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Multiple bound states in scissor-shaped waveguides
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We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an
open geometry given by two straight leads of the same width which cross at an angleu. Such a four-terminal
junction with a tunableu can realized experimentally if a right-angle structure is filled by a ferrite. It is known
that foru590° there is one proper bound state and one eigenvalue embedded in the continuum. We show that
the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increas-
ing as functions ofu in the interval (0,90°). Moreover, states which are sufficiently strongly bound exist in
pairs with a small energy difference and opposite parities. Finally, we discuss how the bound states transform
with increasingu into quasibound states with a complex wave vector.
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I. INTRODUCTION

The question of the possible existence of modes trap
in open two-dimensional systems has been a classic in
theory of waveguides; trapped modes due to particu
boundary conditions were studied already half a cent
ago.1 However, only much later was it realized that the i
troduction of bends and crossing into waveguides gives
generally to confined states, or bound states, which exist
low the cutoff frequency for the waveguide.2–16 The exis-
tence of such states has both theoretical significance and
plications for possible applications. They have be
subsequently discussed in many papers; in addition to th
mentioned above we refer the reader to Ref. 17 and the
liography therein.

In this paper we consider a system of two straig
waveguides of the same widthd which cross at a nonzer
angleu. The right-angle case was one of the first examp
where the binding was studied. Schult, Ravenhall, and Wy7

showed the existence of two bound states. One of them
true bound state at energy 0.66(p/d)2 in natural units, while
the other one at 3.72(p/d)2 is embedded into the continuum
and does not decay due to the symmetry. The latter co
sponds to the single bound state in an L-shaped tube of w
d/2.5 Our aim is to show how the spectrum of such a jun
tion, which we will call for the sake of brevity ‘‘scissors’’ in
the following, changes as the angleu varies over the interva
(0,90°).

We will show that as we go further from the cross sy
metry of the right-angle structure, new bound states eme
from the continuum. In strongly skewed junctions corr
sponding to a smallu there are many of them. The mech
nism responsible for their existence is the same as for
bound states in sharply broken tubes studied theoretic
and experimentally in Refs. 10 and 12, namely, a long par
the junction where there transverse contribution to the ene
is substantially lower than (p/d)2. In the present case, how
ever, the system has a mirror symmetry with respect to
axis of the complement angle 180°-u and the bound state
0163-1829/2002/66~15!/155109~7!/$20.00 66 1551
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exist in pairs corresponding to different parity. We will sho
that as the angleu diminishes and the states become stron
bound, the energy gap between the even and odd membe
the pair vanishes exponentially fast. We also study the
havior around the critical valuesuc where the bound state
emerge from the continuum. Our numerical analysis sho
that the binding energy of the weakly coupled states beha
as 'p22g(uc2u)2 for u slightly below uc ; above this
value we have instead a quasibound state.

II. BOUND STATES AND RESONANCES

First we review some properties of the bound states
scissor systems which follow from general principles such
their symmetries and dependence on the geometry.
methods one can employ to this aim are rather standard
explained in detail in classical textbooks,18,19 so we describe
them only very briefly. If a system has a mirror symmet
there is a natural decomposition of the Hamiltonian into ev
and odd parts which makes it possible to consider one-ha
the structure with the Neuman or Dirichlet condition, respe
tively, at the symmetry axis. Next there is the Dirichle
Neumann bracketing which in combination with the min
max principle says that thej th eigenvalue below the bottom
of the continuum can be estimated from above~below! by
the j th eigenvalue of the same operator with an additio
Dirichlet ~Neumann! condition. This is useful if we are able
to place an additional condition in such a way that the o
tained system is solvable. Recall the observation of Avis
et al.10 that a sharply broken tube can accommodate in
bend a rectangular box wider than the tube itself and lo
enough; from here it follows that the number of bound sta
in such a channel is large for bending angles close to 18

In our present case the problem has two mirror symm
tries with respect to the axis of the angleu which we call the
scissor axis and with respect to the axis of the larger an
180°-u which we call the second axis. These symmetr
©2002 The American Physical Society09-1
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allow us to study thus one-half~to which the trick of Ref. 10
can be applied! or even one-quarter of the scissor. In t
latter case the angle dependence of eigenvalues can be
ied by perturbation theory using a scaling transformation
the longitudinal variable.19 The described consideration
yield the following conclusions.

~i! Every bound state is even with respect to the scis
axis.

~ii ! With respect to the second axis the bound states
have either parity which is alternating if the bound states
arranged according to their energies.

~iii ! As u becomes smaller new bound states emerge f
the continuum. The numberN of bound states satisfies th
inequality N>2cp21(90°/u) with c5(12222/3)3/2

'0.225. While it is not good aroundu590°, where we
know that N51 from Ref. 7, it is asymptotically exact a
u→0,

~iv! All the bound-state energies are monotonously
creasing functions ofu.

The angle dependence of the bound-state energies ha
ferent regimes. In the weak-coupling regime when the s
sors are closing and just passed the critical angleuc at which
a new bound state appeared, our numerical analysis sh
that the binding energy of the weakly coupled states beha
as 'p22g(uc2u)2 with some constantg which depends
on the particular state. On the other hand, strongly bo
states corresponding to a smallu are in the leading orde
determined by the one-dimensional potential well given
the lowest transverse eigenvalue.20 The second axis deter
mining the parity of the solution is then deep in th
classically forbidden region, so we can conclude that
following.

~v! As u becomes smaller the bound states group i
pairs with opposite parities and the energy gap between t
is exponentially small asu→0.

After these general results let us pass to the numer
solution. We use three different methods. The most comm
among them is the boundary integral method.21 In combina-
tion with the above general results, it provides rather co
plete information about the discrete spectrum.

On the other hand, the boundary integral method tells
nothing about the scattering problem in the scissor struct
We are interested in particular in the scattering resonan
associated with quasibound states, which are characte
by complex values of energy at which the analytically co
tinued resolvent has a pole singularity. A suitable method
treat this problem is the exterior complex scaling. T
method was suggested in the seminal paper in Ref. 22
has developed into an efficient computational tool—see R
23 and references therein. The use of exterior complex s
ing for waveguide structures was first proposed in Ref.
here we employ it in the form presented in Ref. 25. Befo
the proper scaling we pass to right-angle scissors by me
of the coordinate change

x85x sinu2y cosu,

y85y, ~1!
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which takes the Hamiltonian to a unitarily equivalent ope
tor acting as

ĤC5S 2
]2

]x82
2

]2

]y82
12 cosu

]2

]x8]y8
D C. ~2!

Now we apply the scaling transformation to the longitudin
variable in the structure arms which leaves the central a
unchanged,x5g(X) and y5g(Y), which yields the scaled
Hamiltonian

Ĥ52¹F S c11~X,Y! c12~X,Y!

c21~X,Y! c22~X,Y!
D¹G1U~X,Y!, ~3!

with

c11~X,Y!5
1

g82~X!
, c12~X,Y!52

cosu

g8~X!g8~Y!
,

c21~X,Y!52
cosu

g8~X!g8~Y!
, c12~X,Y!5

1

g82~Y!
,

and

U~X,Y!5
2g8~X!g-~X!25g92~X!

4g8~X!4

1
2g8~Y!g-~Y!25g92~Y!

4g8~Y!4

1
g9~X!g9~Y!

4g82~X!g82~Y!
2 cosu.

The functiong(x) can be chosen, e.g., as

g~x!5H x if uxu<x0 ,

a f ~x! if uxu.x0 ,

with x0 larger than the channel half-width and the interpol
ing function f (x) such thatf (x)5x for uxu.2x0, the func-
tion g(x) is 3 times differentiable, and the inverse mapg21

exists. As long as the parametera is real, the above trans
formation is a simple coordinate change which does
modify the spectrum. However, ifa assumes complex val
ues, we observe a different behavior in the discrete and c
tinuous part typical in such situations18: each branch of the
continuous spectrum of the operator~3! is rotated into the
complex plane, giving

øn51
` $~np!21a22^0,̀ !%

for d51. If Im a.0, the rotated branches point to the low
half-plane and reveal parts of other sheets of the Riem
surface of energy and we are able to see the resonance
as complex eigenvalues of the transformed operator; the
responding eigenfunctions are after the transformation
caying at large distances, instead of the original grow
oscillations typical for Gamow functions.
9-2
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Finally, the third method is based on application of sm
time-periodic perturbations. The bound states with energ
below the propagation subband (Eb,E05p2) do not par-
ticipate in stationary transmission. However, it is possible
mix the bound stateub& with propagating stateuk& via a
time-periodic perturbation

V~ t !5V0cos~vt ! ~4!

provided that the matrix elements of the perturbati
^buVuk&Þ0. Such a possibility was demonstrated for the
electron transmission in a four-terminal Hall junction influ
enced by a radiation field.15,26 Later the mixing of bound
states with propagating modes was also realized in a mi
wave transmission.16 In analogy with Ref. 27 we use here th
time-periodic perturbation~4! as a probing instrument to find
the bound-state energy by resonant features in the trans
sion probability.

III. NUMERICAL RESULTS

Let us show results of the numerical analysis based on
methods described above. First we plot the bound-state
ergies as functions of the scissor angleu. The results of
complex scale method are presented in Fig. 1 by points.

The results of the boundary integral method are shown
Fig. 1 by circles. For the limitu→0 the energies of bound
states are derived in Ref. 13 and have the following form

Enm'
p2

4
@n21~2n21m2/4!u2/31•••#, ~5!

where the quantum numbersn,m51,2,3, . . . , of which, of
course, onlyn51 gives rise to bound states. The factor 1
in Eq. ~5! takes into account that the width of an inscribe

FIG. 1. Bound-state energies for scissors structure as a func
of the interior angleu. The complex scaling method data are show
by points. The boundary integral method data are shown by circ
The asymptotic formulas~5! with corresponding quantum number
m51,2,3 are given by thin solid lines. Insets above show a blow
of asymptotic behavior of the bound-state energies in the vicinity
bottom of propagation bandp2.
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rectangle can approach twice the single channel width
small u as in the case of broken waveguide studied in Re
12 and 13. The upper insets show a blowup of the asympt
behavior of the energies in the vicinity of the continuu
threshold,E05p2. For all energies of the bound states t
asymptotics arep22g(uc2u)2, where g is a state-
dependent constant.

It was discussed above that as the angleu diminishes and
the states become strongly bound, the energy gap betw
the even and odd members of the pair vanishes exponent
fast. Indeed, one can see in Fig. 1 that the second bound-
energy approaches the first one, the fourth bound-state
ergy approaches the third one, and so on. In Figs. 2~a! and
2~b! the first ~even-even! and the second~odd-even! bound
states are shown. The eigenfunctions resemble similar q
tum mechanical systems with a double-well potential29 in
which an energy distance between the first and second
ergy levels becomes exponentially small with the growth
the potential barrier between the wells. Figures 2~c! and 2~d!
demonstrate the next pair of the bound states in the sci
structure.

With the change of parameters a bound state often tra
forms into a quasibound state which is manifested as an r
nant dip or peak in transmission through the structure—
an example similar to the present one see Ref. 28. As one
see from Fig. 3 the numerically computed transmiss
through the scissor’s structure does not show any reso
features foru.uc'71.5°. We have also used the tim
periodic perturbation method to search for the quasibo
states aboveuc . The results of the computation in the vicin
ity of critical angleuc are shown in Fig. 4.

One can see there that foru,uc there is a clear resonanc
effect revealed by mixing the propagating mode with t
bound state by the time-periodic perturbation. On the ot
hand, foru.uc these resonant features are vanishing and
transmission probability decays with increasing angleu. The
small wiggle around the value 9.8704 is an artifact of t
computation which diminishes with the decrease ofV0.

Moreover, asu approachesuc the transmission probabil
ity T(E) slope with respect to the energyE is increasing in
the vicinity of E-p2. In the limit u→uc the derivative
dT/dE diverges. If one plots the valuesE-p2 at which the
transmission reaches one-half~shown by circles in Fig. 3!
versus the angle of scissor waveguide, we obtain the rem

on

s.

p
f

FIG. 2. The first two even-even and odd-even bound states
scissors structure foru530°.
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able curve shown in Fig. 5. We see that thisE-p2 vanishes
exactly at the critical angles where new bound states em
from the continuum.

IV. FERRITE FILLED MICROWAVE WAVEGUIDES
AS A WAY TO VARY THE ANGLE OF THE SCISSORS

After analyzing the scissor spectrum, let us discuss h
such a structure can be realized experimentally as a mi

FIG. 3. The probability of transmission through the sciss
structure as function of the eigenvalueE5lk2 of the Helmholz
equation~16!. The probability approaches zero forE→E05p2.
The circles show for whichE the transmission probability equa
one-half.

FIG. 4. Evolution of resonant features for the transmiss
through the scissor structure found by mixing the propagation s
with the bound state via the time-periodic perturbation~4! as the
angle of the scissoru increases. The angle dependence is an ex
continuation of the bound-state asymptotics shown in the inse
Fig. 1 for u→uc20. For the angles aboveuc resonant features ar
missing. The dashed vertical line shows the edge of the propaga
band,E05p2.
15510
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wave device. It is no problem, of course, to build cross
waveguides in the ways explained in Ref. 17. However,
such a setting it is not easy to vary the geometry conti
ously. Our point here that this goal can be achieved wit
structure of a fixed angle if the latter is filled by a ferrite wi
an axial magnetic anisotropy and an external magnetic fi
is applied. We will show that this leads to an effective ang
controlled by the field strength, following an idea which w
first applied to the equivalence between a ferrite-fill
squared resonator with an external magnetic field and a fi
free rhombic polygon.30

To explain the mechanism of this equivalence we be
with the Maxwell equations which in the presence of a m
terial have the form

¹•E5¹•B50,

¹3E52 ikB, ¹3H5 ikE,

B5m̂H, ~6!

whereE is the electric field,H is the magnetic field,B is the
magnetic induction,k5v/c, and v is an eigenfrequency
with the wave vectork. We suppose that the material has
magnetic anisotropy corresponding to an anisotropic per
ability m̂5114px̂ with31

x̂5S xxx xxy 0

xxy xyy 0

0 0 0
D , ~7!

where

xxx5
gV1M0

V1V22v2
, xyy5

gV2M0

V1V22v2

and @Eq. ~3!#

s

n
te

ct
of

on

FIG. 5. Distances from the bottom of the propagation band
which the transmission probability takes the value of one-half~see
Fig. 3! vs the angle of the scissors.
9-4
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xxy52xyx5
ivgV1M0

V1V22v2
. ~8!

Hereg is the magnetomechanical factor,M0 is the magneti-
zation of the material,

V15gM0S M0H0
( i )

M0
2

1
gKa

M0
cos2C D ,

V25gM0S M0H0
( i )

M0
2

1
gKa

M0
cos 2C D , ~9!

andKa characterizes the anisotropy type: it is an easy-pl
anisotropy forKa.0 and an easy-axis anisotropy forKa
,0. In what follows we suppose that the material has
easy-plane magnetic anisotropyKa.0, in which case the
intrinsic magnetic field is equal to

H5H024pM0z .

In the relations~9!, C is the angle between the anisotrop
axis N and the magnetizationM0. We choose the latter to
coincide with thez axis along the magnetization, while thex
axis lies in the plane spanned by the vectorsN andM0.

In the simplest case of an easy plane magnetic mate
we haveM0'N and M0iH0

( i ) with C5p/2, so we obtain
from Eqs.~9!

V15g~H024pM0!,

V25g~H024pM0!1gKaM0 . ~10!

This is shown in Fig. 6 where thez axis is perpendicular to
the plane of the waveguide.

We seek a two-dimensional solution of the Maxwell equ
tions ~6! shown at this figure in the formE(x,y)
5E(x,y)ez . The fieldsB,H lay in the planex,y and depend
on x,y too. Then the first equation is satisfied, while the th
one gives

FIG. 6. Schematical view of the cross-bar resonator~scissors
with u590°) filled with ferrite whereM is the magnetization of
ferrite andN is the anisotropy field.
15510
e

n

ial

-

2 ikBx5
]Ez

]y
, 2 ikBy52

]Ez

]x
, ~11!

and finally, the fourth Maxwell equation can be rewritten

ikEz5
]Hy

]x
2

]Hx

]y
. ~12!

Using the explicit form of the permeability given by Eq.~7!
we get

B5S mxx mxy 0

myx myy 0

0 0 1
D S Hx

Hy

Hz

D .

Combining this with Eq.~11! we obtain

S Hx

Hy
D 5

1

D S myy mxy

myx mxx
D S i

k

]Ez

]y

2 i

k

]Ez

]x

D , ~13!

where we have denoted

D5mxxmyy2mxymyx .

Substituting Eq.~13! into Eq. ~12! we obtain

mxx

]2Ez

]x2
1myy

]2Ez

]y2
1~mxy1myx!

]2Ez

]x]x
1Dk2Ez50.

~14!

The key observation is that the mixed derivatives in the l
equation can be eliminated by the coordinate transforma

S x8

y8
D 5S 2

Amxxmyy2~mxy1myx!
2/4

muxx

0

2
mxy1myx

2mxx
1D S x

yD , ~15!

which allows us to cast Eq.~14! into the following simple
form

¹2Ez1lk2Ez50, ~16!

where

l5Amyy

mxx
; ~17!

we have taken into account thatmxy1myx50 holds in accor-
dance with Eq.~8!.

The transformation~15! defines a relation between
right-angle cross structure and a skewed one with an a
defined byl. It is too daring, however, to speak about a fu
equivalence, because it is clear from the formulas expres
the elements of Eq.~7! that the angle depends on the eige
frequencies involved. Let us ask under which conditions t
dependence of the geometrical factor~17! can be suppressed
Substituting into Eq.~17! the expressions~10! we get
9-5
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l25
V1V22v214pgV2M0

V1V22v214pgV1M0

. ~18!

Following Ref. 30 we can simplify this expression by assu
ing that

gKa /M0@max$gH0,4pgM0 ,v%. ~19!

For typical ferritesKa;106 erg/cm3 and 4pM0;100 Oe.31

Taking the magnetomechanical factorg;107 sec21 Oe21

we obtain, from Eq.~19!, H0!104 Oe andv!1011, which
would require very wide waveguides of widthd;10 cm.
However, there are ferrites withKa;108 erg/cm3 which lead
to the inequalityv!1013. Hence in this case we are able
use standard waveguides, the width of which is of orde
cm. Then we can simplify the geometrical factor of t
waveguide to the form

l25
H0

H024pM0
. ~20!

This formula gives a remarkable possibility to change
angle of the scissors,

u52 arctanl, ~21!

by means of an external magnetic field applied along
magnetization direction.

Moreover, if to apply a strong magnetic fieldgH0@v or
H0@104 Oe, then it follows from formula~18! that

l25
H0

H01gKa /M0
. ~22!

In this case also the effective angle of the structure can
tuned by variation of the external magnetic field.
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V. CONCLUSIONS

We have analyzed spectral properties of a scissor struc
consisting of two straight waveguides of equal width whi
cross at an angleu. The existence of bound states with e
ergies which are increasing functions of the angleu has been
demonstrated both theoretically and numerically. The mec
nism responsible for their existence is the same as in sim
systems.7,10,12 The scissor structure has a mirror symme
with respect to the axis of the complement angle 180°-u and
the bound states exist in pairs differing by parity. We ha
shown that as the angleu diminishes the energy gap betwee
the even and odd states of such a pair vanishes exponen
fast. Using the boundary integral method we have also s
ied the behavior around the critical valuesuc where the
bound states emerge from the continuum. Our numer
analysis shows that the binding energy of the weakly coup
states behaves as'p22g(uc2u)2 for u slightly belowuc .
We have also analyzed resonant features in scattering.
thermore, we have found that in the vicinity of the critic
angles the energy derivative of the transmission probabi
dT(E)/dE, diverges. Finally, we have shown how the ang
dependence of the spectrum in such a system can be
sured in an electromagnetic setting with right-angle sciss
filled by a ferrite material. The effective angular variatio
can be easily achieved by an external magnetic field app
normally to the plane of the scissor structure.
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