certain position of Il. BASIC EQUATIONS OF THE QUANTUM
t_he attached leads, are trapped by the WGM at another posi- MECHANICAL DESCRIPTION
tion of the leads. The internal scatterer in the SIS does not
play any role in this phenomenon since it appears in a quan- We consider a two-dimensional2D) flat resonator
tum billiard of semicircle shape without any internal scat-coupled to two leads and solve the 2D Sctinger equation
terer as well. Meanwhile, the phenomenon of resonance trap-
ping has been proven experimentaily. 42

The whispering gallery modes exist in closed systems — — AV=EV¥ (1)
with a convex boundar{see Ref. 19 and references thejein 2m
As is mentioned above, they are observed also for weakly
opened quantum billiardsThe conclusion can therefore be under the assumption that the potential is zero inside the
drawn that they are special states of the system which subilliard and inside the leads but infinite outside these regions.
vive at strong coupling to the environment and give, underThe walls are assumed to be infinitely hard. In other words,
certain conditions, a large contribution to observable valuesye use the Dirichlet boundary conditidh=0 on the bound-
e.g., to the transmissigiconductance Besides these special ary of the billiard and of the leads. The wave functions inside
states there exist, at the same energy, a large number of lonthe leads are given as a superposition of plane waves,
lived states that are decoupled more or less from the envi-

ronment and contribute incoherently to the observables. The z
transmission §hows a gross strgcture caused by th_e special T (X,y)= E (ane*m*+ b e Km)u (y),
states and a fine structuf@uctuations created by the inter- m=1
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approximate expressions, obtained in this approach, can be
applied in the limit of weak coupling.

Although the expressioS(z) Eq. (5), formally has the

CC/ L
where we denote the two leads by 1 and 2, respectivelytandard form, it contains all the reordering processes taking

Z
wxxyr=2;<aﬁmﬂ+b@*“ﬂu4w, (2)

uj(y)=v[2/(dky)]sin((7j/d]y), j=n,m. Further,d is the
width of each lead andh(n)=1,2, ... Z is the number of
transversal modes in lead2. The wave number is,

place in the system at strong coupling, i.e., when the reso-
nance states overlap, including the influence of the channel-
channel coupling. All these effects are expressed by the bior-

=2mey/h* (E-Ey) WhereEn:hZ”ZWZ/(z_meffdz) is the  thogonality of the wave function®g and are involved in the
energy associated with the transverse motion. At the energy

E the modes with E—E,>0 are propagating while those nergy-dependent functionds, Eg, andl'z. The repre-

with E<E, are evanescent waves. In the following, we usesentation of theS matrix as a sum of the contributions from
n . )

the unitsf2/(2mgg) =1 and choosel=1. the |lr1d|V|du3I\A/rCe§0nance slfates vy|th _f_er:jergy-lndTpelndent
By definition, theS matrix maps the amplitudes of incom- Er: 1'r. andWg is, generally, not justified. We calculate

ing waves to those of the outgoing ones,

b=Sa 3
The S matrix can be written as
Seer=St0— S, (4)
whereS(ch), contains the smooth direct reaction part and
N e e
s=2in 3, — (5)
E-Egr+ EFR

is the resonance reaction part in pole representafmmde-

tails, see Refs. 8 and 28Here, thec denote the channels

m=1,...7Z, n=1,...Z. TheEgr—(i/2)T' are the com-

the S matrix therefore by employing the full energy depen-
dence of theW$, Egr, and T'z. At the fixed pointsE
=Eg, the results coincide with those obtained from the cor-
responding pole term.

For isolatedresonances the widths of the states are much
smaller than the distance between them. In such a &ase,
~E%, Wi~WH?  and the channels are not coupled. That
means, theS matrix poles can be calculated with the help of
the coupling matrix elementm@(d) (overlap integrals be-
tween the wave function®, of the discrete states and the
channel wave functions, in the leadg, with the energieE‘F’<
of the discrete states of théclosed billiard and Fg
=273 (WEP)2. This approximation is justified for the de-
scription of S matrix poles lying near the real axis.

For overlappingresonancesi.e. when the widths exceed
the energetical distance between the resonanttest and

plex eigenvalues of the non-Hermitian effective Hamiltonian\7\/°R may differ strongly from thgg and\/\/%(d) , respectively,

Hei. The eigenfunctiongy of H are biorthogonal. Both,

due to reordering processes taking place in the billiard under

the eigenvalues and eigenfunctions are energy dependetie influence of the coupling to the leads. For numerical

The eigenvalues give the energiEstR(E:ER) and

widths Tr=Tr(E=Eg) of the resonancestates of the bil-
liard by solving the fixed-point equations. TEg andl' are

directly related to the poles of tHg@matrix. The\7V§ are the

(complex coupling matrix elements between the wave func-

tions @ of the resonancestates and the channel wave func-
tions in the leadgby using the Lippmann-Schwinger-type

relation between the wave functiofd; of the resonance
states and the eigenfunctiofs, of the non-Hermitian effec-

tive Hamiltonian He (Refs. 8, 28 and 29. They are
strongly energy dependent, blik=273(Wg)? at E=Eg
due to the unitarity of thés matrix [with (Wg)?= (WS)?(E

examples see Refs. 22-24. Due to these reordering pro-
cesses, thé& matrix cannot be approximated by using the
energy-independenEg and W5 as shown in a numerical

study?? Instead, theEg, Tk and, above all, th&\5 in (5)

are energy-dependent functions that characterizerd¢ke-
nancestates and their coupling to the continuum. Moreover,
in Ref. 33 the effective Hamiltonian for an open quantum
billiard with variable coupling strength to an attached lead is
derived. Diagonalizing this effective Hamiltonian, humerical
studies are performed for billiards with isolated and overlap-
ping resonances. The results are in good agreement with ex-
perimental data obtained from microwave resonators of the
same shap® In particular, the phenomenon of resonance

=ERg)]. The expressiof5) holds also in the strong coupling trap_ping can clearly be seen in both t_he theoretical and ex-
limit, i.e., not only for isolated resonance states but also foP€fimental results. These results confirm that & .can be
overlapping one&28 Formally, this is related to the fact that US€d in the strong coupling regime.

all values involved in Eq(5) are characteristic of theso-

Reordering processes may take place in open quantum

nancestates that generically differ from the discrete states irpyStemsnot only betwgerl the states of the system which
the case of strong coupling between system and envirorcause the wave functiordg of the resonance states to be

ment.

different from the wave functiong of the discrete states.

A similar approach has been developed in Ref. 30, bufrhe strong coupling of some resonance states to the channel

without application to realistic systems. In Ref. 3, the expreswave functions may cause also changes in the channel wave
sion for theS matrix is given in terms of a Green function functions themselves because they are coupled via the reso-
with a non-Hermitian effective Hamiltonian, and the com- nance states. This coupling of the channel wave functions via
plex poles are identified as eigenvalues of this operator. Thithe resonance statéshannel-channel couplings in com-
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plete resemblance to the coupling of the resonance states via Z Z

the channels. Both are caused by the same coupling matrix To=2> |tmn? @and Ry= > |2 (10
elements between the resonance wave functions and the n=1 m'=1

channel wave functions. For details see Ref. 8. Wave funcrespectively. As shown by Landaifetthe conductancé is

tions of different channels may couple so strongly as to efproportional to the sum of the transmission probabilities,
fectively appear as a one-channel wave function and exist

together with less coupled channel wave functions. Thus, the B 2
number of relevant channels may be effectively reduced at G= = T (12)
strong coupling between system and environment. For nu- ) _ _
merical examples on quantum billiards, see Ref. 24 and foin the units used by utsee above The fluctuations in the
nuclei see Ref. 26. transmission and reflection amplitudes can be analyzed by
Since the sum of the diagonal matrix elements of a matrixneans of a Fourier transformation,

is equal to the sum of the eigenvalues, wePget , oE

— t E)e—idEL

[ 25

(12

2

|tmn(|-)|2: ’ f dktmn(k)e_ikl‘

2 Tr=2m, (WR?=272 (WRP)?=2 Tk, (6)

where thel“g characterize the coupling of the staR$o the ~ The sum

environment without taking into account any mixiaga the

continuum with the other states of the system. Equat{6n P(L)=2 |tma(L)|? (13)
gives the total coupling strength between system and envi- mn

ronment. It is basic for all redistribution processes taking

plac_e in the system_under_the infl_uence_of the CO“F""_‘Q t_o th%e written down for the Fourier transform of the reflection
environment. This is confirmed in particular for redistribu- amplitudes

tions that happen in the quantum billiard when the position It should be noted that the power spectr® can be

of the attached leads to the billiard is variédn this case, related to the autocorrelation function of the conductance. To
this purpose, we use the Fourier transform

is called the power spectruffiAn analogous expression can

> Tr=2m>, (Wg)2~const 7
R Rc .
P(L)=J dkC(k)e kL, (14)
since thew4® are determined by an integral over the region
of attachmerit'33 and remain almost unchanged by varying where
the position of the attachmefif the number of states in the ‘ ‘
cavity is not too small It may happen that, under certain P I K
conditions, C(k)={ thn k 2 tn| K"+ 2 o (15
KoM Mo is the autocorrelation function of the conductance averaged
Rzl FR*Fgl I'r and R:;H I'r~0. (8 overk’ (or energy which is studied in Refs. 6 and 7. Ac-

cording to the semiclasical formalism of the ballistic

In such a case, the whole coupling strength is concentrateidansport’*°the transmission amplituds, , is
on K<M special states whil&/1-K states are almost decou-
pled from the environment. This phenomenon, caliesb- _ ikL
nance trapping is crucial for the conductance of quantum tm”(k)_zq: B (16
billiards with WGM?2* The value ofK may or may not be . .
related to the numbeZ of open channel&For the WGM,k  Where the sum is taken over the pajhwith a lengthL,
is determined, in a certain energy interval, by the number opetween _the entrance and exit !eads. The detailed structure of
nodes along théconvex boundary of the cavity leading to the coefficien@, can be found in Refs. 7 and 10.
K>1 in the one-channel cadé.

For the analysis of transmission and reflection of quantum ll. NUMERICAL RESULTS
billiards with two leads attached to them, it is convenient to

. . ) A. Quantum mechanical and classical calculations
write the Smatrix in the following mannef:

We study a stadium of Bunimovich tygénear lengthS
S Smn rot’ =3x/(w+1) and radiusR=S] in the ballistic regime with
( S s, /) (t r’)' 9 different positions of the attached leads. The results are com-
nm " pared with those of a semicircleRE3) with an SIS and
Here,m(n) denote the channels in lea2L The matrices leads attached to both ends of the convex boundary.
andr’ describe the reflection in the lead 1 and 2, respec- In the first caseB1) of the Bunimovich billiard, the leads
tively, while the matriceg andt’ describe the transmission are attached to the middle of each convex boundary in the
from lead 1 to lead 2 and vice versa. The total transmissiosame direction so that the WGM are favored for the conduc-
and reflection probabilities for the modesare tance, i.e., the coupling matrix elemem&® of the WGM
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with the channel waves are large. This case is in full analogyhe one-channel mode. They exist besides the less coupled
to the SIS. In the second cas®l), the leads are attached to channel wave function.In an analogous manner, the chan-
the middle of each linear boundary in opposite directions smel wave functions may be effectively coupled to one or two
that the BBM are favored for the conductance. In the thirdmodes beyondE =92

case B3), the leads are attached to the convex boundary in  The eigenvalue picture Fig(d) is the result of resonance
different directions in such a manner that neither WGM nortrapping Occurring according to EqB) and of channel-
BBM are favored for the conductance. We compared the rechannel coupling, see Sec. Il. The states with large widths
sults with those of classical calculations for billiards with the 5 |ocalized along the convex boundary of the cafffig.

same geometry. , 1(b) and Ref. 24 They are modes of the WGM type. The
To_flnd the poles of t_hS matrix, we use the 'T‘ethOd O.f t_he states of the bané have a strong overlap with effectively
exterior complex scaling In combination with the finite- one open channel in both leads at all energies. The states of
element method. For details see Ref. 22. Tkle results of thﬁz]e second banB are related to effectively two open chan-
calculations give us the valuésg—(i/2)I'r=Er(E=Eg)  nels in each lead while the states of the banare related to
—(i12)I'r(E=ER) (in fact, approximate solutions of the three channels. At higher energies, the states of the different
fixed-point equations, see Sec. [The conductance is calcu- bands interact with one another, and the structure of the reso-
lated in small energy steps with the full energy dependencaeance wave functions represents a mixture of the states of
of the S matrix by directly solving the Schdinger equation different bands.
in a discretized space according to the method suggested in The results for the billiard®1 [Figs. 1(c,d)] are very simi-
Ref. 35. The essential ingredients are the conductance folar to those for the SIS. The difference in the widths of the
mulas(10) and(11), the relation of transmission coefficients short-lived and long-lived states is, however, smaller and the
to the S matrix and the corresponding Green function, and avave functions of thé1 are less localized than those of the
recursive calculation of the Green function. At the fixed SIS. This is caused by modes of the WGM type localized
pointsE=Eg, the results coincide with those obtained from along the lower boundary of tH&1. Such modes are coupled
the complex scaling. At other energies, the interfering conweakly to the attached leads.
tributions of different resonance states can be obtained more The attaching of the leads at the linear bounddBy;
effectively without searching for the poles of tBanatrix. Figs. 1e,f] gives rise to large widths for states of the BBM
The Fourier analysis of the transmission and reflectiortype. The differences between the WGM and BBM consist in
amplitudes provides us the power spectréatL) for one  the following.

open channelone propagating modey=n=1) and for two The WGM are localized along the boundary of the cavity
open channelsnfj=1,2, n=1,2) in both leads according to while the BBM are localized inside the billiard along the
Egs.(12) and(13). direct connection between the two attached leads.

In the classical calculations, we consider the motion of a The number of the BBM as well as the degree of their
free particle inside the billiard. The potential is assumed taoverlapping in the complex plane are smaller than the corre-
be zero inside the billiard and the boundaries are mirrors fosponding values for the WGM in the same cavity.
the motion of the particle along trajectories that are calcu- The BBM do trap the other states less than the WGM do,
lated from the laws of the geometric optics. Each trajectoryi.e., some other statém particular those of the WGM type
starts at some arbitrarily chosen initial poingy(y,) of the  still survive in theB2 with small but nonzero widths. These
attached leads with an angle, that characterizes the direc- states take, for example, altogether about 17% of the total
tion of the motion. We choose 108@.000 initial conditions  sum3 ;' of the widths form?<E<4x2.
to calculate the distributiorthistogram of the trajectories In the B3 billiard [Figs. 1g,h)] the coupling matrix ele-
that contribute to the transport. The classical conductance ﬁ]ents of the WGM are large but with different phase in
defined as the number of trajectories starting at one of thee|ation to the two leads. As in the two foregoing cases, the
leads and escaping from the other one, divided by the totgloles with the largest widths are connected with one another
number of trajectories (£). Trajectories with bounces at the for illustration. The wave function of one of the states is
convex boundary only are callddajectories of WGM type  shown in Fig. 1h) which is, however, less representative for

in the following. The number of such trajectories decrease& certain group of states than in the foregoing Cdgqgs
with increasing number of bounces, see, e.g., Fig. 3 in(p,d,f].

Ref. 24.

B. Eigenvalue pictures C. Power spectra and classical trajectories

Figure 1 shows the results of numerical calculations for In Fig. 2, we present theenergy-dependentonductance
the four quantum billiards mentioned above. For the SIS wes calculated quantum mechanically and the mean valud
find, as in Ref. 24, band4, B, andC of overlapping reso- the conductance. Furthermore, we show in this figure, the
nance states whose widths are large, while the widths of altorresponding power spect(L) and the histograms of
the other states are smflig. 1(a)]. The short-lived states of trajectories calculated classically for transmission as a func-
the bandsA, B, and C start at the opening of thresholds at tion of the lengthL of the path for the four different types of
E=m2, 4w?, 972, respectively. At energieE>4=2, we billiards. The results display a remarkable good agreement
have channel wave functions that are effectively coupled tdbetween the quantum mechanical results of the Fourier
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(a)
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FIG. 1. The poles of th& ma-
trix and a representative picture
|®g|? of the wave functions of the
short-lived stategbelonging to the
groupA) for the SIS(a, b, B1 (c,
d), B2 (e, f) andB3 (g, h). The
poles of theS matrix (denoted by
starg far from the real axis are
connected by lines for guiding the
eyes. The energies and widths are
in units of the width of the at-
tached waveguide.
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analysis and the classical results in spite of the small value of In theB2 billiard, two peaks of comparable height appear
the wave vectok of the propagating waves. in the P(L) spectrum[Fig. 2(h)]. A representative wave

In the SIS andB1 with dominant WGM, the largest peak function of the states belonging to the first peak is displayed
in the P(L) spectrum can be identified with the length of the in Fig. 1(f) while another one for the second peak is shown
path of the WGM trajectories calculated classically. In con-in Fig. 3. In the first case, channel-channel coupling creates
trast to the SIS, the classical trajectories of Blewith small  effectively one channel while there are effectively two chan-
L are split into two parts: one bounce at the convex boundaryels in the second case. The corresponding lenigttisfer
and to two bounces, respectively. The number of paths witlby about a factor 2. This is in agreement with the differences
two bounces is much smaller than that with one bounce irf the paths calculated classically for the two highest peaks
full agreement with the expectation. Typical pictures of thesen Fig. 2(i) without any bouncing and with two bouncings at
trajectories are shown near the corresponding peaks in thee convex boundary of the cavity, respectively. The conduc-
histogram Fig. &). In both cases, SIS ariil, smaller peaks tivity of the B2 billiard [Fig. 2(g)] is determined only partly
can be identified with other trajectories that are, however, oby channel-channel coupling.
minor importance for the transport. The energy-dependent The differences between the BBM cad®2() and the two
conductivity G [especially of the SIS, Fig.(8)] reflects the WGM casesSIS andB1) consist in the following.
strong channel-channel coupling between the two channel The P(L) spectrum is dominated by one peak at srhall
modes aE>472, which is responsible for the high conduc- in the WGM cases, while there are two peaks of less height
tance also at higher energies. in the BBM case.
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FIG. 2. The conductancG(E)zEm,n\tmn|2 (calculated quantum mechanicallythe corresponding power spectrua{L), and the
histogram of theg(classically calculatedtrajectories for conductance as a function of the lergtbr the SIS(a, b, 9, B1 (d, e, , B2 (g,
h, i), andB3 (j, k, ). In (a, d, g, ), G(1) andG(2) denote the mean value of the conductance in the energy inter¢al€ <472 and
4m?<E<9m?, respectively. In(b, e, h, B, the total power spectru (L) ==, o|tmi(L)|? of the transmission amplitudéthick lines in
the energy intervair?><E<9#? and the power spectrum of the transmission amplitdtigél)|? in the energy regiom?<E<4x? with
two open channels in each le@thsh-dotted lingsare shown. Typical classical trajectories are displayed near the corresponding @ns in
f, i, 1). Note the different scales ¢¥(L) in (b, e, h, K.

The |t14(L)|? spectra(defined in the energy range?® In Fig. 4, we present the power spectra of the reflection
<E<47?) are dominated in all three cases by one peak aamplitudes for the four billiards studied above. Additionally,
smallL the height of which is, however, smaller in the BBM we show in each case the wave function of a state lying at

case than in the WGM cases. the energy where the conductance is minimal. In contrast to
G(1) andG(2) are smaller in the BBM case than in the the power spectr®(L) of the conductance, the power spec-
two WGM cases. tra of the reflection show more pronounced peaks folBBe

The results for theB3 billiard do not show any pro- andB3 bhilliards than for the SIS anB1. They appear at
nounced peaks in the power spectrum at short lerigtfile  comparably largel. In any case, the peaks in the power
mean conductivity is close to the classical value in accorspectra of the conductance and reflection are at different
dance with the prediction of random matrix theory. lengthsL for every cavity. This holds especially for the first
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The angle® is measured with respect to the normal of the
attachment line between lead and billiard. The trajectories
that enter and leave the cavity at an angle arolrd0 can

be identified with trajectories of the WGM type. The dark
straight line can be associated with trajectories that bounce
once off the linear boundary of the billiardb(= 77/4). Most
trajectories with large angles are longer than 20 and do not
appear in Fig. 6 since they are not taken into account in the
classical calculations.

IV. DISCUSSION OF THE RESULTS

Comparing the results for the different billiardper-
formed for the ballistic regime we see the strong influence
of the lead orientation onto the resonance wave functions and
the conductance or reflection. The results can be understood

on the basis of E(5) that involves the coupling coefficients

FIG. 3. Arepresentative pictule|? for the wave functions of {° between theesonancastates and the channel wave func-
the states that belong to the second pealR@f) at L~ 16 for the L RME -

B2 tions in the leads. It follows as listed below.
The most effective attachment of the leads for a selection
< of th or th fection in B2 of special modes and a high conductance is the symmetrical
peak of the power spectrum for the reflection in , Ty By o
which lies between the two BBM peaks of the power spec-on?”\:\gtg\é\ﬁm%é interferences in the transmission ampli-
pli

trum for the transmission. o tudes are reduced when the number of stateschannels is
In Table |, the results obtained for the conductivity from effectively reduced.

the quantum mechanical calculations are compared With e first condition is fulfilled for the SIS and th&l with
those from the classical calculations. It is remarkable that thgg|ection of the WGM as well as for tg2 with selection of

conductivity is determined, to a great deal, by trajectories o . ) ~
the WGM ¥ype in the classical gcalculationsyas \JNeII. TheirEhe BBM. Itisnotfulfilled for the B3 whqe\/\/& is large for
contribution is about 45% and 28% of trajectories for the SIShe WGM along the upper boundary bf; is small, and
and theB1, respectively. It is smaller in the latter case sinceVice versa for the WGM along the lower boundary. Although
the boundary of th&1 is not convex everywhere in contrast the number of WGM is more or less the same in#8as in
to that of the SIS. In the quantum mechanical calculations fothe B1, the conductance is very different in the two cases.
the SIS andB1, the conductivity is maximum at low energy ~ The second condition is fulfilled to the maximum by reso-
with one open channel. It decreases with increasing energy?ance trapping. The differences in the coupling coefficients
The small conductivity of th&2 at low energy(Table I, \7\/% between theesonancestatesR and the wave functions
one channglis rather unexpected at first sight, since theof the channels are larger than those in the original cou-
classical path corresponding to the BBM trajectories is theling coefficientsWg® between the discrete states and the

direct one. Their contri(E)ution is, in the classical calculation_schanneb' A few of th‘gch may reach the maximum possible
however, only about 7% of the total number of the transmit, o ;e determined by Eq6) while those of the remaining

ted trajectories, whereas the WGM trajectories contributeones approach zero, meaning that they are almost decoupled
about 11%. That means the trajectories occupy, t0 a largg, the channels. Due to the large coupling coefficients
part, the available inner space of the billiard, resulting in 3etween the special states and the channel wave functions
reduction of the conductivity. This tendency can be seen alsg channels are coupled via these states. As a consequence,
in the quantum mechanical calculations, see F'gs% not only the number of states is effectively redudeudt, also
Further, we calculated quantum mechanically thg|®  the number of channels is effectively scaled down. In this
for five open channels in each lead,in=1,...,5) in the manner, a few special quantum mechanical states may be
energy range (5)°<E<(6m)> for the B1 billiard (Table  selected by the attachment of the leads to the cavity whose
II), the corresponding Fourier transforms of fig,|? (Fig.  number is, in any case, smaller than the total number of
5) and, for illustration, the number of classical trajectoriesstates. Further, the special states are coupled mainly to some
traveling through the billiardFig. 6). In the classical calcu- channels whose number is effectively smaller than at
lations, we included only trajectories with lengths smallermost equal tpthe total number of open channéfsr illus-
than 20 according to the results shown in Fi@f) 2ZThe angle  tration see Fig. 1 and Ref. 24 for quantum billiards and%lso
® is determined by the trajectory going into the billiard for nuclej. Thus, the interferences between the transmission
(®in) or leaving it @,,). Using the quantum mechanical amplitudes are reduced by the phenomenon of resonance
correspondence  between energy and anglé trapping.
= arctafi 7n/ JE— (7n)?], we divide thg®,| — | D, plane Another illustration for the effective reduction of the
into 5X5 blocks corresponding to the transmissidhs,|>. number of channels, to which the special states are coupled,
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reflection amplitudesthick lines
in the energy region m?<E
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is shown in Fig. 6 where the quantum mechanical transmisehannels. In the energy region betweenr2and 3672 there
sion matrix elements, calculated with account of five chanare, in the quantum mechanical calculations with five chan-
nels (mode$ in each lead, are mapped onto the classicahels, however, contributions also from other states with
transmission matrix, calculated with account of paths shortefonger paths to the transmissidRig. 5). While the Fourier
than 20. The classical transmission through short paths (transforms of|tmn? wWith mn=11, 12, 14, 33, 34, and 44
=20) corresponds to the quantum mechanical transmissioRave a well-expressed peak around 14 to 15, this is not so
through the special states with at most fdout of five) iy the other cases. The Fourier transforms with=22, 23
h for diff " i dif are strongly peaked around=30 while those withmn
fer;ﬁBn"u'fn't')ele ifcgr:';‘:ﬁ;?:cel Z for different billiards with dit- - _ 13 15 "54 25 35, and 45 are distributed over different
) L>15 and that withmn=>55 even overl.>27. As can be
Billiard type 1 channel 2 channels 3 channels Classical geen fr(_)m these numbers, the quantum mechanlcal contribu-
tions with L<20 to the conductance are restricted to four

SIS 0.87 0.75 0.74 0.66 channels in each lead, indeed. That is in full accordance to
B1 0.74 0.73 0.65 0.63 the classical picture. The increasing contributions to the con-
B2 0.46 0.56 0.56 0.57 ductance from states with largér weaken, however, the

B3 0.49 0.46 0.56 0.53 channel-channel coupling, and the effective number of chan-

nels approaches the numbéof independent channels. The
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TABLE Il. The valuesm for the B1 billiard with n,m 0 ‘
~1,...5. = Y3 tis
- t
n m Itoml 25
1 1 0.45 0.5 t
1 2 0.10 &
1 3 0.05 D¢
1 4 0.06 s s
1 5 0.10 1
2 2 0.18
2 3 0.09
2 4 017 t51 t52 t53 t54 t55
2 5 0.10 1.5
3 3 0.31 0 0.5 1 15
3 4 0.14
D;

3 5 0.08
4 4 0.31 FIG. 6. The transition matrix calculated classically for Bit as
4 5 0.07 a function of the angle of the ingoing and outgoing waves at which
5 5 0.16 the classical trajectories pass the attachment of the leads. The length

results of classical calculations without the restriction to

of the trajectories is restricted to<20. The transmission coeffi-

cientst,, (n,m=1,...,5) of thequantum mechanical calculations

as indicated.

smallL (not shown correspond to this result of the quantum

mechanical studies.

According to the numerical results fdt,|° with five
channels in each lead@able ll), the contributions to the con-
ductance from thét,,,|? with a single peak around~14 to
15 are mostly larger than those from the othigy,|2. Nev-
ertheless, the contributions from states with palths20

five channels, we obtai®/Z=0.66.

for five modes in each leadable Il) can be mapped onto the figure

According to Eqgs(6) and (7), the coupling strength be-
tween cavity and lead is finite so that the widths of the spe-
cial states can reach, by resonance trapping, a maximum pos-
sible value only. By this, the conductivity is restricted in
value also. In some casg®VGM only along the upper

have to be taken into account. In all the cavities consideretioundary as in the S)Sthe conductivity is enhanced, in-
by us, the conductance approaches the classical value witkeed, almost up to the maximum possible value whereas this

increasing number of channe(3able ). For theB1 with

is not so in the other cases. Neither the BBM modes in the

-

50

2 2 2
oll) it 1 1l o) It33| " it 44I :
1 1 1 JA\A
0 0 - < 0] A
0 02 3B 4 50 0 L3 4 50 0 10 20 30 4
3 3 3 .
2 2 2
p(L) 't12' pL) 'tz'zl () It24'
1 1 ; R 1
LA B S Y
0 10 20, 30 40 50 % 10 20 30 4 80 0 10 20 3 40 50

FIG. 5. The power spectra(L)=|t,(L)|? for the B1 billiard in the energy region 28 <E<362 with five open channels in each
lead. In the figure, only those power spectra are shown for which the height of at least one peak is larger than 0.5.
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B2 nor the WGM modes in th&1 are able to trap com- A 2my A
pletely the remaining states that include special states of the p=M/AE= 17 72 an
WGM type (along the lower boundary in thB1l and along T h m
the whole boundary in thB2). The maximum value of the for the level densityin units#2/2mes=1, see Sec. )| Here,
conductance can therefore not be reached in these cas@st is the energy interval considerel] is the number of
While the special states determine the average properties efates, and is the area of the quantum billiard. The total
observables such as conductance and reflection, the trappadmber of resonance states between the first and second
states are responsible for the fluctuations around the medhreshold ¢r? and 4m?) is M=3m?A/(4m)~67 for both
values. This result is independent of the existence of an inbilliards, since they have the same area. Also the average
ternal scatterer inside the cavity. More important than thecoupling strength is approximately the same for the two bil-
internal scatterer is the convex lower boundary of Biein liards, see Eqs6) and (7). The estimation yields
contrast to the linear lower boundary of the SIS.

Characteristic of special states of a certain type is the ratio (M= TYM~> Tr/M~1.1. (18)
MSPEIM (whereM3P¢Cis the number of special states aid R R
is the total number of states in a certain energy interaal ¢ 5 interesting to compare the quantum mechanical vafues
well as the dependence of the coupling matrix elements
WY on the parameter varied. In the cases considered in the 1 — 1
present paper, not only the number of WGM is larger than ()= e rS:T_S (19
that of BBM, but the WGM overlap stronger and are more - ) ) )
stable against small shifts of the leads than the BEhé last for the mean I|fet|me_s with th_ose obtained from the classical
point is studied in Ref. 24 for the SISWhile the WGM are calculations for the time of flight, wher® stands for WGM

able to trap almost all other states under conditions favorabl@nd BBM, respectively. A rough estimation of the flight time
for them, the BBM do never trap the WGM completely or a particle along the WGM or BBM trajectories give$

oyl ey —y oy [E—nZ2
[compare Fig. (c) with Fig. 1(e) and see Ref. 24 for the =L v =L /ky=L/VE—n"m" and therefore

(17

SIS]. These differences are related to the fact that the WGM JE—nZ?
are more strongly localized than the BBM. While the WGM <rcl>: — (20)

are localized along théconvex boundary of the system, the
BBM are localized inside the system near the shortest congse get(I'\gu)~0.5 for the WGM trajectories with &y,
nection between the two leads. Deviations from the shortest 371 2 and(I'dg,,)~0.8 for the BBM trajectories with

distance appear under the influence of the area of the billiard.d_ —67/(7+1)+2 and maximum energy. These values
In all cases considered by us, the special Stf@€M  5re of the same order of magnitude as {8 calculated
and BBM) accumulate, by resonance trapping, the major parg ;antym mechanically. The valu&s of the special states,
'?rf the_d‘iﬁ“p“f”ﬂ s:retzngtr_;_hbetv;/een system agd Iéﬂ'?;nt()f however, are much larger due to resonance trapping. It is
e widths ofall state$. The close correspondence between= - /e el y_jd g Tha relation
the quantum mechanical and classical calculations is relatecliﬂ,BBM wen™ (am)/{Twem) = Lwewl Leem -
at least to a great deal, to the existence of these special 1
states. Figure 2 shows the correspondence in relation to the Fsoc10c<rg (21)
lengthsL. Ls
We note that in terms of the semiclassical transmission . . S
amplitudes, the spectrum of, (L), Eq. (14), is peaked at holds in all our calculations, see, e.g., Fige)2in Ref. 24,

! . . while ('), Eq.(18), is related to the area of the cavity and is
the lengthd., (?f the W.GM trajectories conr_lectmg the leads (almos} independent of the manner the leads are attached to
due to the rapidly oscillating phase factor in Eg6).

Let us now consider the correspondence in relation to thét' That means{I") is not related to any specidl in contrast

lifetimes (widths). To this aim, we focus on thB1 and the rls. -The shortgned Iifetimesslare an expression for the
B2 billiards in the energy intérval between the firs) and collective properties of the special states that result from the
second (4r2) thresholds where the WGM and BBM states quantum mechanical phenomenon of resonance trapping.

are well separated from the other resonance states. IBlhe They allow, under certain conditions, an enhancement of the
conductance, as discussed above.

billiard, the special states consist of eleven WGM. The aver- ) .

. oy . . All the results obtained in the present study show the
age width of these e'e"e"! stated igw~6.5. Their contri- lose correspondence between the classical and the quantum
bution to the tcz}al coupling strength between system an echanical characteristics for the transport through billiards
environment,2gl'r=76.6, is 93%. In theB2 billiard, five  of different shape in the strong-coupling regime. This corre-
SpeCial states Of BBM type aCCUmUlate~83% Of the tOtal COUSpondence iS achieved by the dynamics Of Open quantum
pling strength. Herel'ggy=~12.6 and>gl'g=76.1. systems which is determined by the shape of the cavity and

To get an estimation for the mean widfh) of the reso- the position of the attachment of the leads to it. The dynam-
nance states in a quantum billiatdithout taking into ac- ics can be understood on the basis of the resonance reaction
count the mixing of the resonance states via the continuumpart(5) of the Smatrix that involves the characteristics of the
we use the expressith resonancestates, which are determined not only by the wave
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functions of the states of the closed system but also by thelassical paths with very few bounces at the boundary and
influence of the environment onto the properties of the sysare coupled strongly to a small number of effective channels.
tem [including the phenomenon of resonance trapping fol-The lifetimes of these states depend on the geometry of the

lowing from Eqgs.(6) and(7)]. billiard: they are proportional to the lengths of the classical
trajectories. In contrast to this, the long-lived trapped states
V. CONCLUSIONS are delocalizedi.e., distributed over more or less the whole

) ) . ] area of the billiargd and coupled very weakly tall channels.
For the Bunimovich stadium with two attached leads wey; should be underlined that the coherent short-lived and in-
have calculated energies, wave functions, and coupling coefpherent long-lived resonance states exist always together at

ficients to the environmentwidths). As a result, all these the same energy. Only the long-lived trapped states can cause
values may change strongly by varying the position of thehe randomness of the system.
attached leads. The changes can be seen in observables suclye conclude the following. The classical properties of

as conductance or reflection. o dynamical systems are manifest in quantum mechanical

_ Our study shows that special states exist in open quantuigharacteristics of open systems even at low energy where the
billiards. These states have individuaongenerit proper-  |eye| density and the number of open channels are small. The
ties characteristic of the geometry of the system. They havg|assical properties are related, above all, to the properties of
large widths(small lifetimes due to trapping other states gpecial states that exist in the closed system and whose spe-
most of which hqve lost their individual properties the_y hadgia| features may be strengthened by coupling the system to
in the closed cavity, see, e.g., Ref. 22. The wave functions of, environment by an appropriate position of the leads. This
the special states are localized while those of the trappeghancement is caused by the phenomenon of resonance
states are distributed over the whole cavity. The special statqgapping. It is accompanie by the formation of long-lived
determine, as a rule, the mean properties of observablegates in the same energy region which contribute incoher-
(such as the conductancenhile the trapped states are re- ently to the observable values afit) by a reduction of the
sponsible for the fluctuations around the mean values. Thgffective number of channels for the decay of the special
contribution of special states to physically relevant valuestates. Due to the destructive interferences between the short-
can be enhanced by the attachment of leads to the billiard ifp/eq special states and the long-lived trapped states, an en-
such a manner that the coupling of these states to the chann@dncementreduction of observable values appears only at
wave functions is favored. These results are in qualitativggy-level density. This result, discussed in the present paper
agreement with experimental data obtained from quantunyith the example of the transmissidmeflection through
dots with different lead alignmentS.Examples of special quantum billiards, is expected to be true also for other ob-

states are, above all, the WGM studied in this paper. Th@eryables and, above all, for real quantum systems such as
BBM are less stable. uantum dots.

The most interesting result of our study is the relation
between classical and quantum mechanical properties of the
open microwave cavities at low energies. The special states
have short lifetimes, corresponding to trajectories with short We thank D. V. Savin and V.V. Sokolov for useful discus-
path length. These states cause the nonrandomness of thiens and H. Schomerus for the critical reading of the manu-
system at low energy where the number of channels is smalkcript. This work was supported in part by the Russian Foun-
They are characteristic of the system, and the classicalation for Basic Research Grants Nos. 00-02-17194, 01-02-
quantum correspondence do@dmos) not depend on the 16077, the Heisenberg-Landau program of the BLTP, JINR,
position of the attached leads. the Czech grant GAAV A1048101, and by the “Foundation

The short-lived special states are localized around théor Theoretical Physics” in Slemeno, Czech Republic.
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