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Conductance of open quantum billiards and classical trajectories
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We analyze the transport phenomena of two-dimensional quantum billiards with convex boundary of differ-
ent shape. The quantum mechanical analysis is performed by means of the poles of theS matrix while the
classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different
number of bounces at the boundary. The value of the conductance depends on the manner in which the leads
are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of
the classical paths. There is good agreement between classical and quantum mechanical results when the
conductance is achieved mainly by special short-lived states such as whispering gallery modes and bouncing
ball modes. In these cases, also the localization of the wave functions agrees with the picture of the classical
paths. TheS matrix is calculated classically and compared with the transmission coefficients of the quantum
mechanical calculations for five modes in each lead. The number of modes coupled to the special states is
effectively reduced.
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I. INTRODUCTION

The problem of whether and how classical dynamics
mesoscopic systems is manifest in quantum mechanical c
acteristics is studied intensively during the past decade.
well established that the statistical fluctuations of quant
systems whose associated classical dynamics is chaoti
well described by random matrix theory, see Ref. 1 and
recent reviews.2–4 This approach treats the spectra of ma
dense lying states by means of statistical methods neglec
the individual properties of the states.5 In other studies, the
relation between the quantum conductance fluctuations
the classical chaotic dynamics has been established on
basis of the semiclassical approach to theS matrix.6,7

In quantum systems with low-level density,deviations
from the randomnessare observed and discussed, both th
retically and experimentally.8–20The results point at quantum
mechanical interference effects between the quantum st
which may become important under certain conditio
These effects are displayed, e.g., in the transport phenom
through quantum dots, when the leads are configured in s
a manner that one or a few propagating modes
supported.14–16The underlying processes are not fully unde
stood, up to now. A detailed analysis of the internal struct
of the corresponding Hamiltonian is therefore required. He
new questions arise such as~i! which role do the individual
properties of the states play whose small number in a cer
energy region does, generally, not allow a statistical desc
tion, ~ii ! which states survive when the system is embed
into an environment, and~iii ! what is the relation betwee
classical and quantum mechanical characteristics under t
conditions.

A study of these problems in real systems is difficult sin
their separation from other questions such as many-body
relations and the shape of the effective potential is imp
0163-1829/2002/66~8!/085322~13!/$20.00 66 0853
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sible. The most transparent answers are expected fro
study of microwave cavities which simulate well the featur
of real quantum systems.21 In this case, the shape of th
system is well defined and two-body forces do not exist.

Generic features of regular and chaotic dynamics in qu
tum transport have been found in open quantum billiards
different shape at energies wheremanychannels are open. I
the scattering dynamics is classically chaotic, conducta
fluctuations exibit an universial behavior6,7 describable by
the random matrix theory, see the reviews.2–4 The fluctua-
tions are related to long classical trajectories. The analysi
the conductance fluctuations of a stadiumweaklycoupled to
a small number of channels shows, however, that the c
ductance fluctuations carry clear signatures of classical
jectories with short path lengths.9 These trajectories hav
been associated with those of whispering gallery type
similar conclusion has been drawn on the basis of the g
eralized semiclassical scattering approach applied to
analysis of transport through a circular billiard.10 In this case,
asterisk trajectories dominate in the power spectrum, w
the whispering gallery ones are not important. That mea
the short trajectories contribute essentially to the cond
tance fluctuations at low energy. It should be mention
however, that the relation of these trajectories to the eig
states and eigenfunctions of the corresponding quan
Hamiltonian of the closed system has not been discusse
these papers.

Theoretical and experimental studies on microwave ca
ties and also on quantum dots which are coupledstrongly to
a small number of channels, have shown that the individu
properties of the states and their matching to the wave fu
tions of the environment play an important role under the
conditions.14,15,22–25Analytical considerations show that
level repulsion as well as a level clustering may appear. T
repulsion of the states in energy is accompanied by adjus
©2002 The American Physical Society22-1
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their widths~inverse lifetimes of the states! while the clus-
tering of levels is accompanied by a bifurcation of t
widths. Both phenomena are observed, in fact, in numer
studies on rectangular billiards in which the matching of
wave functions is varied by means of enlarging~or reducing!
the area of the cavity.23 Clusters in the tunneling resonanc
spectra of ultrasmall metallic particles of the size of a f
nanometers have been observed experimentally12 and ex-
plained theoretically.13

The wave-function statistics for ballistic quantum tran
port through chaotic open billiards is investigated in Ref.
Here, the chaotic-scattering wave functions in open syst
are interpreted quantitatively in terms of statistically ind
pendent realand imaginary random fields in the same ma
ner as for wave-function statistics of closed systems. T
result may be compared with a similar one obtained from
analysis of the nuclear coupling to the one-chan
continuum.26 The Gaussian distribution of both, the real a
imaginary parts, seems therefore to be a common featur
the wave-function statistics of small open quantum syste

The role of the matching of the wave functions for t
dynamics of the system is studied further in Ref. 24. He
some special states are shown to accumulate the total
pling strength between system and environment, which
expressed by the sum of the widths of all states lying in
energy region considered. The accumulation takes plac
resonance trapping, i.e., all states but the special ones
couple more or less from the environment while the wid
of the special states reach the maximum possible value.

The quantum billiard considered in Ref. 24 has the sh
of a semicircle with an internal scatterer~SIS!. It is coupled
strongly to the attached leads. Here, bands of overlapp
resonance states appear whose wave functions are loca
either along the convex boundary of the cavity or along
direct connection between the two attached leads. The
type of resonances is related to whispering gallery mo
~WGM! and the other one to bouncing ball modes~BBM!.
The transition from one type to the other is traced in Ref.
by varying the position of one of the two attached leads.
a result, the BBM being special states at a certain positio
the attached leads, are trapped by the WGM at another p
tion of the leads. The internal scatterer in the SIS does
play any role in this phenomenon since it appears in a qu
tum billiard of semicircle shape without any internal sc
terer as well. Meanwhile, the phenomenon of resonance t
ping has been proven experimentally.27

The whispering gallery modes exist in closed syste
with a convex boundary~see Ref. 19 and references therei!.
As is mentioned above, they are observed also for wea
opened quantum billiards.9 The conclusion can therefore b
drawn that they are special states of the system which
vive at strong coupling to the environment and give, un
certain conditions, a large contribution to observable valu
e.g., to the transmission~conductance!. Besides these specia
states there exist, at the same energy, a large number of
lived states that are decoupled more or less from the e
ronment and contribute incoherently to the observables.
transmission shows a gross structure caused by the sp
states and a fine structure~fluctuations! created by the inter-
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ferences with the long-lived trapped states. Accordingly
Fourier analysis of the transmission spectrum contains in
mation not only on the long-lived states but also on the s
cial states.

In the present paper, we consider quantum billiards
Bunimovich type with different positions of the attache
leads under the condition ofstrong couplingbetween billiard
and leads. Since the closed Bunimovich billiard shows
features of chaotic dynamics, this system is especially su
for the study of the question of which states survive af
embedding it into an environment. We will show that a
appropriate attachment of the leads selects special st
which enhances the conductance as compared to the pr
tions of random matrix theory. Further, we compare the
sults of a Fourier analysis of the transmission spectra w
the results of classical calculations for the conductance
cavities having the same geometry. This comparison w
provide us information on the question of the degree
which classical properties of dynamical systems are mani
in quantum mechanical characteristics, in particular in
phenomenon of transport through strongly opened billia
with both a small number of states and a small number
open channels.

The paper is organized as follows. In Sec. II, the ba
equations underlying the quantum mechanical descrip
are given. In Sec. III, we provide the results obtained n
merically for quantum billiards of Bunimovich type to whic
the leads are coupled in a different manner. They are con
ured to support a small number of propagating mod
(<5). We represent the eigenvalue pictures together w
some wave functions and the power spectra obtained f
the Fourier analysis of the transmission and reflection fl
tuations. The values are compared with those calculated c
sically. Furthermore, theS matrix is calculated classically
and compared with the transmission coefficients of the qu
tum mechanical calculation for five modes in each chann
The results are discussed in Sec. IV and summarized in
last section.

II. BASIC EQUATIONS OF THE QUANTUM
MECHANICAL DESCRIPTION

We consider a two-dimensional~2D! flat resonator
coupled to two leads and solve the 2D Schro¨dinger equation

2
\2

2m
DC5EC ~1!

under the assumption that the potential is zero inside
billiard and inside the leads but infinite outside these regio
The walls are assumed to be infinitely hard. In other wor
we use the Dirichlet boundary conditionC50 on the bound-
ary of the billiard and of the leads. The wave functions ins
the leads are given as a superposition of plane waves,

C1~x,y!5 (
m51

Z

~ameikmx1bme2 ikmx!um~y!,
2-2
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C2~x,y!5 (
n51

Z

~aneiknx1bne2 iknx!un~y!, ~2!

where we denote the two leads by 1 and 2, respectiv
uj (y)5A@2/(dkn)# sin(@p j /d#y), j 5n,m. Further,d is the
width of each lead andm(n)51,2, . . . ,Z is the number of
transversal modes in lead 1~2!. The wave number iskn

5A2meff /\
2 (E2En) whereEn5\2n2p2/(2meffd

2) is the
energy associated with the transverse motion. At the en
E the modesn with E2En.0 are propagating while thos
with E,En are evanescent waves. In the following, we u
the units\2/(2meff)51 and choosed51.

By definition, theSmatrix maps the amplitudes of incom
ing waves to those of the outgoing ones,

b5Sa. ~3!

The S matrix can be written as

Scc85Scc8
(1)

2Scc8
(2) , ~4!

whereScc8
(1) contains the smooth direct reaction part and

Scc8
(2)

52ip (
R51

N W̃R
c8W̃R

c

E2ẼR1
i

2
G̃R

~5!

is the resonance reaction part in pole representation~for de-
tails, see Refs. 8 and 28!. Here, thec denote the channel
m51, . . . ,Z, n51, . . . ,Z. The ẼR2( i /2)G̃R are the com-
plex eigenvalues of the non-Hermitian effective Hamiltoni
Heff . The eigenfunctionsF̃R of Heff are biorthogonal. Both
the eigenvalues and eigenfunctions are energy depen
The eigenvalues give the energiesER5ẼR(E5ER) and
widths GR5G̃R(E5ER) of the resonancestates of the bil-
liard by solving the fixed-point equations. TheER andGR are
directly related to the poles of theS matrix. TheW̃R

c are the
~complex! coupling matrix elements between the wave fun
tions F̃R of the resonancestates and the channel wave fun
tions in the leads@by using the Lippmann-Schwinger-typ
relation between the wave functionsṼR of the resonance
states and the eigenfunctionsF̃R of the non-Hermitian effec-
tive Hamiltonian Heff ~Refs. 8, 28 and 29!#. They are
strongly energy dependent, butGR52p(c(WR

c )2 at E5ER

due to the unitarity of theS matrix @with (WR
c )25(W̃R

c )2(E
5ER)#. The expression~5! holds also in the strong couplin
limit, i.e., not only for isolated resonance states but also
overlapping ones.8,28 Formally, this is related to the fact tha
all values involved in Eq.~5! are characteristic of thereso-
nancestates that generically differ from the discrete states
the case of strong coupling between system and envi
ment.

A similar approach has been developed in Ref. 30,
without application to realistic systems. In Ref. 3, the expr
sion for theS matrix is given in terms of a Green functio
with a non-Hermitian effective Hamiltonian, and the com
plex poles are identified as eigenvalues of this operator.
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approximate expressions, obtained in this approach, ca
applied in the limit of weak coupling.

Although the expressionScc8
(2) , Eq. ~5!, formally has the

standard form, it contains all the reordering processes tak
place in the system at strong coupling, i.e., when the re
nance states overlap, including the influence of the chan
channel coupling. All these effects are expressed by the b

thogonality of the wave functionsF̃R and are involved in the

energy-dependent functionsW̃R
c , ẼR , and G̃R . The repre-

sentation of theS matrix as a sum of the contributions from
the individual resonance states with energy-independ
ER , GR , and WR

c is, generally, not justified. We calculat
the S matrix therefore by employing the full energy depe
dence of theW̃R

c , ẼR , and G̃R . At the fixed pointsE
5ER , the results coincide with those obtained from the c
responding pole term.

For isolatedresonances the widths of the states are m
smaller than the distance between them. In such a caseẼR

'ER
d , W̃R

c 'WR
c(d) , and the channels are not coupled. Th

means, theS matrix poles can be calculated with the help
the coupling matrix elementsWR

c(d) ~overlap integrals be-
tween the wave functionsFR

d of the discrete states and th
channel wave functionsun in the leads!, with the energiesER

d

of the discrete states of the~closed! billiard and GR
d

52p(c(WR
c(d))2. This approximation is justified for the de

scription ofS matrix poles lying near the real axis.31

For overlappingresonances~i.e. when the widths excee
the energetical distance between the resonances!, theẼR and
W̃R

c may differ strongly from theER
d andWR

c(d) , respectively,
due to reordering processes taking place in the billiard un
the influence of the coupling to the leads. For numeri
examples see Refs. 22–24. Due to these reordering
cesses, theS matrix cannot be approximated by using th
energy-independentER and WR

c as shown in a numerica

study.32 Instead, theẼR , G̃R and, above all, theW̃R
c in ~5!

are energy-dependent functions that characterize thereso-
nancestates and their coupling to the continuum. Moreov
in Ref. 33 the effective Hamiltonian for an open quantu
billiard with variable coupling strength to an attached lead
derived. Diagonalizing this effective Hamiltonian, numeric
studies are performed for billiards with isolated and overla
ping resonances. The results are in good agreement with
perimental data obtained from microwave resonators of
same shape.33 In particular, the phenomenon of resonan
trapping can clearly be seen in both the theoretical and
perimental results. These results confirm that Eq.~5! can be
used in the strong coupling regime.

Reordering processes may take place in open quan
systemsnot only between the states of the system whi
cause the wave functionsF̃R of the resonance states to b
different from the wave functionsFR

d of the discrete states
The strong coupling of some resonance states to the cha
wave functions may cause also changes in the channel w
functions themselves because they are coupled via the r
nance states. This coupling of the channel wave functions
the resonance states~channel-channel coupling! is in com-
2-3



s
at

n
e
x
th

n
fo

tri

nv
in
th
u-
io

on
ng

in

at
-

m

r o

um
to

ec
n
io

by

n
n

. To

ged
-
ic

re of

om-

the
uc-

NAZMITDINOV, PICHUGIN, ROTTER, AND SEBA PHYSICAL REVIEW B66, 085322 ~2002!
plete resemblance to the coupling of the resonance state
the channels. Both are caused by the same coupling m
elements between the resonance wave functions and
channel wave functions. For details see Ref. 8. Wave fu
tions of different channels may couple so strongly as to
fectively appear as a one-channel wave function and e
together with less coupled channel wave functions. Thus,
number of relevant channels may be effectively reduced
strong coupling between system and environment. For
merical examples on quantum billiards, see Ref. 24 and
nuclei see Ref. 26.

Since the sum of the diagonal matrix elements of a ma
is equal to the sum of the eigenvalues, we get8,28

(
R

G̃R52p(
Rc

~W̃R
c !252p(

Rc
~WR

c(d)!25(
R

GR
d , ~6!

where theGR
d characterize the coupling of the statesR to the

environment without taking into account any mixing~via the
continuum! with the other states of the system. Equation~6!
gives the total coupling strength between system and e
ronment. It is basic for all redistribution processes tak
place in the system under the influence of the coupling to
environment. This is confirmed in particular for redistrib
tions that happen in the quantum billiard when the posit
of the attached leads to the billiard is varied.24 In this case,

(
R

G̃R52p(
Rc

~W̃R
c !2'const ~7!

since theWR
c(d) are determined by an integral over the regi

of attachment32,33 and remain almost unchanged by varyi
the position of the attachment~if the number of states in the
cavity is not too small!. It may happen that, under certa
conditions,

(
R51

K

G̃R' (
R51

M

G̃R and (
R5K11

M

G̃R'0. ~8!

In such a case, the whole coupling strength is concentr
on K,M special states whileM -K states are almost decou
pled from the environment. This phenomenon, calledreso-
nance trapping,8 is crucial for the conductance of quantu
billiards with WGM.24 The value ofK may or may not be
related to the numberZ of open channels.8 For the WGM,K
is determined, in a certain energy interval, by the numbe
nodes along the~convex! boundary of the cavity leading to
K@1 in the one-channel case.24

For the analysis of transmission and reflection of quant
billiards with two leads attached to them, it is convenient
write theS matrix in the following manner:2

S Smm8 Smn

Snm Snn8
D[S r t 8

t r 8
D . ~9!

Here,m(n) denote the channels in lead 1~2!. The matricesr
and r 8 describe the reflection in the lead 1 and 2, resp
tively, while the matricest and t8 describe the transmissio
from lead 1 to lead 2 and vice versa. The total transmiss
and reflection probabilities for the modesm are
08532
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utmnu2 and Rm5 (
m851

Z

ur mm8u
2, ~10!

respectively. As shown by Landauer,2,4 the conductanceG is
proportional to the sum of the transmission probabilities,

G5(
m

Tm ~11!

in the units used by us~see above!. The fluctuations in the
transmission and reflection amplitudes can be analyzed
means of a Fourier transformation,

utmn~L !u25U E dktmn~k!e2 ikLU2

5U E dE

2AE
tmn~E!e2 iAELU2

.

~12!

The sum

P~L !5(
mn

utmn~L !u2 ~13!

is called the power spectrum.34 An analogous expression ca
be written down for the Fourier transform of the reflectio
amplitudes.

It should be noted that the power spectrum~13! can be
related to the autocorrelation function of the conductance
this purpose, we use the Fourier transform

P~L !5E dkC~k!e2 ikL, ~14!

where

C~k!5 K tmn* S k82
k

2D tmnS k81
k

2D L
k8

~15!

is the autocorrelation function of the conductance avera
over k8 ~or energy! which is studied in Refs. 6 and 7. Ac
cording to the semiclasical formalism of the ballist
transport6,7,10 the transmission amplitudetmn is

tmn~k!5(
q

aqeikLq, ~16!

where the sum is taken over the pathq with a lengthLq
between the entrance and exit leads. The detailed structu
the coefficientaq can be found in Refs. 7 and 10.

III. NUMERICAL RESULTS

A. Quantum mechanical and classical calculations

We study a stadium of Bunimovich type@linear lengthS
53p/(p11) and radiusR5S# in the ballistic regime with
different positions of the attached leads. The results are c
pared with those of a semicircle (R53) with an SIS and
leads attached to both ends of the convex boundary.

In the first case (B1) of the Bunimovich billiard, the leads
are attached to the middle of each convex boundary in
same direction so that the WGM are favored for the cond
tance, i.e., the coupling matrix elementsWR

c(d) of the WGM
2-4
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with the channel waves are large. This case is in full anal
to the SIS. In the second case (B2), the leads are attached
the middle of each linear boundary in opposite directions
that the BBM are favored for the conductance. In the th
case (B3), the leads are attached to the convex boundar
different directions in such a manner that neither WGM n
BBM are favored for the conductance. We compared the
sults with those of classical calculations for billiards with t
same geometry.

To find the poles of theSmatrix, we use the method of th
exterior complex scaling in combination with the finit
element method. For details see Ref. 22. The results of
calculations give us the valuesER2( i /2)GR5ẼR(E5ER)
2(i/2)G̃R(E5ER) ~in fact, approximate solutions of th
fixed-point equations, see Sec. II!. The conductance is calcu
lated in small energy steps with the full energy depende
of the S matrix by directly solving the Schro¨dinger equation
in a discretized space according to the method suggeste
Ref. 35. The essential ingredients are the conductance
mulas~10! and~11!, the relation of transmission coefficien
to theS matrix and the corresponding Green function, an
recursive calculation of the Green function. At the fix
pointsE5ER , the results coincide with those obtained fro
the complex scaling. At other energies, the interfering c
tributions of different resonance states can be obtained m
effectively without searching for the poles of theS matrix.

The Fourier analysis of the transmission and reflect
amplitudes provides us the power spectrumP(L) for one
open channel~one propagating mode,m5n51) and for two
open channels (m51,2, n51,2) in both leads according t
Eqs.~12! and ~13!.

In the classical calculations, we consider the motion o
free particle inside the billiard. The potential is assumed
be zero inside the billiard and the boundaries are mirrors
the motion of the particle along trajectories that are cal
lated from the laws of the geometric optics. Each traject
starts at some arbitrarily chosen initial point (x0 ,y0) of the
attached leads with an angleF0 that characterizes the direc
tion of the motion. We choose 100031000 initial conditions
to calculate the distribution~histogram! of the trajectories
that contribute to the transport. The classical conductanc
defined as the number of trajectories starting at one of
leads and escaping from the other one, divided by the t
number of trajectories (106). Trajectories with bounces at th
convex boundary only are calledtrajectories of WGM type
in the following. The number of such trajectories decrea
with increasing number of bounces, see, e.g., Fig. 3
Ref. 24.

B. Eigenvalue pictures

Figure 1 shows the results of numerical calculations
the four quantum billiards mentioned above. For the SIS
find, as in Ref. 24, bandsA, B, andC of overlapping reso-
nance states whose widths are large, while the widths o
the other states are small@Fig. 1~a!#. The short-lived states o
the bandsA, B, andC start at the opening of thresholds
E5p2, 4p2, 9p2, respectively. At energiesE.4p2, we
have channel wave functions that are effectively coupled
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the one-channel mode. They exist besides the less cou
channel wave functions.24 In an analogous manner, the cha
nel wave functions may be effectively coupled to one or t
modes beyondE59p2.

The eigenvalue picture Fig. 1~a! is the result of resonanc
trapping occurring according to Eq.~8! and of channel-
channel coupling, see Sec. II. The states with large wid
are localized along the convex boundary of the cavity@Fig.
1~b! and Ref. 24#. They are modes of the WGM type. Th
states of the bandA have a strong overlap with effectivel
one open channel in both leads at all energies. The state
the second bandB are related to effectively two open chan
nels in each lead while the states of the bandC are related to
three channels. At higher energies, the states of the diffe
bands interact with one another, and the structure of the r
nance wave functions represents a mixture of the state
different bands.

The results for the billiardB1 @Figs. 1~c,d!# are very simi-
lar to those for the SIS. The difference in the widths of t
short-lived and long-lived states is, however, smaller and
wave functions of theB1 are less localized than those of th
SIS. This is caused by modes of the WGM type localiz
along the lower boundary of theB1. Such modes are couple
weakly to the attached leads.

The attaching of the leads at the linear boundary@B2;
Figs. 1~e,f!# gives rise to large widths for states of the BB
type. The differences between the WGM and BBM consis
the following.

The WGM are localized along the boundary of the cav
while the BBM are localized inside the billiard along th
direct connection between the two attached leads.

The number of the BBM as well as the degree of th
overlapping in the complex plane are smaller than the co
sponding values for the WGM in the same cavity.

The BBM do trap the other states less than the WGM
i.e., some other states~in particular those of the WGM type!
still survive in theB2 with small but nonzero widths. Thes
states take, for example, altogether about 17% of the t
sumSRG̃R of the widths forp2,E,4p2.

In the B3 billiard @Figs. 1~g,h!# the coupling matrix ele-
ments of the WGM are large but with different phase
relation to the two leads. As in the two foregoing cases,
poles with the largest widths are connected with one ano
for illustration. The wave function of one of the states
shown in Fig. 1~h! which is, however, less representative f
a certain group of states than in the foregoing cases@Figs.
1~b,d,f!#.

C. Power spectra and classical trajectories

In Fig. 2, we present the~energy-dependent! conductance
G calculated quantum mechanically and the mean valueḠ of
the conductance. Furthermore, we show in this figure,
corresponding power spectraP(L) and the histograms o
trajectories calculated classically for transmission as a fu
tion of the lengthL of the path for the four different types o
billiards. The results display a remarkable good agreem
between the quantum mechanical results of the Fou
2-5
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FIG. 1. The poles of theSma-
trix and a representative pictur
uFRu2 of the wave functions of the
short-lived states~belonging to the
groupA) for the SIS~a, b!, B1 ~c,
d!, B2 ~e, f! and B3 ~g, h!. The
poles of theS matrix ~denoted by
stars! far from the real axis are
connected by lines for guiding the
eyes. The energies and widths a
in units of the width of the at-
tached waveguide.
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analysis and the classical results in spite of the small valu
the wave vectork of the propagating waves.

In the SIS andB1 with dominant WGM, the largest pea
in theP(L) spectrum can be identified with the length of t
path of the WGM trajectories calculated classically. In co
trast to the SIS, the classical trajectories of theB1 with small
L are split into two parts: one bounce at the convex bound
and to two bounces, respectively. The number of paths w
two bounces is much smaller than that with one bounce
full agreement with the expectation. Typical pictures of the
trajectories are shown near the corresponding peaks in
histogram Fig. 2~f!. In both cases, SIS andB1, smaller peaks
can be identified with other trajectories that are, however
minor importance for the transport. The energy-depend
conductivityG @especially of the SIS, Fig. 2~a!# reflects the
strong channel-channel coupling between the two chan
modes atE.4p2, which is responsible for the high condu
tance also at higher energies.
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In theB2 billiard, two peaks of comparable height appe
in the P(L) spectrum@Fig. 2~h!#. A representative wave
function of the states belonging to the first peak is display
in Fig. 1~f! while another one for the second peak is sho
in Fig. 3. In the first case, channel-channel coupling crea
effectively one channel while there are effectively two cha
nels in the second case. The corresponding lengthsL differ
by about a factor 2. This is in agreement with the differenc
of the paths calculated classically for the two highest pe
in Fig. 2~i! without any bouncing and with two bouncings
the convex boundary of the cavity, respectively. The cond
tivity of the B2 billiard @Fig. 2~g!# is determined only partly
by channel-channel coupling.

The differences between the BBM case (B2) and the two
WGM cases~SIS andB1) consist in the following.

The P(L) spectrum is dominated by one peak at smalL
in the WGM cases, while there are two peaks of less he
in the BBM case.
2-6
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FIG. 2. The conductanceG(E)5(m,nutmnu2 ~calculated quantum mechanically!, the corresponding power spectrumP(L), and the
histogram of the~classically calculated! trajectories for conductance as a function of the lengthL for the SIS~a, b, c!, B1 ~d, e, f!, B2 ~g,

h, i!, andB3 ~j, k, l!. In ~a, d, g, j!, Ḡ(1) andḠ(2) denote the mean value of the conductance in the energy intervalsp2,E,4p2 and
4p2,E,9p2, respectively. In~b, e, h, k!, the total power spectrumPtot(L)5(m,nutmn(L)u2 of the transmission amplitudes~thick lines! in
the energy intervalp2,E,9p2 and the power spectrum of the transmission amplitudesut11(L)u2 in the energy regionp2,E,4p2 with
two open channels in each lead~dash-dotted lines! are shown. Typical classical trajectories are displayed near the corresponding bins~c,
f, i, l !. Note the different scales ofP(L) in ~b, e, h, k!.
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The ut11(L)u2 spectra~defined in the energy rangep2

,E,4p2) are dominated in all three cases by one peak
smallL the height of which is, however, smaller in the BB
case than in the WGM cases.

Ḡ(1) andḠ(2) are smaller in the BBM case than in th
two WGM cases.

The results for theB3 billiard do not show any pro-
nounced peaks in the power spectrum at short lengthsL. The
mean conductivity is close to the classical value in acc
dance with the prediction of random matrix theory.2
08532
t
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In Fig. 4, we present the power spectra of the reflect
amplitudes for the four billiards studied above. Additional
we show in each case the wave function of a state lying
the energy where the conductance is minimal. In contras
the power spectraP(L) of the conductance, the power spe
tra of the reflection show more pronounced peaks for theB2
and B3 billiards than for the SIS andB1. They appear at
comparably largeL. In any case, the peaks in the pow
spectra of the conductance and reflection are at diffe
lengthsL for every cavity. This holds especially for the firs
2-7
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NAZMITDINOV, PICHUGIN, ROTTER, AND SEBA PHYSICAL REVIEW B66, 085322 ~2002!
peak of the power spectrum for the reflection in theB2,
which lies between the two BBM peaks of the power sp
trum for the transmission.

In Table I, the results obtained for the conductivity fro
the quantum mechanical calculations are compared w
those from the classical calculations. It is remarkable that
conductivity is determined, to a great deal, by trajectories
the WGM type in the classical calculations as well. Th
contribution is about 45% and 28% of trajectories for the S
and theB1, respectively. It is smaller in the latter case sin
the boundary of theB1 is not convex everywhere in contra
to that of the SIS. In the quantum mechanical calculations
the SIS andB1, the conductivity is maximum at low energ
with one open channel. It decreases with increasing ene

The small conductivity of theB2 at low energy~Table I,
one channel! is rather unexpected at first sight, since t
classical path corresponding to the BBM trajectories is
direct one. Their contribution is, in the classical calculatio
however, only about 7% of the total number of the transm
ted trajectories, whereas the WGM trajectories contrib
about 11%. That means the trajectories occupy, to a la
part, the available inner space of the billiard, resulting in
reduction of the conductivity. This tendency can be seen a
in the quantum mechanical calculations, see Figs. 1~e! and 3.

Further, we calculated quantum mechanically theutnm̄u2

for five open channels in each lead (n,m51, . . . ,5) in the
energy range (5p)2,E,(6p)2 for the B1 billiard ~Table
II !, the corresponding Fourier transforms of theutnmu2 ~Fig.
5! and, for illustration, the number of classical trajector
traveling through the billiard~Fig. 6!. In the classical calcu-
lations, we included only trajectories with lengths smal
than 20 according to the results shown in Fig. 2~f!. The angle
F is determined by the trajectory going into the billia
(F in) or leaving it (Fout). Using the quantum mechanica
correspondence between energy and angleF
5arctan@pn/AE2(pn)2#, we divide theuF inu2uFoutu plane
into 535 blocks corresponding to the transmissionsutnmu2.

FIG. 3. A representative pictureuFRu2 for the wave functions of
the states that belong to the second peak ofP(L) at L'16 for the
B2.
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The angleF is measured with respect to the normal of t
attachment line between lead and billiard. The trajector
that enter and leave the cavity at an angle aroundF'0 can
be identified with trajectories of the WGM type. The da
straight line can be associated with trajectories that bou
once off the linear boundary of the billiard (F'p/4). Most
trajectories with large angles are longer than 20 and do
appear in Fig. 6 since they are not taken into account in
classical calculations.

IV. DISCUSSION OF THE RESULTS

Comparing the results for the different billiards~per-
formed for the ballistic regime!, we see the strong influenc
of the lead orientation onto the resonance wave functions
the conductance or reflection. The results can be unders
on the basis of Eq.~5! that involves the coupling coefficient
W̃R

c between theresonancestates and the channel wave fun
tions in the leads. It follows as listed below.

The most effective attachment of the leads for a selec
of special modes and a high conductance is the symmet

one withW̃R
c 'W̃R

c8 .
The destructive interferences in the transmission am

tudes are reduced when the number of statesandchannels is
effectively reduced.

The first condition is fulfilled for the SIS and theB1 with
selection of the WGM as well as for theB2 with selection of
the BBM. It is not fulfilled for the B3 whereW̃R

c is large for

the WGM along the upper boundary butW̃R
c8 is small, and

vice versa for the WGM along the lower boundary. Althou
the number of WGM is more or less the same in theB3 as in
the B1, the conductance is very different in the two case

The second condition is fulfilled to the maximum by res
nance trapping. The differences in the coupling coefficie
W̃R

c between theresonancestatesR and the wave functions
of the channelsc are larger than those in the original co
pling coefficientsWR

c(d) between the discrete states and t

channels. A few of theW̃R
c may reach the maximum possib

value determined by Eq.~6! while those of the remaining
ones approach zero, meaning that they are almost decou
from the channels. Due to the large coupling coefficie
between the special states and the channel wave funct
the channels are coupled via these states. As a consequ
not only the number of states is effectively reduced,but also
the number of channels is effectively scaled down. In t
manner, a few special quantum mechanical states may
selected by the attachment of the leads to the cavity wh
number is, in any case, smaller than the total number
states. Further, the special states are coupled mainly to s
channels whose number is effectively smaller than~or at
most equal to! the total number of open channels~for illus-
tration see Fig. 1 and Ref. 24 for quantum billiards and als26

for nuclei!. Thus, the interferences between the transmiss
amplitudes are reduced by the phenomenon of resona
trapping.

Another illustration for the effective reduction of th
number of channels, to which the special states are coup
2-8
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FIG. 4. The power spectrum
Ptot(L)5(m,nur mn(L)u2 for the
reflection amplitudes~thick lines!
in the energy region p2,E
,9p2 andur 11(L)u2 in the energy
region p2,E,4p2 with two
open channels in each lead~dash-
dotted lines! for the SIS ~a!, B1
~c!, B2 ~e!, andB3 ~g!. The wave
function uFRu2 of a state, lying at
an energy where the conductanc
is small, for the SIS~b!, B1 ~d!,
B2 ~f!, andB3 ~h!.
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is shown in Fig. 6 where the quantum mechanical transm
sion matrix elements, calculated with account of five ch
nels ~modes! in each lead, are mapped onto the classi
transmission matrix, calculated with account of paths sho
than 20. The classical transmission through short pathsL
<20) corresponds to the quantum mechanical transmis
through the special states with at most four~out of five!

TABLE I. The conductanceG/Z for different billiards with dif-
ferent numberZ of channels.

Billiard type 1 channel 2 channels 3 channels Classic

SIS 0.87 0.75 0.74 0.66
B1 0.74 0.73 0.65 0.63
B2 0.46 0.56 0.56 0.57
B3 0.49 0.46 0.56 0.53
08532
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channels. In the energy region between 25p2 and 36p2 there
are, in the quantum mechanical calculations with five ch
nels, however, contributions also from other states w
longer paths to the transmission~Fig. 5!. While the Fourier
transforms ofutmnu2 with mn511, 12, 14, 33, 34, and 44
have a well-expressed peak aroundL'14 to 15, this is not so
in the other cases. The Fourier transforms withmn522, 23
are strongly peaked aroundL530 while those withmn
513, 15, 24, 25, 35, and 45 are distributed over differe
L.15 and that withmn555 even overL.27. As can be
seen from these numbers, the quantum mechanical cont
tions with L,20 to the conductance are restricted to fo
channels in each lead, indeed. That is in full accordance
the classical picture. The increasing contributions to the c
ductance from states with largerL weaken, however, the
channel-channel coupling, and the effective number of ch
nels approaches the numberZ of independent channels. Th

l
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results of classical calculations without the restriction
smallL ~not shown! correspond to this result of the quantu
mechanical studies.

According to the numerical results forutnm̄u2 with five
channels in each lead~Table II!, the contributions to the con
ductance from theutmnu2 with a single peak aroundL'14 to
15 are mostly larger than those from the otherutmnu2. Nev-
ertheless, the contributions from states with pathsL.20
have to be taken into account. In all the cavities conside
by us, the conductance approaches the classical value
increasing number of channels~Table I!. For theB1 with

TABLE II. The values utnmu2 for the B1 billiard with n,m
51, . . . ,5.

n m utnm̄u2

1 1 0.45
1 2 0.10
1 3 0.05
1 4 0.06
1 5 0.10
2 2 0.18
2 3 0.09
2 4 0.17
2 5 0.10
3 3 0.31
3 4 0.14
3 5 0.08
4 4 0.31
4 5 0.07
5 5 0.16
08532
d
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five channels, we obtainG/Z50.66.
According to Eqs.~6! and ~7!, the coupling strength be

tween cavity and lead is finite so that the widths of the s
cial states can reach, by resonance trapping, a maximum
sible value only. By this, the conductivity is restricted
value also. In some cases~WGM only along the upper
boundary as in the SIS!, the conductivity is enhanced, in
deed, almost up to the maximum possible value whereas
is not so in the other cases. Neither the BBM modes in

FIG. 6. The transition matrix calculated classically for theB1 as
a function of the angle of the ingoing and outgoing waves at wh
the classical trajectories pass the attachment of the leads. The le
of the trajectories is restricted toL<20. The transmission coeffi
cientstnm (n,m51, . . . ,5) of thequantum mechanical calculation
for five modes in each lead~Table II! can be mapped onto the figur
as indicated.
h
FIG. 5. The power spectrap(L)[utnm(L)u2 for the B1 billiard in the energy region 25p2,E,36p2 with five open channels in eac
lead. In the figure, only those power spectra are shown for which the height of at least one peak is larger than 0.5.
2-10
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CONDUCTANCE OF OPEN QUANTUM BILLIARDS AND . . . PHYSICAL REVIEW B66, 085322 ~2002!
B2 nor the WGM modes in theB1 are able to trap com
pletely the remaining states that include special states of
WGM type ~along the lower boundary in theB1 and along
the whole boundary in theB2). The maximum value of the
conductance can therefore not be reached in these c
While the special states determine the average propertie
observables such as conductance and reflection, the tra
states are responsible for the fluctuations around the m
values. This result is independent of the existence of an
ternal scatterer inside the cavity. More important than
internal scatterer is the convex lower boundary of theB1 in
contrast to the linear lower boundary of the SIS.

Characteristic of special states of a certain type is the r
M spec/M ~whereM specis the number of special states andM
is the total number of states in a certain energy interval! as
well as the dependence of the coupling matrix eleme
WR

c(d) on the parameter varied. In the cases considered in
present paper, not only the number of WGM is larger th
that of BBM, but the WGM overlap stronger and are mo
stable against small shifts of the leads than the BBM~the last
point is studied in Ref. 24 for the SIS!. While the WGM are
able to trap almost all other states under conditions favora
for them, the BBM do never trap the WGM complete
@compare Fig. 1~c! with Fig. 1~e! and see Ref. 24 for the
SIS#. These differences are related to the fact that the WG
are more strongly localized than the BBM. While the WG
are localized along the~convex! boundary of the system, th
BBM are localized inside the system near the shortest c
nection between the two leads. Deviations from the shor
distance appear under the influence of the area of the billi

In all cases considered by us, the special states~WGM
and BBM! accumulate, by resonance trapping, the major p
of the coupling strength between system and lead~sum of
the widths ofall states!. The close correspondence betwe
the quantum mechanical and classical calculations is rela
at least to a great deal, to the existence of these spe
states. Figure 2 shows the correspondence in relation to
lengthsL.

We note that in terms of the semiclassical transmiss
amplitudes, the spectrum oftmn(L), Eq. ~14!, is peaked at
the lengthsLq of the WGM trajectories connecting the lea
due to the rapidly oscillating phase factor in Eq.~16!.

Let us now consider the correspondence in relation to
lifetimes ~widths!. To this aim, we focus on theB1 and the
B2 billiards in the energy interval between the first (p2) and
second (4p2) thresholds where the WGM and BBM stat
are well separated from the other resonance states. In thB1
billiard, the special states consist of eleven WGM. The av
age width of these eleven states isḠWGM'6.5. Their contri-
bution to the total coupling strength between system
environment,(RG̃R576.6, is 93%. In theB2 billiard, five
special states of BBM type accumulate 83% of the total c
pling strength. Here,ḠBBM'12.6 and(RG̃R576.1.

To get an estimation for the mean width^G& of the reso-
nance states in a quantum billiard~without taking into ac-
count the mixing of the resonance states via the continu!
we use the expression34
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r5M /DE5
A

4p

2meff

\2
5

A

4p
~17!

for the level density~in units\2/2meff51, see Sec. II!. Here,
DE is the energy interval considered,M is the number of
states, andA is the area of the quantum billiard. The tot
number of resonance states between the first and se
threshold (p2 and 4p2) is M53p2A/(4p)'67 for both
billiards, since they have the same area. Also the aver
coupling strength is approximately the same for the two b
liards, see Eqs.~6! and ~7!. The estimation yields

^G&5(
R

GR
d /M'(

R
G̃R /M'1.1. ~18!

It is interesting to compare the quantum mechanical value36

^G&5
1

t
ḠS5

1

tS
~19!

for the mean lifetimes with those obtained from the classi
calculations for the time of flight, whereS stands for WGM
and BBM, respectively. A rough estimation of the flight tim
for a particle along the WGM or BBM trajectories givestcl

5Lcl/v5Lcl/kn5Lcl/AE2n2p2 and therefore

^Gcl&5
AE2n2p2

Lcl . ~20!

We get^GWGM
cl &'0.5 for the WGM trajectories withLWGM

cl

53p12 and ^GBBM
cl &'0.8 for the BBM trajectories with

LBBM
cl 56p/(p11)12 and maximum energy. These valu

are of the same order of magnitude as the^G& calculated
quantum mechanically. The valuesḠS of the special states
however, are much larger due to resonance trapping.
ḠBBM /ḠWGM'^GBBM

cl &/^GWGM
cl &5LWGM

cl /LBBM
cl . The relation

ḠS}
1

LS
cl

}^GS
cl& ~21!

holds in all our calculations, see, e.g., Fig. 2~e! in Ref. 24,
while ^G&, Eq. ~18!, is related to the area of the cavity and
~almost! independent of the manner the leads are attache
it. That means,̂G& is not related to any specialL in contrast
to ḠS . The shortened lifetimestS are an expression for th
collective properties of the special states that result from
quantum mechanical phenomenon of resonance trapp
They allow, under certain conditions, an enhancement of
conductance, as discussed above.

All the results obtained in the present study show
close correspondence between the classical and the qua
mechanical characteristics for the transport through billia
of different shape in the strong-coupling regime. This cor
spondence is achieved by the dynamics of open quan
systems which is determined by the shape of the cavity
the position of the attachment of the leads to it. The dyna
ics can be understood on the basis of the resonance rea
part~5! of theSmatrix that involves the characteristics of th
resonancestates, which are determined not only by the wa
2-11
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NAZMITDINOV, PICHUGIN, ROTTER, AND SEBA PHYSICAL REVIEW B66, 085322 ~2002!
functions of the states of the closed system but also by
influence of the environment onto the properties of the s
tem @including the phenomenon of resonance trapping f
lowing from Eqs.~6! and ~7!#.

V. CONCLUSIONS

For the Bunimovich stadium with two attached leads w
have calculated energies, wave functions, and coupling c
ficients to the environment~widths!. As a result, all these
values may change strongly by varying the position of t
attached leads. The changes can be seen in observables
as conductance or reflection.

Our study shows that special states exist in open quan
billiards. These states have individual~nongeneric! proper-
ties characteristic of the geometry of the system. They h
large widths~small lifetimes! due to trapping other state
most of which have lost their individual properties they h
in the closed cavity, see, e.g., Ref. 22. The wave functions
the special states are localized while those of the trap
states are distributed over the whole cavity. The special st
determine, as a rule, the mean properties of observa
~such as the conductance! while the trapped states are re
sponsible for the fluctuations around the mean values. T
contribution of special states to physically relevant valu
can be enhanced by the attachment of leads to the billiar
such a manner that the coupling of these states to the cha
wave functions is favored. These results are in qualitat
agreement with experimental data obtained from quant
dots with different lead alignments.15 Examples of special
states are, above all, the WGM studied in this paper. T
BBM are less stable.

The most interesting result of our study is the relati
between classical and quantum mechanical properties of
open microwave cavities at low energies. The special sta
have short lifetimes, corresponding to trajectories with sh
path length. These states cause the nonrandomness o
system at low energy where the number of channels is sm
They are characteristic of the system, and the classi
quantum correspondence does~almost! not depend on the
position of the attached leads.

The short-lived special states are localized around
S

et
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classical paths with very few bounces at the boundary
are coupled strongly to a small number of effective chann
The lifetimes of these states depend on the geometry of
billiard: they are proportional to the lengths of the classi
trajectories. In contrast to this, the long-lived trapped sta
are delocalized~i.e., distributed over more or less the who
area of the billiard! and coupled very weakly toall channels.
It should be underlined that the coherent short-lived and
coherent long-lived resonance states exist always togeth
the same energy. Only the long-lived trapped states can c
the randomness of the system.

We conclude the following. The classical properties
dynamical systems are manifest in quantum mechan
characteristics of open systems even at low energy where
level density and the number of open channels are small.
classical properties are related, above all, to the propertie
special states that exist in the closed system and whose
cial features may be strengthened by coupling the system
an environment by an appropriate position of the leads. T
enhancement is caused by the phenomenon of reson
trapping. It is accompanied~i! by the formation of long-lived
states in the same energy region which contribute inco
ently to the observable values and~ii ! by a reduction of the
effective number of channels for the decay of the spe
states. Due to the destructive interferences between the s
lived special states and the long-lived trapped states, an
hancement~reduction! of observable values appears only
low-level density. This result, discussed in the present pa
with the example of the transmission~reflection! through
quantum billiards, is expected to be true also for other
servables and, above all, for real quantum systems suc
quantum dots.
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