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Three issues are analyzed in the physics of time-dependent tunneling current through a quantum dot with
strongly correlated electrons coupled to two external contact le@dsionorthogonality of the states of
electrons in the leads and in the quantum ¢otnon-Fermi statistics of the excitations in the quantum dot, and
i ) kinematic shift of the quantum dot levels. The contributions from nonorthogonality effectively decrease the
mixing interaction between the leads and the quantum dot and the width of the quantum dot level whereas the
Gibbs statistics slightly changes the spectral weights of quantum dot levels, and decreases the widths, but does
not introduce drastical changes to the current. The kinematic interactions are taken into account within the loop
correction. For the case of block signal, the time-dependent current shows oscillations starting at the onset and
termination of the bias voltage pulse.
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. INTRODUCTION has been showf*that the result depends on the method of
introducing the left and the right states. When Prahgsed
During a course of the last two decades, the possibility obrthogonal states, the suggested model scheme was not ob-
producing electronic devices on the length scale of nanomdained whereas in the case with nonorthogonal states the
tres have compelled a reassessment of our technological, eftodel scheme was derived, however, an over-complete basis
perimental and theoretical views of electron transport. Foget and a restriction on the energies of the allowed states

example, nowadays capability in producing tunnel junctiongvere used. Second, the transféunneling of an electron
having the effective width in the range of 1-100 riRefs. between two subsystems arises due to an overlap of the wave

1-5 is more or less routine. Connecting nanotubes to mefunctions of the two parts. The overlap, on the other hand, is

tallic droplets of a diameter-5—20 nm, thereby construct- usually regarded as important only in the region of the tunnel

ing a single electron transistor, is a reality tofajhe tech- barrier or, put in anothefmathematical way, the electron

nological advances have provided physicists with tools for> perators of the different subsystems assumedo anti-
nological P pny commute. This severe simplification leads not only to a lack
investigations of both weakly and strongly correlated elec-

i b f d closed ¢ ) of precision in computational studies, but, also to a loss of
rons by means ot open and closed quantum dQe’s), nontrivial physical implications. As discussed by Emberly
respectively, coupled to external contact leads. There ar

S &nd Kirczenow?® there are existing mathematical methods to
many more applications of the state-of-the-art technology f0pynress the nonorthogonal bases which spans the subsystems
mesoscopic systems. but these are, however, of no help since the simple physical
Theoretically, the developments of tunnel transportinterpretation is lost at the same time as the nonorthogonality
through interacting regiors'” have been performed in the gisappears. The proven success and the physical transpar-
stationary regime as well as in the time-dependent casency of the transfer Hamiltonian approach makes it desirable
Many major breakthroughs in the understanding of the tunto extend its applicability to more general situations where
nel transport have been based on the transfethe overlap is large. One of the purposes of this paper is to
Hamiltoniart***which relies on a very simple, although phe- show, by means of a generalization of the transfer Hamil-
nomenological, concept. The idea is to split the system intaonian formalisn?®?! that the well-known formulas for the
subsystem$? each of which can be treated individually, and tunnel current through interacting regions coupled to external
describe the interactions between the parts by a transfer abntact lead$-?? formally can be recovered. Furthermore,
electrons from one into another. The motivation is that thewe will make a thorough analysis of the implications of tak-
building blocks of the system can have completely differenting the nonorthogonality into account. Then, we study effects
physical properties for which it is preferable to employ dif- from strong electron correlations for QD’s in a region of
ferent descriptions. Moreover, the approach offers a concefparameters where Kondo contributiéd$2® are not rel-
tually uniform way to describe any system which can beevant. We will not discuss here any kinds of assisted tunnel
regarded in terms of subsystems coupled via transfer of ele@rocesses which restrict our investigations to low tempera-
trons between the subsystems. However, the convention&lires. Our three main tasks here dieto investigate the
transfer Hamiltonian suffers from serious problems for aneffect of the nonorthogonality between the states of the sub-
acceptable quantitative account of the transport througlystems(ii) to inspect if there is any visible manifestation of
nanostructures. The model scheme of the transfer HamilGibbs(non-Ferm) statistics of the excitations in the QD, and
tonian have been criticized by SvidzinsKiiFirst, the left (i) to study the role played by the kinematic interactions in
and right states are not well defined in this scheme. Indeed, the QD in the formation of the current through the quantum
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; ' ': and 1d). Corresponding to the Hamiltoniad,, there is an
3 ) | VD | orthonormal set of eigenstatés,,, , ¢y.f. Here the index
J merely labels the eigenstate and does not correspond to the
0 | quasimomentum of the electron. Examples of the squared
3 ©) I modulus of these wave functions are illustrated in Fig. 1. By
3 : : /\/\/ the projectiond"32¢c, (t) = [ &5, (r) ¢,(r,t)dr of ¢ onto the
= 0 auxiliary systema, whereko e «, an annihilation operator
53 b) v ! of a particle in the stateb,, with the spin projectiorr is
50 : :: defined. A creation operatoTclg is defined analogously.
However, if we write the Hamiltonian in terms of these op-
3f v erators, it will contain not only the matrix elements on the
functions ¢, (r), but, also, the overlap matrices. In order to
~a-b ba avoid the latter we include the inverse of the overlap matri-
: . . : . ces into the definition of the annihilation and creation opera-
4 2 0 2 4 tors

coordinate (nm)

FIG. 1. The potentiaV in the original systen{bottom is di- 1~
vided into the auxiliary lef/, , right Vg ,and middleVy, potentials. ckg(t)=2 O o Ci (1),
For the auxiliary potentials the squared modulus of examples of k
wave functions in each system are plotted.
Clo(t 2 (O e) iy 1), (1)
device. It is worth to note that we cannot use directly the
Keldy_sh diagram technig@esince the operators of the elec- where k' runs over all states iLUDUR and O,
trons in the leads and the QD dwmt (ant) commute due to Ak )
nonorthogonality and, therefore, theroHamiltonians of the _<¢k|¢k'>_ok’kf defines the overlap between the SPb'
subsystems cannot be extracted, i.e. blga(Hg’) sy§tlem5a and a!l Here vye have used the approxma’gon
+expHSexp HY . For this reason we perform the calcula- O kak'or = %90’ Okair and introduced the short-cut notation
tions within the Kadanoff-Baym approach. Owo —(’)kok, The definition of the electron operators as
We begin the paper with description of the system and thén Eq. (1) yields the antlcommutato{cko,ck, =0,
nonorthogonal approach used in Sec. Il and continue in Segvhich is derived in detail in Appendix A. In terms of the
[l by deriving the expression for the time-dependent currentoperators given in Eq(1l) we define the field operators
We present some results in Sec. IV and summarize the paper, (r,t)=3,, . ,Cxo(t) dxo(r), a=L,D,R.
in Sec. V. In the appendix we derive the anticommutators for Consider the identity ¢, (r,t) = s, (r,t) + g, (r,t),
the electron operators, a general expression for the QD Gfvhere (1, 1) =S thoo(r,t)  and g, (r,t)= ¢y (r 1)
and the equation of motion for the conduction electrons—y, (r,t). The accuracy of the operatgs,,, compared to
population numbers. ¥, , is controlled by the remaindepy,. By adding suffi-
ciently many states in the expansion @f , the loss of ac-
curacy is made small and the remaindigy, can in many
cases be made negligible. We assume here that this is already
done and therefore the remainder can be neglected. In the
Consider a system of interacting electrons moving in argiven expansmn then, the total population number operator
external potentiaV characterizing the system, see Figa)l ~N(t)==,J¢}(r,t)¢,(r,t)dr is given by
for an examplgactually, in the numerical results presented

II. DESCRIPTION OF THE SYSTEM
WITHIN THE NONORTHOGONAL BASIS SET

in Sec. IV, we use the model potentials given in Fiy. \We N(t)=NpL(t)+Npp(t) +Ngr(t) + N p(t) +Ngp(t)
assume that the part of the Coulomb repulsion which is in-

cluded to the spectrum of carriers in the leads is sufficient for + ZReE J zng(r,t)ng(r,t)dr, 2)
our description and we neglect collisions between the carri- o

ers in the leads. Lef(x,t), x=(r,o), be the exact particle-

field operator associated with the Hamiltonian of the systen{'nére the operatord,,(t)== f‘ﬁ (1D Pao(r,n)dr, @
satisfying the usual anticommutation relations for Fermion=L.D.R and N,p(t)=2ReZ A1) (1, 0)dr, e,
operators. Suppose thett,, a=L,D,R is a set of auxiliary =L,R. Since the overlap between the left and the right
Hamiltonians for single particles in the potentidls. Here ~ Subsystems is exponentially small, when a mesoscopic
the Hamiltonians correspond to the Igft) and right (R) ~ QD is present in between, the last term in EB) can be
leads and the QD). For instance, the left potential may discarded. A straightforward  calculation  shows
be taken asV (2)=V(2)6(—z—a,)+V(—a,)0(z+a,), that Neo()=Ziscaio(t), Where ni,(t)=cl,(t)Cio(t),
wherez is the direction of the transport in our case ands  and N p(t)= 2RF‘EpmaOmpoCmg(t)Cpg(t) and Ngp(t)

a turning point of the left subsystem, see Figh)1The two —2R(=Eqm(,(’)mq0 +(1)Cqo(t), Wherep,q,m run over the
other potentials may be defined analogously, see Fig3$. 1 states in the R, D respectively.
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lll. THE TIME-DEPENDENT CURRENT o. The QD Hamiltonian is diagonalized in terms of the Hub-
THROUGH AN INTERACTING REGION bard operators and rea@t,p==,Eyh”, where the state la-

The systems we are interested in can be characterized lp=01,1. Aconduction electron in the leai=L,R with

an interacting region, which we refer to as the QD for brief- € energyekg(t)= €kot Doll) is cregted.(annlhnated by
ness. In order to not obscure the physical meaning and reaHje operat_ock(, (Cks). Thus, the Hamiltonian for the system
ability of the equations we use the simplest possible modefan Pe written

which displays two of our main-target interests, namely, the

nonorthogonality and strong correlations. For this reason, we H= 2> ewt)cl et EphP

choose a large Coulomb repulsidh such that the doubly koeL.R P

occupied states do not contribute to the conduction. The lev-

els in the QD are assumed to have a large energetic separa- +2 [vkg(t)cl’zaxo‘”r H.c.]. (3)
tion and, thus, a negligible influence from the attached con- ko

tacts and the applied external field. The QD is coupled Vig=or the sake of transparency, we will only consider this
tunnel (mixing) interactionsvy,, to external contact leads. simple model below although the formalism allows for con-
We are mainly interested in effects from the strong electrorsigerations of much more complicated structures, see Ref. 36
correlations in the QD and therefore the leads are expressggr the equilibrium case. The time dependence in the mixing
in a free electronlike approximation with the quasichemicalarises due to the time dependence in the contacts while the
potentialsu (t) and ug(t) for the left(L) and the righttR)  time dependence of the QD states can be neglected due to a
leads, respectively. We assume that the bias volageap-  |arge level separation and a small dipole moment induced by
plied to the system drops entirely over the interacting regionthe electric field. Thus, the model differs from the standard
The quasichemical potentia}s,(t) are related to the equi- Anderson Hamiltonian by the presence of two conduction
librium chemical potentialu by w (t)=pup+® (1), ur(t)  bands, the time dependence of the parameters and by the

=u+Pg(t), where®(t) and Pg(t) are the time depen- anticommutation relations for electron operatofsg,d’}
dences of the single particle energies imposed by the applied » -1 k< | R, see Appendixes A and)B

ko

voltage such that®, (t) + Pg(t)=Ds(t). The physical The time-dependent current through the QD is calculated
meaning of the potential®  g(t) can be understood from by the total charge rate of change in the system
the speculations given by Mahdp. 788 in Ref. 33 The

time-dependence of the tunneling matrix elemery is de- d
termined by the numbers of particles in the contacts and the IO == (Nt)=—— a:LED . (Nao(t))
QDI ’ ’
’ > (Np(t)=0 4
vip(t)=exdi(u H+ upHp+ urHr) Juip ot a:L,R< «0(1))=0, @
Xexd —i(u H+ upoHp+ urHr)] by charge conservation. As will be shown below, it is pos-
sible to divide the total current into a left and a right current
XE vkgeXF[—i(ML—Ago)tCEUXO"], term, i.e., J(t)=J.(t)+Jg(t), and we study the current
X

through the system by investigating one of these terms, say,

o the left. In turn, each of term (t), Jgr(t) can be separated
where ® (t)=p — Ao, see below for definitions of{,,  into contributions from both the tunnel and the displacement
X%, and A, Similarly ®g(t)=A,0—ug and O (t)  currents?23-*we consider them separately.
+®r(t)=V. In our casd H, ,Hp]# 0 and these parameters
are taken phenomenologically, since we do not calculate the A. The tunnel current
matrix elements of the transitions self-consistently. However, ] o ] ]
this shows that the voltage is dropping differently on differ-  The purpose of this section is to show that in spite of the
ent inhomogeneities and this problem requires a separaf®northogonality of the wave functions of the subsystems,
consideration. The system can be modeled by the extenddhe Standard expressidnsor the tunnel current can be writ-
Anderson Hamiltoniad? in which the QD is given byHqp tenin a familiar and a_well-know form, however, the mean-
ZEU%dEd(ﬁ Unin,, whered:r, (d,) creates(annihilates mfg (r)]f the pafrarr]neters Ls alt?red. '_I'Tere_fort:], vx:efstlud)é th(; rate
an electron in the QD at the energy andn,=dd, . How- of change of the number of particles in the left lead where

ever, sincel is the largest parameter in the present situatiorf €, total number of electrons mLL_(t»:EPﬁL(nP”(t»
nd the po-dependent occupation numbefn,,(t))

it is convenient to express the QD in terms of many-bodyi

/ot
operators, e.g., Hubbard operat8ts{"® ~|p)(p’| describ- Cpo(0)Cpo(1)).  ~The tunnel  current, J.(f)

po
. 2 . =—=d(N_(t))/at, from the left | into the interacting re-
ing the transitiorip’)—|p). For a more transparent notation AN (D))/at, fro e left lead into the interacting re
we introduceZP?" for transitions of the kind|o)—|a),

gion becomes
where the number of particles is unchanged, andfetle-

_ < -1
note the diagonal transitiojp)— |p). Such transitions will Ju®= —ZReE [Vooo(DF po(t,) = O (Du,(1)
be referred to as Bose-like whereas Fermi-like transitions
- T <
refer to|0)—| o). Here,o signifies the opposite spin state of X((h%+h9)(1))gp,(t,1)], (5
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where the time derivative gh,(t)) is derived in Appendix In terms of these quantities the general expression for the
C, see Eq. (C8. Here the lesser GFF;;(U) time-dependent tunnel current through an interacting region

—H(XA() 0 (1)) AN (L) =I(CL. (t)cku(1)). DUE to the can be written in the familidt form as
nontrivial anticommutation relations there appear new con-

tributions both to the tunnel coefficienty,— Vyips="0ks 1 t
+0,3,A 0 and to the time development @, (t)). To the () =— ;lmz f f To(tt,e)[G,(t,t")
first order in V,p,, it is straight forward to see that 7o
the equation of motion for the transfer GF,,(t,t") +f G’ (t.t) et dedt’ 11
=(—i){Tce(t)X (") is contour integratel to L(&)G,{t1)] et (1
Fro(t,t) =0, P (1) giy(t,t) A similar derivation of the current through the right barrier
t—ip into the interacting region leads to an analogous equation for
+f ° Oko (1,1 Vipo (1) G (17, 1)) dt”, Jrr(t). The conclusion, then, is that although we are work-
to ing within the nonorthogonal representation, we have shown

(6) that the formula for the tunnel current through a noninteract-

) ing or interacting region is formally equal to the result de-
where G, (t,t')=(—i(TX*()X°(t"))y and P,(t) rived in Ref. 11. We stress that the formula given in Ed)
=(T{X%(t)X"°(t)})y are defined in Appendix C. By ana- generalizes expressions for the tunnel current based on the
lytical continuatiod®** of Fy,,, the lesser GFFy, is given  orthodox transfer Hamiltonian, with respect to the couplings
by FLL,'R between the leads and the interacting region. Indeed, as

< -1 < s the overlap® 3,—0, illustrating the case of the orthodox
Fio(L1)=0ks Po(Ug, (L1 transfer Hamiltonian, Eq(11) identically equals the result

% derived in Ref. 11. In this respect, the current is expressed in
+ f Vioo () [ Gr (1t GE(L", 1) terms of the local properties of the interacting region, such as

o the density of electron statéBOS) and the density of elec-
+gk, (L, G (1",t7)]dt". (7)  trons, proportional to B! and InG; , respectively.

Substituting this expression into E¢p) and observing that

* * -1 0 - < B. The displacement currents
RE([Vikpo ~Viko 1O kpo{ (N7 +h7) (1)) gy, (1))

As is seen from the expansion of the total population

=Re({| O o, | 2A (V) + [0, — v, 1O 00} number operator in terms of the operators of the subsystems,
0 - not only the contributions fronN, | (t) and Ngg(t) have to
X((h"+h7)(1))g,(t,1))=0 be considered for full description of the transport. Also, the
the tunnel current becomes operatorsNpp(t) andN p(t), Ngp(t) give significant con-

tributions. First we consider the time derivative of the QD

o population, i.e.,
JLL(t)=2R6pE Vng(t)ﬁ Vi (1G5 (t,t)gp,(t',1)

r ! < ’ ' d J

T C,(LT) G, (1,0 ]dU. ® Joo(H)== 2-(Nop(1)=— 2 2 (Ny(1))
Since scattering between the conduction electrons in 7
the leads are not taken into account, the lesser, retarded F
and advanced counterparts of the G, (t,t') =—Im— > Gyt (12
= (—iI)(Te(t)ck,(t")) are given by 7
tVL(tn)dtn since (N,(t))=1mG (t,t). This contribution can be parti-
' ' tioned into a left and a right term, i.eJDD(t)zJED(t)
( ® 4 JR.(1) since the lesser QD GRZ(t,t')=Gr,(t,t')
viL(thdt", +Gg,(t,t"), see Appendix C. Thus, tHeft part of the QD
’ displacement current is given by

gk<0'(t1t,):ifL(Gko_)eiiEka’(tfﬂ)*if

t
grk';‘(t,t’)::i(9(it:t’)e“fka(t‘“)“ft

wheref (e,,)=f(€ep,— L) is the Fermi-Dirac distribution
function. Thep summation in Eq(8) is replaced by an inte-

gration over the density of states of the legf €) and the L _ d _
coupling between the lead and the interacting region is de- ‘]DD(t)__lmﬁ ; Gio(tb). (13
fined by

FI;_(t,t,,8):ZWVLDU(t)VfDU(t')pg(s)eifi’q)'-(t”)dt”. Next, we look at the part of the displacement current

(10)  which comes from the population numbg, 5(t)), i.e.,
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9 to as proportionate coupling. Then, it is easily shown that the
Jip(t)=— E<NLD(t)> tunnel current through the interacting region can be written
as

——2Rei2 > O, (X7O(t)C,, (1)) 1
ot gL P po ‘]netz_ﬁlmz fFg(s)[fl_(s)—fR(s)]G:T(S)dS,

(19

where T',(g)=T"%(e)T'X(e)/[T5(e)+TR(e)] is the total
Using Eq.(7), replacing the sum ovep by an integration coupling for each spin projection between the leads and the

over the density of states-(s) and defining interacting region. The expressions given in E(s8) and
7 (19) were previously reported in Refs. 9—-11, however, in the

present formulation all couplinds; (&) contain explicit con-
tributions from the overlap matrix and the single-electron

(? <
=—2Im pEU OpoF polti1). (14)

.t
Y5(t,t,6)=270fp ,Vipa(t')p5(e)elvPLEds (15

the current], p(t) is found as transitions between the many-electron states of the QD via
the new definition of the mixing matrix elemenig,— v,
+ O3 o
J (t)=—£Rei2 OO aapi(e)P (DT (&)
LD T gt S Lo LDoP ol &) ot TL IV. RESULTS

t For a discussion of the three main tasks of this paper,
- f 7';,(t,t’)[G:(t,t’) stated in the introduction, we need to express the QD GF. We
- will do that in three different schemes to enable an analysis
. ) of the different aspects. In AppendC a general expression
+f(8)GI(t,t")]el=stt )dt’}ds. (16)  for the QD GF is derived from which we first pick out the
Hubbard | approximatiorfHIA), obtained by neglecting all
By means of the expressions in E¢sl), (13), and(16) the  functional derivatives in EqC2), i.e.,
left net current can now be written as

fto |ﬁ<_a A% — S 05l uk ()| s(t—ty)
I —_— — f—
ILO=3(D)+I5p(0)+Ip (D). (17 to gt S0 g Dkelhke :
This formula is the main result of the paper and is the start- HiA
ing point for a discussion of the effects of the overlap, the - Pa(t+)va(t:tl)>eo (ty,t")dty
statistics of the QD states and the many-body interactions in
the QD. We stress that in the orthodox theory, where the =[S8(t—t")+ v, (t,t" )P (t")]P(t). (20)

anticommutatorgcy,,d,} = O3, and [ ¢* (x,t) p(x,t)dx _ . _
are neglected, the last contribution in Egj7) is absent. Fur- Here we have introduced the interactions
thermore, the first two terms also include additional contri-

A ’ -1
butions in the tunnel coefficient#,p,= v, + O i, A% . In Vo(L) = 2ket RVDo (Do (L) Opg
Sec. IV we will analyze the effect of the overlap, ' onthe and
current.

V(J'(tvt,)z EkeL,RVDko’(t)gk(r(t!t,)VkDo’(t,)!

C. Stationary regime where

In the stationary regime, the couplingE(';(t,t’,s) . .
=T(e) and y5(t,t’,e)=y.(¢) become time independent Voko(1) =vie+ O pigeko -
and the time integral in E17) is simply the Fourier trans- £ 4 {ime-independent external field E0) can be Fourier
form of the lesser and retarded GF. We thus note thaj,nsformed to
Nip, Nrp andNpp are time independent, hence the contri-
butions  from d/dt(N_p(t)), d/dt(Ngp(t)), and

1+v,(iw)P
dl ot (Npp(t)) vanish. Therefore], | = —Jgg and if we use G (iw)= vo(i@)Py P,.
that J o= (J. — JrR)/2, We obtain iw—A?,o—kELR OpicoVits—PoVolio)
i ' (21)
e 7= 2 f {[To(e)=T3(£)]G, (e) +[fLle)(e) - . .
T oo Already in this approximation there appears a level shift in-

order to analyze the effects of the overlap we ﬁmlfDlg
Further simplifications are achieved when restricting the—>)\(9k‘D1U, N e[0,1]. The overlarﬂgéaz(cﬁwa) is, apart
analysis to the case whéij,(¢)=I"}(s), commonly referred from normalizing constants, given by
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| a ( b) e—KLa(aL—b)_e—KDU(aL—b) e—KLU(aL—b)
(¢p|dp)~| 2Re————e "DoldL™P) 4 + cogkp,b)
P > Kpo—1Ps Kpe~ KLg KL ot Kpg 7

2 kp,coshik  b)sin(kp,b)+ x| ,sinh « ,b)cogkp,b)
e

k%(r 1+(KL(J'/kDU')2

_KLu-aL7

where  a=(k ,tix)/(2k.,), Po=\2&pg KLg —2k|(’)kD,,|2) giving ka0~0kD,,[gk,,—Ago/(1

= V2(V0_8p0')1 kDa': \/ZAO'O’ and Kpo= VZ(VO_AG'O) _Ek|(9kDa'|2)]_\/Ofojbd);c ¢Ddx and Similarly for VDkO’

The barrier heightV, is measured from the equilibrium =y¥ + Ot ¢, . This readily shows that the magnitude
chemical potentiajy anda, , b are defined in Fig. 1. The |V, |<|v,| which, in turn, furnishes the level with a
overlap(’)q*ga is calculated similarly. There are also contri- longer lifetime. The decreased width implies a faster onset of
butions from the overlap in the level width,V, and the the current at a higher bias voltage given by the level shift.
spectral weight (*+v,P,)P,. In Fig. 2a) the dashed line However, the level shift in this case is many orders of mag-
shows thel-V characteristics for the case when the overlapnitudes smaller than the bare level position with respect to
is neglected. The picture is reduced to the single-electrop, thus causing a negligible renormalization. The many-
case by letting the cumulaft,— 1 [dotted line in Fig. 2a)]. body population numbers are seen to have faster shifts while
The difference between the two curves is small which, thusthe deviations from their corresponding equilibrium values
supports that the many-body population numbers in the Q@are smaller, than in the case without the overlap.

give a small effect on the current. This is expected since, for The third approximation scheme we employ is obtained
example, the cumulantP;=Ng+N;/2=Ny+N;~1, N, by evaluating the first functional derivative in E@2) giv-
=N, =N,/2. However, the population numbers differ sig- ing the loop correctéd equation for the QD GF

nificantly in the two cases, shown in Figh2 (Ng) and (N,) _
as a function of the bias voltage, see Appendix C for details J‘O*'B
of the QD population numbers. Thus, in the paramagnetic ¢
case the changes in the population numié&randN,; com-
pensate each other and the current remains nonaltered. How-
ever, they are manifested in some situations, e.g., spin
transport® As the overlap is turned on, the level
width is decreased sincevy,=(¢y/H|dp)=Okpsexs =[o(t=t") +v,(t,t")P(t")]P4(1), (22
—VofZpdi dpdx and, roughly, O3, ~—Op,!(1

I_
ot

Aot =, 2 Opiv, (D) At =)

0

- Po(t+)va(t1tl)) GLC_’OP(tl lt’)dtl

where the dressed many-body leve]y(t) is found from the
self-consistent equation

R
=" o=

i Aao(t)_Ago:th

Bv;(t,tl)D;(tl,ﬁ)dtl. (23

e
o

0

206 = loop, A=1
504 *=+ HIA, A=1 The loop correction arises due to kinematic interactions be-
‘ — loop,A=0 tween the states in the QD, which here is induced by the
- - HIA, =0 . ; . : ) :
02 ... SEC, A=0 interactions with the conduction bands. Mathematically this

is caused by the nontrivial anticommutation relations be-
tween the Hubbard operators. It is worth to note that the
level A, depends on the characteristics of the level and

conduction sub-bands of the opposite spina property that

can be used in connection with spin-dependent tranépant.

the time-independent regime the QD GF is Fourier trans-

20 40 60 80 formed to the same expression as in the HIA, that is, Eq.
bias voltage (mV) (21), however, now with the dressed levk],, given by

FIG. 2. Characteristic features of the curréat and the popu- flen)— f(A—
lation numbergb), for a 4 nm wide QDconnected via 0.5 nm thick A o_AO — 2 VoraVios (exs) ~T(Ag0) . (29
and 1 eV high tunnel barriers, as functions of the bias voltage. The v 0 g PRITRPe —
bare level A% =20 meV and the conduction electron DQS ] o ]
=1/(2W), whereW=1 eV is the conduction band width. The plots The resultingl-V characteristics and population numbers are
are made for the single-electron cdsetted lines, within the HIA ~ shown in Fig. 2 with(bold solid and without(solid) the
with (dash-dotted linésand without(dashed linesthe overlap and  overlap, respectively. One main difference between the
with the loop correction with(bold solid lineg and without(solid ~ curves is the rapid onset of the current as the level becomes
lines) the overlap. resonant(lies between the left and right quasichemical po-

ke R0
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tential9, when the overlap is not neglected. Another peculiaT® and the cumulanP,,. Then for a block signalsteplike
feature which is only observed in the case when the overlapias voltage pulge® y(t)=d,+ ®,(t), whered, is a con-

is not neglected is that, the population numbiEgsand N,

stant and ®(t)=d [ O(t—tg) — 6(t—ty)],

the function

are not monotonic functions of the bias voltage. Combi”eqﬁxg(w,t)=f”focGir(t,t’)exp:iw(t—t’)+if:,(l>a(s)ds]dt’, where

with the smaller effective interactiovi,,, this gives a non-

D (1) +DPR(1)=D4(t), becomes fot<t,

monotonic behavior of the current and a small negative dif-

ferential conductance as the voltage is increased when the

level has become resonant.

Time-dependent current in the wide-band limit approxi-
mation One of the simplest ways to illustrate time-
dependent phenomena in the current is by employing a wide-

band-limit- (WBL-) like approximation. Then(i) the level
shifts from 2,0t vt and R&/,(t,t')P,(t) are neglected

since they are small comparedAq,, (i) the energy depen-

dence of the linewidthsT'2(t,t",e)=ImV(t,t")P(t)

1—-iy2P,,

- ~ _~_ 1
w—2A,o+iTPP,

Al(w,t)=

(o8

1— @i+ @Ry +ITDP)(t-to)
_(I)a

= o(t—t ,
w+®,— A ,0+il2P, (t-to)

(28)

=F2(t,t’) can be disregarded because of their slow variawhere w=¢+pu,, u, is the constant shift of the qua-

tion in the voltage regime considered here, diid), allowing

sichemical potential in the lead, and® , is the amplitude

only & (t) =Pg(t) for the energies in the leads. In this limit of ® (t). Here, A, ,=A2; in the single-electron case and

one rather easily can obtain analytical results for the QD G
which then are inserted into the current formula. Further
more, since transport is often dominated by states close

the quasichemical potentials and the level shift and width aré

fhe HIA whereash o= A, within the loop correction. Let-

;tci)ng t—oo in EQ. (28) the limit expression AL (w,t— )

(1-iy2P)P, /(w+®,~ A o+il2P,), that is, the sys-

generally slowly varying functions of the energy, the WBL tem settles at its new steady state value as all the transients
for this case is fair approximation. The approximation alsodecay. Fott>t, the expression in Eq28) is replaced by

allows for asymmetric barrierd { #T°F).
The retarded effective interactions, andv! are thus
given by

i _ ,
VL(t,t’)=—50(t—t’)E I‘E“(t’t')J' elet—t)gg

=—is(t—t")T2(1), (25)

i o
v[,(t,t’)=—ﬁt9(t—t’)2 yE“(t,t')J ele(t-t)dg

=—i8(t—t")y2(1). (26)
Here we have introduced the notatiodd (t)=T""(t)
+T2R(t), where T2%t)=TP%t,t) and TI2%tt’)
=27V00()Vano(t ) ps eXifif | @,(9)dsl,  and  y2(1)
= Yo (D + v (1), wherey, (1) =yo(t,t) and 7 (t.,t)
=27Vpoo(t) O 5.2 exp[iﬁ’d)a(s)ds]. With these effective
interactions the retarde@dvanceyl QD GF becomes

Gt )=Fi0(=t=t")[1Fiy2(H)P(1)]
% Pa(t)e—if:,[zlro(s)IiFE(s)P(,(S)]dS, 27

whereA ,o(t) equalsA?, in the HIA andA ,o(t) within the

1—-iy2P
Az(w,t)z..—g_:; o
LL)_A0.0+|FO_PO.
1 — @i (@+ @, =20 HITPP,)(t1to)
x| 1+, = D
w+CI)a—AUO+IFUPU

« ei(wZUOJriFEP(T)(ttl)) ' (29)

Similarly, the limit t—o~ gives Aj(w,t—x)=(1

—iyPP )P, [(w—2A,,+iT2P,), as expected.

The resulting time-dependent currents for the bias voltage
step with and without the nonorthogonality taken into ac-
count are presented in FiggaBand 3b), respectively. In the
former the behavior of the currents is seen to differ for the
the HIA (solid) and the loop correctioffull) around the on-
set of the voltage step. In the HIA the current grows expo-
nentially to its saturation value whereas with the loop correc-
tion the current first goes to a peak value and thereafter
decays to its new steady state value. Thus, the transient be-
havior of the current is affected when many-body interac-
tions in the QD are considered. As the pulse terminates both
the HIA and the loop correction provides an oscillating decay

loop correction. This expression can now be used to calculatef the current, as expected from H&9). Figure 4b) shows
the lesser QD GF and the time-dependent currgnt through thee currents provided in the single-particle pict(dashed,
system. Up to now, all formulas have contained a timethe HIA (solid), and with the loop correctioffull) when the

dependence both in the conduction electron eneqgyt)

nonorthogonality is neglected. The three schemes display

and in the mixingv,,(t), providing a time dependence of similar qualitative behavior with rapidly decaying ringing at

the couplings"5/R(t), the level widthI'2(t) and the cumu-

the onset and termination of the bias voltage pulse. As seen,

lant P (t). For numerical simplicity, though, we neglect the the single-particle picture and the HIA gives essentially the

time dependence of the mixing,, in the following discus-
sion which gives constant couplindg;’R, the level width

same net currents whereas within the loop correction the cur-
rent has a slightly larger amplitude before and after the volt-

195319-7



FRANSSON, ERIKSSON, AND SANDALOV PHYSICAL REVIEW B56, 195319 (2002

looy
L)

05

current (arb. units)
current (arb. units)

] 05 1 15 2 JED
time(tl)

0 05 1 1.5
time (t,)

® T ®

b)

FIG. 5. The different contributions to the net current shown in
Fig. 4@. The plot shows the tunnel curredt, (t) (solid-dotted
line) and the displacement currenlgD(t) (solid line with plusep
andJ, p(t) (solid line).

current (arb. units)

ation time r becomes longer, since~l/(FEP0). As a
result, the time scale of the tunneling process is longer within
the nonorthogonal picture than in the orthodox. A compari-
0 05 1 15 2 son of the net currents with and without the nonorthogonality
time (t,) within the loop correction is shown in Figs(é§ and 3b),
, _ respectively, from which the different time scales are directly
® '?t?— 35+T5h[e 0(tlm??epge(rt'de;n; ]CrLr']r\r/einnt tft? . \t/t:i?h ?;?Sar\]’glmﬁ St®Reen. In this connection we also stress that the magnitudes of
sdlt)= —lo) Tt - i
. - the two curves are actually very different, where the nonor-
out (b) the overlap. In@) the currents are provided within the HIA thoaonal picture results inya cu)r/rent which is aporoximatel
(solid line) and with the loop correctioffull line), taking the non- onegto tW(F)) orders of magnitudes less than thatpgf the Orth(>)/
orthogonality into account. The time scalge=600 ps. In(b) the B
curregts arg given within single electroﬁztheo(rsasheij)ling dox. Thus, the interpr_etation of experimental r_esults require
within the HIA (solid line), and with the loop correctioffull line), ;gevfé’l Sv'gilf]egtn;hﬁggigcﬂevs;reizr 3\‘; ié?hes ;‘r)]lépr']';‘%sh tg”\?vittr?iﬁ
without the nonorthogonality. The time scadle=1 ps. ' - : et '
the two pictures. In Fig. 5 the different contributions to the
age pu'se’ as expected from the Stationary (tase F|g 2 net current in Flg éB) are shown and it is I’eadi|y seen that
One of largest differences between the currents shown ithe tunnel current gives the main contribution to the current
Figs. 4a) and 4b) are the different time scales. As previ- while the displacement currents tend to retard the tunnel cur-
Ous|y discussed, the nonorthogona”ty decreases the Co[-ﬁnt: HOWeVer, the diSp|acement current do not cancel out the
plings TER and the level width'® and therefore the relax- nging of the tunnel current completely and therefore there
7 7 remains a rapidly decaying ringing in the net current. The

contribution fromJ, p(t) is seen to be small in this example
£15 A=1 but when the amplitude ob,(t) is increased we have ob-
Elo served that this contribution plays an important role of the
*é 5 complete picture.
g0 a)
V. CONCLUSIONS
0 05, 1 15 2
time (x 600 ps) In summary, we have shown how the transfer Hamiltonian
formalism can be generalized by including the nonorthogo-
__ 700 A=0 nality between the subsystems. It is formally shown that the
“-’2 €80 f[unnel current _flowing through the left/right barrie_r into an
= interacting region, e.g., QD, can be expressed in a well-
g 660 known formulation[Eq. (11)], however, with an interpreta-
g 640 b) tion of the tunneling coefficient that differs from orthodox
theories [vy,(t) = Vi (1) = vy, (1) + O 0, A%(1)]. More-
0 05 ﬁmel(ps) 15 2 over, we derived expressions for the displacement currents

[Egs. (13), (16)] and showed that the total current can be
FIG. 4. The time-dependent currents within the HIA with the Partitioned into two contributions, one for the flow through
loop correction with(@) (A=1) and without(b) (A\=0) the nonor-  the left barrier and for the right. The QD was described in
thogonality taken into account. Note the very different scales of thderms of Hubbard operator GF describing many-body inter-
times and the amplitudes of the current. actions within the QD. The QD GF was given within the HIA
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[Eqg. (20)] and with the loop correctiofEq. (22)], thus giv- {(x), T (X" ) =8, ,8(r—r")

ing us the opportunity to analyze the significance of non-

Fermi the statistics of the population numbers compared t@nd

Fermi statistics on the resulting current. The conclusion is

that, although the behavior of the population numbers of the S ot o S S

QD level differ considerably, the behavior of the current is 3, Kokas T Kasikesy T Tk TSy

only slightly affected. A comparison of the two approximate

schemes for the QD GF gives that, the many-body effects

given by the loop correction from kinematic interactions al-APPENDIX B: THE COMMUTATORS OF THE FERMION
ters the output current. Consequently, many-body effects in AND HUBBARD OPERATORS

the QD should be considered_ for_ an adequate description_of When the overlap between the leads and the interacting
the current. However, the main differences in the current, inegion is taken into account the general anticommutation re-

the non-spin-polarized case, is shown to be given by takingation of a conduction and a localized electron is, in general,
the nonorthogonality into account. Actually, a comparison Ofgiven by?®

the amplitudes of the currents with and without the overlap
shows a difference in the order of one to two magnitudes, -1 b_basé

where the nonorthogonal representation provides the smaller. {Cke X = Ol dy)eZ (B1)
This difference can be understood by that the coupling beghere ¢ is a Bose-like transitiona and b are Fermi-like
tween, say, the left contact and the QD is not given by Jus&ransitionsgz[qp] is the reverse transition @=[pq] and

the matrix element , as within the orthodox transfer _ L

Harmitonian approach, but bWio,=ou0,+ OLddons (Sl cia s Fermyike and Bossne Tanaiion niieee
-1 2 2

whe.reO_LDU% —OLpo/(1=]0po|“~[Orp,|?) has the 0P~ occurring twice. In the case when the dot effectively contains

posite sign ofv p, and, thereforedecreaseshe coupling iy a single-orbital level and in the limit of infinite Cou-

strength. The comparison of the J-V characteristics for oriomp repulsion, each single electron operator in the interact-

thogonal and nonorthogonal cases, given in Fig. 1 of Ref. Zjing region becomed, = X°’, wherea=1,|. Then, the Eq.
shows that the current starts to grow at much smaller voltaggBl) can. withXa— ero be ’vvritten explic'itly as ’

in orthogonal case than in nonorthogonal, whereas for th
solution on quasiclassical wave functibhshe discrepancy o 4 0 o
even more drastical. Thus we conclude that, when interpret- {Cko X7 %} =07 (0]d ;[ o ){ X7, X7 O}
ing experimental results in terms of theoretical predictions a1 01 o'

given within the nonorthogonal representation the effective = Okool 855N+ 277), (B2)
widths and/or heights of the tunnel barriers are thinner and/o&

. . nder the assumption that opposite spin projections are or-
lower than without the nonorthogonality. b bp pin proj

thogonal. Witha=[0c'] we have
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The commutator
[CuohP]= 0 L,(d,)P82PX3, (B4)

wherea is a Fermi-like transition, is also nonzero, in general.

APPENDIX A: THE COMMUTATORS In particular, for any diagonal transitionp=[pp]
OF THE ELECTRON OPERATORS e{loo],[22]} the commutator in EqB4) is given explic-
_ . itly b
By the definition of the electron operators in Ed) the y by
nonvanishing anticommutator of two electron operators is P -1 [Oulpya
given by [Cko'ih ] Oko',u,<0|dp,|lu’>sa X
= 05 0]d, | ) [ XO, hP]
T _ -1 -1 _
{Cko,ck'a'}—klkélsz Ookys, O szzk’o’J bic,(X1) bi,(X2) = 8,0 o X007, (B5)
X{(xy), 0 (xp) Y X%, Where%s for t_hle (t)ransitior[pp]z[OO] the commutator
[Cko h"]=— O X7
= OesOrt 6550
klkgslsz kokysy = kosk! o 155 K11k APPENDIX C: THE QUANTUM DOT GREEN FUNCTION
:(Qgglk,g, , (A1) In this appendix we will show that the lesser QD GF can
be partitioned into a left and a right term, i.&5, (t,t’)
since =G, (t,t")+Gg,(t,t"). The QD GF is defined by
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Gyor (1,t)=(— i (TXO7 ()X O(t"))y

A(TSX7()X7O(t))
=(=i )
with the action S=ex(i f:g_'BH’(t)dt] which contains
the source fields H'(t)={Ug(t)h°+=,[U,,(t)h"
+Uo,(t)Z7°]}. The source fields)(t) are used for con-
structing a perturbation expansiSiior the QD GF by means
of the functional derivativesR,,:(t)=i[J,, 6/ 6Uqo(t)
+ 618U, ,(1)]. All information about the physics contained
in the QD GF is obtained by letting the source fieldg(t)
—0, in which limit all expectation values that do not con-
serve the longitudinal part of the spin projectige.g.,
P.o(1), G,-(t,t")] vanish. We are looking for an expression
for the QD GF on the form G, (t,t")
=Dygn(t,t")Pynyi(t"), whereD,,(t,t") is the locator of
the QD GF. For briefness we p&,(t,t")=G,,(t,t'). The
QD GF is thus given Bf*?

(CD

to—iB
GU('[,t’)=Jt d(t,t){[o(t,—t")
0
+ U(r(tl !t,)P(r(t,)]P(r(tl) + 5P(r(tl 1t,)}dtl

to—i
+
to

B
du’(tltl)zo(tl !tZ)GU(tZ ,t,)dtldtz,

(C2
where d,(t,t') is the bare QD locator satisfying
(i alot —A20)d, (t,t)=6(t—1"),

P, (ty,t') = E(z)s(tl,t')
S=o,0
to—iB
+ft V(ty,t5)Dg(t,,t")dt,
0
XRys(17)Psy(t’) (C3

is a correction to the cumula®,(t) whereas the self-energy
Eo’(tl !t2)

=kELR O iV (1) + Pt )V,(ty 1)

to—iB
- 27 Vg(t1,t3)D(t3,t4)

S=o,0 t0

X Ros(t") Dy, (ta,to)dtadty. (Ca)

PHYSICAL REVIEW B56, 195319 (2002

NU,U(t)E<Z""’(t)> as the population numbers of the transi-
tions [00] and [o'o], respectively. We have also put
P, (t)=Pg(t).

The lesser counterpart of the QD GF is easiest found by
studying the algebraic structure of E(C2) G,=d,([1
+v,P,|P,+6P,)+d,2,G,, remembering that,, v,,
8P,, X,, and G, are functions of two time variables,
whereasP,, is a function of one time variable. Applying the
rules for analytical continuatidf*!yields the lesser QD GF,
after tidying up the formulas

di[(d}) " '=301G, =d ([1+v5P,]P,+ SP3+33GE)
+d (vsP,P,+ 6P +35G?).
(CH

Multiplying from the left by D!(dl)~!, where D!
=[(dl)"1=3]1"1, and noting that ¢) 'd>=0 identi-
cally, we arrive at

o

Grtt)- | WD[,(t,m([vj(tl,t')

XPa(t,)P(r(tl)+5P:(tl!t,)]
+j°° Ei(tlitz)Gi(tzyt’)dQ)dtl- (Co)

The effective interactions), and V, are actually sums
over the left and the right conduction bands, i.e.
v (tt)=v (tt) tugs(t,t’) and V (t,t")=V (t,t")
+Vg,(t,t"), where

ULU(tlt,): Epe LVDpU(t)ng(t!t,)O[;S(r

and

VL(r(tit,) = Epe LVDp(r(t)gpa'(tvt’)VpD(r(t’)!

and analogously for the right terms. Therefore, the right hand
side of Eq.(C6) can be partitioned into a left and a right term
according toG; (t,t")=G,(t,t')+Gg,(t,t"), where, for
example, G5 (t,t’) is given the replacements; (t,t)
—vo (tLt),  SS(tt)—35 (tt))  and 8P (tt')
—8P5 (t,t") in Eg. (CH).

The quantum dot population numbekg and N; =N,
+N, are calculated by using the fact thal(t)
=ImG; (t,t) and the conditiorNg(t) +N,(t)=1. Actually,
the sum of population numbers is only approximately equal
to 1 because of the nonorthogonal representation. However,

Here, we have introduced the effective interactionsthe deviation is in the order ¢©,,|* and can therefore be

0o(tt) = ket RVoko(DGio(t 1) 045, and V(L")
:EkeL,RVDkU(t)gkU(t1t/)VkDO'(t/)1 where VDko’(t):U:J
+0pk ew,. The cumulantP,, . (t)=(T{X%7 X" °}(t))y
=855 No(t) + N, ,(t) is the sum of time-dependent popu-
lation numbers. For time-dependent source fields the Q

population numbers are not well defined since the off-

neglected. The bias voltage4(t) is accounted for since the
lesser QD GF can be partitioned into a left and right term,
each of which depends on the quasichemical potential in the
corresponding lead. To be specific, @, ,(t,t') appear

he lesser effective interactions,(t,t') and V[, (tt'),

both of which containing the lesser GR ,(t,t')

diagonal expectation values are nonzero as well. Neverthe=if (¢) exp(if;[e+® (9]d9, where f (¢) depends on

less, for briefness we will refer tdNo(t)=(h°(t)) and

the quasichemical potential, (t)=u+ P (1).
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The conduction electron population numbdrsthe deri-  since[ ¢, ,h“]= —[c,,h°]. The last two terms to the right
vation of the current in Sec. Ill we used some properties ofn this equation, can be rewritten in termsRf andR;, i.e.,
the population numbetn,,(t))=(c}, (t)cy,(t)). The dy-
namics of the Fermion operatar,(t) is given by the (T(h7+h%) (N () y=[P(t") + Ry (t ) [(nyo(1)),
Heisenberg equation of motion

(Te(DZ7 (D D)y

J
( i ek(,)ck[, Vioa(DXO7+[ O v, () (h7+h0) ¢y, t1@3 tzlljrgl[P wolt) F Ryg(t) (L (1) Ciialt)).
+O;Dlw;:(jt)2‘7"ck;] 7 In this paper we restrict the investigations to the self-

consistent field approximation where the functional deriva-
where we have used the anticommutation relations derived itives of (ny,(t)) and(clu(t)ck;(t» can be neglected, i.e.,
Appendix B and we have puVyp,(t)=0 3, (t)A%(t) R, (t") (N, (t))=0 andR,,(t;){c} (t)cs(t,))=0. This is
+ui(t), where A% (t)=E,(t)—Eo(t) is the bare QD not a severe restriction, since the interactions between the
many-body tranS|t|omanangue of the single-electron lejel localized states are taken into account in the Hubbard opera-
From Eg. (C7) we obtain the time derivative of tors. Moreover, the produd?,,%tl)<Tck,,(t)ck1t2)>U 0,
a1t (N, (1)) = —i[ ¢}, Cro H]=2Imc} [ Ckor, H], thus since we neglect all spin-flip processes for the conduction

electrons. Therefore, the time developmentiof,(t)) will

) _ _
(D) = = 2IM{V o, (D(TX(], (D) be given by the equation

Jd
— [0 Ve (O(T(hT+hO) ()N, (1)) 21 {Nko(D) =~ 21m[ (Viip (D(TXO(t) (1)) y
+ 0 oA Tl (D Z77 (e (D) ), = OV, (DP ) (N ()], (CY)
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