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Effects of non-orthogonality and electron correlations on the time-dependent current
through quantum dots
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Three issues are analyzed in the physics of time-dependent tunneling current through a quantum dot with
strongly correlated electrons coupled to two external contact leads:~i! nonorthogonality of the states of
electrons in the leads and in the quantum dot,~ii ! non-Fermi statistics of the excitations in the quantum dot, and
iii ! kinematic shift of the quantum dot levels. The contributions from nonorthogonality effectively decrease the
mixing interaction between the leads and the quantum dot and the width of the quantum dot level whereas the
Gibbs statistics slightly changes the spectral weights of quantum dot levels, and decreases the widths, but does
not introduce drastical changes to the current. The kinematic interactions are taken into account within the loop
correction. For the case of block signal, the time-dependent current shows oscillations starting at the onset and
termination of the bias voltage pulse.
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I. INTRODUCTION

During a course of the last two decades, the possibility
producing electronic devices on the length scale of nano
tres have compelled a reassessment of our technologica
perimental and theoretical views of electron transport.
example, nowadays capability in producing tunnel junctio
having the effective width in the range of 1–100 nm~Refs.
1–5! is more or less routine. Connecting nanotubes to m
tallic droplets of a diameter;5220 nm, thereby construct
ing a single electron transistor, is a reality today.6 The tech-
nological advances have provided physicists with tools
investigations of both weakly and strongly correlated el
trons by means of open and closed quantum dots~QD’s!,
respectively, coupled to external contact leads. There
many more applications of the state-of-the-art technology
mesoscopic systems.

Theoretically, the developments of tunnel transp
through interacting regions7–12 have been performed in th
stationary regime as well as in the time-dependent c
Many major breakthroughs in the understanding of the t
nel transport have been based on the tran
Hamiltonian13,14which relies on a very simple, although ph
nomenological, concept. The idea is to split the system
subsystems,15 each of which can be treated individually, an
describe the interactions between the parts by a transfe
electrons from one into another. The motivation is that
building blocks of the system can have completely differ
physical properties for which it is preferable to employ d
ferent descriptions. Moreover, the approach offers a conc
tually uniform way to describe any system which can
regarded in terms of subsystems coupled via transfer of e
trons between the subsystems. However, the conventi
transfer Hamiltonian suffers from serious problems for
acceptable quantitative account of the transport thro
nanostructures. The model scheme of the transfer Ha
tonian have been criticized by Svidzinskii.16 First, the left
and right states are not well defined in this scheme. Indee
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has been shown17,18 that the result depends on the method
introducing the left and the right states. When Prange17 used
orthogonal states, the suggested model scheme was no
tained whereas in the case with nonorthogonal states
model scheme was derived, however, an over-complete b
set and a restriction on the energies of the allowed st
were used. Second, the transfer~tunneling! of an electron
between two subsystems arises due to an overlap of the w
functions of the two parts. The overlap, on the other hand
usually regarded as important only in the region of the tun
barrier or, put in another~mathematical! way, the electron
operators of the different subsystems areassumedto anti-
commute. This severe simplification leads not only to a la
of precision in computational studies, but, also to a loss
nontrivial physical implications. As discussed by Embe
and Kirczenow19 there are existing mathematical methods
express the nonorthogonal bases which spans the subsys
but these are, however, of no help since the simple phys
interpretation is lost at the same time as the nonorthogona
disappears. The proven success and the physical tran
ency of the transfer Hamiltonian approach makes it desira
to extend its applicability to more general situations whe
the overlap is large. One of the purposes of this paper i
show, by means of a generalization of the transfer Ham
tonian formalism,20,21 that the well-known formulas for the
tunnel current through interacting regions coupled to exter
contact leads11,22 formally can be recovered. Furthermor
we will make a thorough analysis of the implications of ta
ing the nonorthogonality into account. Then, we study effe
from strong electron correlations for QD’s in a region
parameters where Kondo contributions9,23–28 are not rel-
evant. We will not discuss here any kinds of assisted tun
processes which restrict our investigations to low tempe
tures. Our three main tasks here are~i! to investigate the
effect of the nonorthogonality between the states of the s
systems,~ii ! to inspect if there is any visible manifestation
Gibbs~non-Fermi! statistics of the excitations in the QD, an
~iii ! to study the role played by the kinematic interactions
the QD in the formation of the current through the quantu
©2002 The American Physical Society19-1
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device. It is worth to note that we cannot use directly t
Keldysh diagram technique29 since the operators of the ele
trons in the leads and the QD donot ~anti! commute due to
nonorthogonality and, therefore, thezeroHamiltonians of the
subsystems cannot be extracted, i.e., exp(H0

c1H0
D)

ÞexpH0
c exp H0

D . For this reason we perform the calcul
tions within the Kadanoff-Baym approach.30

We begin the paper with description of the system and
nonorthogonal approach used in Sec. II and continue in S
III by deriving the expression for the time-dependent curre
We present some results in Sec. IV and summarize the p
in Sec. V. In the appendix we derive the anticommutators
the electron operators, a general expression for the QD
and the equation of motion for the conduction electro
population numbers.

II. DESCRIPTION OF THE SYSTEM
WITHIN THE NONORTHOGONAL BASIS SET

Consider a system of interacting electrons moving in
external potentialV characterizing the system, see Fig. 1~a!
for an example~actually, in the numerical results present
in Sec. IV, we use the model potentials given in Fig. 1!. We
assume that the part of the Coulomb repulsion which is
cluded to the spectrum of carriers in the leads is sufficient
our description and we neglect collisions between the ca
ers in the leads. Letc(x,t), x5(r ,s), be the exact particle
field operator associated with the Hamiltonian of the syst
satisfying the usual anticommutation relations for Ferm
operators. Suppose thatHa , a5L,D,R is a set of auxiliary
Hamiltonians for single particles in the potentialsVa . Here
the Hamiltonians correspond to the left~L! and right ~R!
leads and the QD (D). For instance, the left potential ma
be taken asVL(z)5V(z)u(2z2aL)1V(2aL)u(z1aL),
wherez is the direction of the transport in our case andaL is
a turning point of the left subsystem, see Fig. 1~b!. The two
other potentials may be defined analogously, see Figs.~c!

FIG. 1. The potentialV in the original system~bottom! is di-
vided into the auxiliary leftVL , right VR ,and middleVM potentials.
For the auxiliary potentials the squared modulus of examples
wave functions in each system are plotted.
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and 1~d!. Corresponding to the HamiltonianHa there is an
orthonormal set of eigenstates$eks ,fks%. Here the indexk
merely labels the eigenstate and does not correspond to
quasimomentum of the electron. Examples of the squa
modulus of these wave functions are illustrated in Fig. 1.
the projections31,32 c̃ks(t)5*fks* (r )cs(r ,t)dr of c onto the
auxiliary systema, whereksPa, an annihilation operator
of a particle in the statefks with the spin projections is
defined. A creation operatorc̃ks

† is defined analogously
However, if we write the Hamiltonian in terms of these o
erators, it will contain not only the matrix elements on t
functionsfks(r ), but, also, the overlap matrices. In order
avoid the latter we include the inverse of the overlap ma
ces into the definition of the annihilation and creation ope
tors

cks~ t !5(
k8

O kk8s
21 c̃k8s~ t !,

cks
† ~ t !5(

k8
~O kk8s

21
!* c̃k8s

†
~ t !, ~1!

where k8 runs over all states inLøDøR and Okk8s

5^fkufk8&5Ok8ks
* defines the overlap between the su

systemsa and a8. Here we have used the approximatio
O ksk8s8

21
5dss8O ksk8s

21 and introduced the short-cut notatio
O kk8s

21 [O ksk8s
21 . The definition of the electron operators a

in Eq. ~1! yields the anticommutator$cks,ck8s
† %5O kks

21 ,
which is derived in detail in Appendix A. In terms of th
operators given in Eq.~1! we define the field operator
cas(r ,t)5(ksPacks(t)fks(r ), a5L,D,R.

Consider the identity cs(r ,t)5cAs(r ,t)1cBs(r ,t),
where cAs(r ,t)5(acas(r ,t) and cBs(r ,t)5cs(r ,t)
2cAs(r ,t). The accuracy of the operatorcAs , compared to
cs , is controlled by the remaindercBs . By adding suffi-
ciently many states in the expansion ofcAs the loss of ac-
curacy is made small and the remaindercBs can in many
cases be made negligible. We assume here that this is alr
done and therefore the remainder can be neglected. In
given expansion, then, the total population number oper
N(t)5(s*cs

†(r ,t)cs(r ,t)dr is given by

N~ t !5NLL~ t !1NDD~ t !1NRR~ t !1NLD~ t !1NRD~ t !

12Re(
s

E cLs
† ~r ,t !cRs~r ,t !dr , ~2!

where the operatorsNaa(t)5(s*cas
† (r ,t)cas(r ,t)dr , a

5L,D,R and NaD(t)52Re(s*cDs
† (r ,t)cas(r ,t)dr , a,

5L,R. Since the overlap between the left and the rig
subsystems is exponentially small, when a mesosco
QD is present in between, the last term in Eq.~2! can be
discarded. A straightforward calculation show
that Naa(t)5(ksPanks(t), where nks(t)5cks

† (t)cks(t),
and NLD(t)52Re(pmsO mpscms

† (t)cps(t) and NRD(t)
52Re(qmsO mqscms

† (t)cqs(t), where p,q,m run over the
states in theL,R,D, respectively.

of
9-2
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III. THE TIME-DEPENDENT CURRENT
THROUGH AN INTERACTING REGION

The systems we are interested in can be characterize
an interacting region, which we refer to as the QD for bri
ness. In order to not obscure the physical meaning and r
ability of the equations we use the simplest possible mo
which displays two of our main-target interests, namely,
nonorthogonality and strong correlations. For this reason,
choose a large Coulomb repulsionU such that the doubly
occupied states do not contribute to the conduction. The
els in the QD are assumed to have a large energetic se
tion and, thus, a negligible influence from the attached c
tacts and the applied external field. The QD is coupled
tunnel ~mixing! interactionsvks , to external contact leads
We are mainly interested in effects from the strong elect
correlations in the QD and therefore the leads are expre
in a free electronlike approximation with the quasichemi
potentialsmL(t) andmR(t) for the left ~L! and the right~R!
leads, respectively. We assume that the bias voltageFsd ap-
plied to the system drops entirely over the interacting regi
The quasichemical potentialsma(t) are related to the equi
librium chemical potentialm by mL(t)5m1FL(t), mR(t)
5m1FR(t), whereFL(t) and FR(t) are the time depen
dences of the single particle energies imposed by the app
voltage such thatFL(t)1FR(t)5Fsd(t). The physical
meaning of the potentialsFL,R(t) can be understood from
the speculations given by Mahan~p. 788 in Ref. 33!. The
time-dependence of the tunneling matrix elementvLD is de-
termined by the numbers of particles in the contacts and
QD,

vLD~ t !5exp@ i ~mLHL1mDHD1mRHR!#vLD

3exp@2 i ~mLHL1mDHD1mRHR!#

3(
k

vks exp@2 i ~mL2Ds0!tcks
† X0s],

whereFL(t)5mL2Ds0, see below for definitions ofcks
† ,

X0s, and Ds0. Similarly FR(t)5Ds02mR and FL(t)
1FR(t)5V. In our case@HL,HD#Þ0 and these paramete
are taken phenomenologically, since we do not calculate
matrix elements of the transitions self-consistently. Howev
this shows that the voltage is dropping differently on diffe
ent inhomogeneities and this problem requires a sepa
consideration. The system can be modeled by the exten
Anderson Hamiltonian,34 in which the QD is given byHQD

5(s«sds
†ds1Un↑n↓ , whereds

† (ds) creates~annihilates!
an electron in the QD at the energy«s andns5ds

†ds . How-
ever, sinceU is the largest parameter in the present situat
it is convenient to express the QD in terms of many-bo
operators, e.g., Hubbard operators,35 Xpp85up&^p8u describ-
ing the transitionup8&→up&. For a more transparent notatio
we introduceZpp8 for transitions of the kindus&→us̄&,
where the number of particles is unchanged, and lethp de-
note the diagonal transitionup&→up&. Such transitions will
be referred to as Bose-like whereas Fermi-like transiti
refer tou0&→us&. Here,s̄ signifies the opposite spin state
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s. The QD Hamiltonian is diagonalized in terms of the Hu
bard operators and readsHQD5(pEphp, where the state la-
bel p50,↑,↓. A conduction electron in the leada5L,R with
the energyeks(t)5eks1Fa(t) is created~annihilated! by
the operatorcks

† (cks). Thus, the Hamiltonian for the system
can be written

H5 (
ksPL,R

eks~ t !cks
† cks1(

p
Ephp

1(
ks

@vks~ t !cks
† X0s1H.c.#. ~3!

For the sake of transparency, we will only consider th
simple model below although the formalism allows for co
siderations of much more complicated structures, see Re
for the equilibrium case. The time dependence in the mix
arises due to the time dependence in the contacts while
time dependence of the QD states can be neglected due
large level separation and a small dipole moment induced
the electric field. Thus, the model differs from the standa
Anderson Hamiltonian by the presence of two conduct
bands, the time dependence of the parameters and by
anticommutation relations for electron operators ($cds,ds

†%
5O ks

21 , kPL,R, see Appendixes A and B!.
The time-dependent current through the QD is calcula

by the total charge rate of change in the system

J~ t !52
]

]t
^N~ t !&52

]

]t (
a5L,D,R

^Naa~ t !&

2
]

]t (
a5L,R

^NaD~ t !&50, ~4!

by charge conservation. As will be shown below, it is po
sible to divide the total current into a left and a right curre
term, i.e., J(t)5JL(t)1JR(t), and we study the curren
through the system by investigating one of these terms,
the left. In turn, each of termsJL(t), JR(t) can be separated
into contributions from both the tunnel and the displacem
currents.22,37–39We consider them separately.

A. The tunnel current

The purpose of this section is to show that in spite of
nonorthogonality of the wave functions of the subsystem
the standard expressions11 for the tunnel current can be writ
ten in a familiar and a well-know form, however, the mea
ing of the parameters is altered. Therefore, we study the
of change of the number of particles in the left lead whe
the total number of electrons iŝNLL(t)&5(psPL^nps(t)&
and the ps-dependent occupation number̂nps(t)&
5^cps

† (t)cps(t)&. The tunnel current, JLL(t)
52]^NLL(t)&/]t, from the left lead into the interacting re
gion becomes

JLL~ t !522Re(
ps

@VpDs* ~ t !Fps
, ~ t,t !2O ks

21~ t !vps* ~ t !

3^~h01hs!~ t !&gps
, ~ t,t !#, ~5!
9-3
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FRANSSON, ERIKSSON, AND SANDALOV PHYSICAL REVIEW B66, 195319 ~2002!
where the time derivative of̂nks(t)& is derived in Appendix
C, see Eq. ~C8!. Here the lesser GFFksā

, (t,t)

5 i ^Xā(t)cks(t)& andgks
, (t,t)5 i ^cks

† (t)cks(t)&. Due to the
nontrivial anticommutation relations there appear new c
tributions both to the tunnel coefficientvks→VkDs5vks

1O kDs
21 Ds0 and to the time development of^nks(t)&. To the

first order in VkDs , it is straight forward to see tha
the equation of motion for the transfer GFFks(t,t8)
5(2 i )^Tcks(t)Xs0 (t8) is contour integrated30 to

Fks~ t,t8!5O ks
21Ps~ t !gks~ t,t8!

1E
t0

t02 ib

gks~ t,t9!VkDs~ t9!Gs~ t9,t8!dt9,

~6!

where Gs(t,t8)5(2 i )^TX0s(t)Xs0(t8)&U and Ps(t)
5^T$X0s(t)Xs0(t)%&U are defined in Appendix C. By ana
lytical continuation40,41 of Fks , the lesser GFFks

, is given
by

Fks
, ~ t,t8!5O ks

21Ps~ t !gks
, ~ t,t8!

1E
2`

`

VkDs~ t9!@gks
, ~ t,t9!Gs

a~ t9,t8!

1gks
r ~ t,t9!Gs

,~ t9,t8!#dt9. ~7!

Substituting this expression into Eq.~5! and observing that

Re~@VkDs* 2vks* #O kDs
21 ^~h01hs!~ t !&gks

, ~ t,t !!

5Re„$uO kDs
21 u2Ds~ t !1@vks* 2vks* #O kDs

21 %

3^~h01hs!~ t !&gks
, ~ t,t !…50

the tunnel current becomes

JLL~ t !52Re(
ps

VpDs~ t !E
2`

`

Vps* ~ t8!@Gs
,~ t,t8!gps

a ~ t8,t !

1Gs
r ~ t,t8!gps

, ~ t8,t !#dt8. ~8!

Since scattering between the conduction electrons
the leads are not taken into account, the lesser, reta
and advanced counterparts of the GFgks(t,t8)
5(2 i )^Tcks(t)cks

† (t8)& are given by

gks
, ~ t,t8!5 i f L~eks!e2 i eks(t2t8)2 iE

t8

t

VL(t9)dt9,

~9!

gks
r ,a~ t,t8!57 iu~6t7t8!e2 i eks(t2t8)2 iE

t8

t

VL(t9)dt9,

where f L(eps)5 f (eps2mL) is the Fermi-Dirac distribution
function. Thep summation in Eq.~8! is replaced by an inte
gration over the density of states of the leadrs(e) and the
coupling between the lead and the interacting region is
fined by

Gs
L~ t,t8,«!52pVLDs~ t !VLDs* ~ t8!rs~«!ei *

t8
t

FL(t9)dt9.
~10!
19531
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In terms of these quantities the general expression for
time-dependent tunnel current through an interacting reg
can be written in the familiar11 form as

JLL~ t !52
1

p
Im(

s
E

2`

t E Gs
L~ t,t8,«!@Gs

,~ t,t8!

1 f L~«!Gs
r ~ t,t8!#ei«(t2t8)d«dt8. ~11!

A similar derivation of the current through the right barri
into the interacting region leads to an analogous equation
JRR(t). The conclusion, then, is that although we are wo
ing within the nonorthogonal representation, we have sho
that the formula for the tunnel current through a nonintera
ing or interacting region is formally equal to the result d
rived in Ref. 11. We stress that the formula given in Eq.~11!
generalizes expressions for the tunnel current based on
orthodox transfer Hamiltonian, with respect to the couplin
Gs

L,R between the leads and the interacting region. Indeed
the overlapO kDs

21 →0, illustrating the case of the orthodo
transfer Hamiltonian, Eq.~11! identically equals the resul
derived in Ref. 11. In this respect, the current is expresse
terms of the local properties of the interacting region, such
the density of electron states~DOS! and the density of elec
trons, proportional to ImGs

r and ImGs
, , respectively.

B. The displacement currents

As is seen from the expansion of the total populati
number operator in terms of the operators of the subsyste
not only the contributions fromNLL(t) and NRR(t) have to
be considered for full description of the transport. Also, t
operatorsNDD(t) andNLD(t), NRD(t) give significant con-
tributions. First we consider the time derivative of the Q
population, i.e.,

JDD~ t !52
]

]t
^NDD~ t !&52

]

]t (
s

^Ns~ t !&

52Im
]

]t (
s

Gs
,~ t,t !, ~12!

since ^Ns(t)&5ImGs
,(t,t). This contribution can be parti

tioned into a left and a right term, i.e.,JDD(t)5JDD
L (t)

1JDD
R (t) since the lesser QD GFGs

,(t,t8)5GLs
, (t,t8)

1GRs
, (t,t8), see Appendix C. Thus, theleft part of the QD

displacement current is given by

JDD
L ~ t !52Im

]

]t (
s

GLs
, ~ t,t !. ~13!

Next, we look at the part of the displacement curre
which comes from the population number^NLD(t)&, i.e.,
9-4
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JLD~ t !52
]

]t
^NLD~ t !&

522Re
]

]t (
s

(
pPL

O ps^Xs0(t !cps~ t !&

522Im
]

]t (
ps

OpsFps
, ~ t,t !. ~14!

Using Eq. ~7!, replacing the sum overp by an integration
over the density of statesrs

L(«) and defining

gs
L~ t,t8,«!52pOLDs* VLDs~ t8!rs

L~«!ei *
t8
t

FL(s)ds, ~15!

the currentJLD(t) is found as

JLD~ t !52
1

p
Re

]

]t (
s

E HODLsO LDs
21 rs

L~«!Ps~ t ! f L~«!

2E
2`

t

gs
L~ t,t8!@Gs

,~ t,t8!

1 f L~«!Gs
r ~ t,t8!#ei«(t2t8)dt8J d«. ~16!

By means of the expressions in Eqs.~11!, ~13!, and~16! the
left net current can now be written as

JL~ t !5JLL~ t !1JDD
L ~ t !1JLD~ t !. ~17!

This formula is the main result of the paper and is the st
ing point for a discussion of the effects of the overlap, t
statistics of the QD states and the many-body interaction
the QD. We stress that in the orthodox theory, where
anticommutators$cks,ds%5O kDs

21 and *ca* (x,t)cD(x,t)dx
are neglected, the last contribution in Eq.~17! is absent. Fur-
thermore, the first two terms also include additional con
butions in the tunnel coefficientsVkDs5vks1O kDs

21 Ds0
0 . In

Sec. IV we will analyze the effect of the overlapO ks
21 on the

current.

C. Stationary regime

In the stationary regime, the couplingsGs
L(t,t8,«)

5Gs
L(«) and gs

L(t,t8,«)5gs
L(«) become time independen

and the time integral in Eq.~17! is simply the Fourier trans
form of the lesser and retarded GF. We thus note t
NLD , NRD andNDD are time independent, hence the cont
butions from ]/]t ^NLD(t)&, ]/]t ^NRD(t)&, and
]/]t ^NDD(t)& vanish. Therefore,JLL52JRR and if we use
that Jnet5(JLL2JRR)/2, we obtain

Jnet5
i

4p (
s

E $@Gs
L~«!2Gs

R~«!#Gs
,~«!1@ f L~«!Gs

L~«!

2 f R~«!Gs
R~«!#@Gs

r ~«!2Gs
a~«!#%d«. ~18!

Further simplifications are achieved when restricting
analysis to the case whenGs

L(«)}Gs
R(«), commonly referred
19531
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to as proportionate coupling. Then, it is easily shown that
tunnel current through the interacting region can be writ
as

Jnet52
1

2p
Im(

s
E Gs~«!@ f L~«!2 f R~«!#Gs

r ~«!d«,

~19!

where Gs(«)5Gs
L(«)Gs

R(«)/@Gs
L(«)1Gs

R(«)# is the total
coupling for each spin projection between the leads and
interacting region. The expressions given in Eqs.~18! and
~19! were previously reported in Refs. 9–11, however, in t
present formulation all couplingsGs

a(«) contain explicit con-
tributions from the overlap matrix and the single-electr
transitions between the many-electron states of the QD
the new definition of the mixing matrix elementsvks→vks

1O kDs
21 Ds0.

IV. RESULTS

For a discussion of the three main tasks of this pap
stated in the introduction, we need to express the QD GF.
will do that in three different schemes to enable an analy
of the different aspects. In Appendix C a general expressio
for the QD GF is derived from which we first pick out th
Hubbard I approximation~HIA !, obtained by neglecting al
functional derivatives in Eq.~C2!, i.e.,

E
t0

t02 ibS F i
]

]t
2Ds0

0 2 (
kPL,R

O Dks
21 vks* ~ t !Gd~ t2t1!

2Ps~ t1!Vs~ t,t1! DGs
HIA~ t1 ,t8!dt1

5@d~ t2t8!1vs~ t,t8!Ps~ t8!#Ps~ t !. ~20!

Here we have introduced the interactions

vs~ t,t8!5(kPL,RVDks~ t !gks~ t,t8!O kDs
21

and

Vs~ t,t8!5(kPL,RVDks~ t !gks~ t,t8!VkDs~ t8!,

where

VDks~ t !5vks* 1O Dks
21 «ks .

For a time-independent external field Eq.~20! can be Fourier
transformed to

Gs
HIA~ iv!5

11vs~ iv!Ps

iv2Ds0
0 2 (

kPL,R
O Dks

21 vks* 2PsVs~ iv!

Ps .

~21!

Already in this approximation there appears a level shift
duced by the overlap, i.e.,Ds0

0 →Ds0
0 1(kPL,RO Dks

21 vks* . In
order to analyze the effects of the overlap we putO kDs

21

→lO kDs
21 , lP@0,1#. The overlapO pDs

21 [^fpufD& is, apart
from normalizing constants, given by
9-5
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^fpufD&;S 2Re
a

kDs2 ips
e2kDs(aL2b)1

e2kLs(aL2b)2e2kDs(aL2b)

kDs2kLs
1

e2kLs(aL2b)

kLs1kDs
D cos~kDsb!

1
2

kDs
2

kDs cosh~kLsb!sin~kDsb!1kLs sinh~kLsb!cos~kDsb!

11~kLs /kDs!2
e2kLsaL,
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where a5(kLs1 ikLs)/(2kLs), ps5A2«ps, kLs

5A2(V02«ps), kDs5A2Ds0
0 , and kDs5A2(V02Ds0

0 ).
The barrier heightV0 is measured from the equilibrium
chemical potentialm and aL , b are defined in Fig. 1. The
overlapO qDs

21 is calculated similarly. There are also cont
butions from the overlap in the level widthPsVs and the
spectral weight (11vsPs)Ps . In Fig. 2~a! the dashed line
shows theJ-V characteristics for the case when the over
is neglected. The picture is reduced to the single-elec
case by letting the cumulantPs→1 @dotted line in Fig. 2~a!#.
The difference between the two curves is small which, th
supports that the many-body population numbers in the
give a small effect on the current. This is expected since,
example, the cumulantP↑5N01N1/25N01N↑'1, N↑
5N↓5N1/2. However, the population numbers differ si
nificantly in the two cases, shown in Fig. 2~b! (N0) and (N1)
as a function of the bias voltage, see Appendix C for det
of the QD population numbers. Thus, in the paramagn
case the changes in the population numbersN0 andN1 com-
pensate each other and the current remains nonaltered. H
ever, they are manifested in some situations, e.g., s
transport.42 As the overlap is turned on, the leve
width is decreased sincevks5^fkuHufD&5OkDs«ks

2V0*2b
` fk* fDdx and, roughly, O kDs

21 ;2OkDs /(1

FIG. 2. Characteristic features of the current~a! and the popu-
lation numbers~b!, for a 4 nm wide QDconnected via 0.5 nm thick
and 1 eV high tunnel barriers, as functions of the bias voltage.
bare level Ds0

0 520 meV and the conduction electron DOSrs
a

51/(2W), whereW51 eV is the conduction band width. The plo
are made for the single-electron case~dotted lines!, within the HIA
with ~dash-dotted lines!, and without~dashed lines! the overlap and
with the loop correction with~bold solid lines! and without~solid
lines! the overlap.
19531
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2(kuO kDsu2) giving VkDs;OkDs@«ks2Ds0
0 /(1

2(kuO kDsu2)#2V0*2b
` fk* fDdx and similarly for VDks

5vks* 1O Dks
21 «ks . This readily shows that the magnitud

uVkDsu,uvksu which, in turn, furnishes the level with a
longer lifetime. The decreased width implies a faster onse
the current at a higher bias voltage given by the level sh
However, the level shift in this case is many orders of ma
nitudes smaller than the bare level position with respec
m, thus causing a negligible renormalization. The man
body population numbers are seen to have faster shifts w
the deviations from their corresponding equilibrium valu
are smaller, than in the case without the overlap.

The third approximation scheme we employ is obtain
by evaluating the first functional derivative in Eq.~C2! giv-
ing the loop corrected42 equation for the QD GF

E
t0

t02 ibS F i
]

]t
2Ds0~ t !2 (

kPL,R
O Dks

21 vks* ~ t !Gd~ t2t1!

2Ps~ t1!Vs~ t,t1! DGs
loop~ t1 ,t8!dt1

5@d~ t2t8!1vs~ t,t8!Ps~ t8!#Ps~ t !, ~22!

where the dressed many-body levelDs0(t) is found from the
self-consistent equation

Ds0~ t !2Ds0
0 5 i E

t0

t02 ib

Vs̄~ t,t1!D s̄~ t1 ,t1!dt1 . ~23!

The loop correction arises due to kinematic interactions
tween the states in the QD, which here is induced by
interactions with the conduction bands. Mathematically t
is caused by the nontrivial anticommutation relations b
tween the Hubbard operators. It is worth to note that
level Ds0 depends on the characteristics of the level a
conduction sub-bands of the opposite spins̄, a property that
can be used in connection with spin-dependent transport.42 In
the time-independent regime the QD GF is Fourier tra
formed to the same expression as in the HIA, that is,
~21!, however, now with the dressed levelDs0 given by

Ds02Ds0
0 5 (

kPL,R
VDks̄VkDs̄

f ~«ks̄!2 f ~Ds̄0!

«ks̄2Ds̄0

. ~24!

The resultingJ-V characteristics and population numbers a
shown in Fig. 2 with~bold solid! and without ~solid! the
overlap, respectively. One main difference between
curves is the rapid onset of the current as the level beco
resonant~lies between the left and right quasichemical p

e
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tentials!, when the overlap is not neglected. Another pecu
feature which is only observed in the case when the ove
is not neglected is that, the population numbersN0 and N1
are not monotonic functions of the bias voltage. Combin
with the smaller effective interactionVkDs , this gives a non-
monotonic behavior of the current and a small negative
ferential conductance as the voltage is increased when
level has become resonant.

Time-dependent current in the wide-band limit appro
mation. One of the simplest ways to illustrate time
dependent phenomena in the current is by employing a w
band-limit- ~WBL-! like approximation. Then,~i! the level
shifts from (kO Dks

21 vks* and ReVs(t,t8)Ps(t) are neglected
since they are small compared toDs0, ~ii ! the energy depen
dence of the linewidths Gs

D(t,t8,«)[ImVs(t,t8)Ps(t)
5Gs

D(t,t8) can be disregarded because of their slow va
tion in the voltage regime considered here, and,~iii ! allowing
only FL(t)5FR(t) for the energies in the leads. In this lim
one rather easily can obtain analytical results for the QD
which then are inserted into the current formula. Furth
more, since transport is often dominated by states clos
the quasichemical potentials and the level shift and width
generally slowly varying functions of the energy, the WB
for this case is fair approximation. The approximation a
allows for asymmetric barriers (Gs

LÞGs
R).

The retarded effective interactionsVs
r and vs

r are thus
given by

Vs
r ~ t,t8!52

i

2p
u~ t2t8!(

a
Gs

Da~ t,t8!E ei«(t2t8)d«

52 id~ t2t8!Gs
D~ t !, ~25!

vs
r ~ t,t8!52

i

2p
u~ t2t8!(

a
gs

Da~ t,t8!E ei«(t2t8)d«

52 id~ t2t8!gs
D~ t !. ~26!

Here we have introduced the notationsGs
D(t)5Gs

DL(t)
1Gs

DR(t), where Gs
Da(t)5Gs

Da(t,t) and Gs
Da(t,t8)

[2pVDas(t)VaDs(t8)rs
a exp@i* t

t8Fa(s)ds#, and gs
D(t)

5gs
DL(t)1gs

DR(t), wheregs
Da(t)5gs

Da(t,t) and gs
Da(t,t8)

[2pVDas(t)O aDs
21 rs

a exp@i*t
t8Fa(s)ds#. With these effective

interactions the retarded~advanced! QD GF becomes

Gs
r ,a~ t,t8!57 iu~6t7t8!@17 igs

D~ t !Ps~ t !#

3Ps~ t !e2 i *
t8
t

[ D̃s0(s)7 iGs
D(s)Ps(s)]ds, ~27!

whereD̃s0(t) equalsDs0
0 in the HIA andDs0(t) within the

loop correction. This expression can now be used to calcu
the lesser QD GF and the time-dependent current through
system. Up to now, all formulas have contained a tim
dependence both in the conduction electron energyeks(t)
and in the mixingvks(t), providing a time dependence o
the couplingsGs

L/R(t), the level widthGs
D(t) and the cumu-

lant Ps(t). For numerical simplicity, though, we neglect th
time dependence of the mixingvks in the following discus-
sion which gives constant couplingsGs

L/R , the level width
19531
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D and the cumulantPs . Then for a block signal~steplike

bias voltage pulse! Fsd(t)5F01F1(t), whereF0 is a con-
stant and F1(t)5F1@u(t2t0)2u(t2t1)#, the function
As

a(v,t)5*2`
` Gs

r (t,t8)exp@iv(t2t8)1i*t8
t Fa(s)ds#dt8, where

FL(t)1FR(t)5F1(t), becomes fort,t1

As
a~v,t !5

12 igs
DPs

v2D̃s01 iGs
DPs

PsS 1

2Fa

12ei (v1Fa2D̃s01 iGs
DPs)(t2t0)

v1Fa2D̃s01 iGs
DPs

u~ t2t0!D ,

~28!

where v5«1ma , ma is the constant shift of the qua
sichemical potential in the leada, andFa is the amplitude
of Fa(t). Here, D̃s05Ds0

0 in the single-electron case an

the HIA whereasD̃s05Ds0 within the loop correction. Let-
ting t→` in Eq. ~28! the limit expression isAs

a(v,t→`)

5(12 igs
DPs)Ps /(v1Fa2D̃s01 iGs

DPs), that is, the sys-
tem settles at its new steady state value as all the trans
decay. Fort.t1 the expression in Eq.~28! is replaced by

As
a~v,t !5

12 igs
DPs

v2D̃s01 iGs
DPs

Ps

3S 11Fa

12ei (v1Fa2D̃s01 iGs
DPs)(t12t0)

v1Fa2D̃s01 iGs
DPs

3ei (v2D̃s01 iGs
DPs)(t2t1)D . ~29!

Similarly, the limit t→` gives As
a(v,t→`)5(1

2 igs
DPs)Ps /(v2D̃s01 iGs

DPs), as expected.
The resulting time-dependent currents for the bias volt

step with and without the nonorthogonality taken into a
count are presented in Figs. 3~a! and 3~b!, respectively. In the
former the behavior of the currents is seen to differ for t
the HIA ~solid! and the loop correction~full ! around the on-
set of the voltage step. In the HIA the current grows exp
nentially to its saturation value whereas with the loop corr
tion the current first goes to a peak value and therea
decays to its new steady state value. Thus, the transien
havior of the current is affected when many-body intera
tions in the QD are considered. As the pulse terminates b
the HIA and the loop correction provides an oscillating dec
of the current, as expected from Eq.~29!. Figure 4~b! shows
the currents provided in the single-particle picture~dashed!,
the HIA ~solid!, and with the loop correction~full ! when the
nonorthogonality is neglected. The three schemes disp
similar qualitative behavior with rapidly decaying ringing
the onset and termination of the bias voltage pulse. As s
the single-particle picture and the HIA gives essentially
same net currents whereas within the loop correction the
rent has a slightly larger amplitude before and after the v
9-7
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FRANSSON, ERIKSSON, AND SANDALOV PHYSICAL REVIEW B66, 195319 ~2002!
age pulse, as expected from the stationary case~see Fig. 2!.
One of largest differences between the currents shown
Figs. 4~a! and 4~b! are the different time scales. As prev
ously discussed, the nonorthogonality decreases the
plings Gs

L,R and the level widthGs
D and therefore the relax

FIG. 3. The time-dependent current for the bias voltage s
Fsd(t)54515@u(t2t0)2u(t2t1)# mV in the with ~a! and with-
out ~b! the overlap. In~a! the currents are provided within the HIA
~solid line! and with the loop correction~full line!, taking the non-
orthogonality into account. The time scalet15600 ps. In~b! the
currents are given within single electron theory~dashed line!,
within the HIA ~solid line!, and with the loop correction~full line!,
without the nonorthogonality. The time scalet151 ps.

FIG. 4. The time-dependent currents within the HIA with t
loop correction with~a! (l51) and without~b! (l50) the nonor-
thogonality taken into account. Note the very different scales of
times and the amplitudes of the current.
19531
in

u-

ation time t becomes longer, sincet;1/(Gs
DPs). As a

result, the time scale of the tunneling process is longer wit
the nonorthogonal picture than in the orthodox. A compa
son of the net currents with and without the nonorthogona
within the loop correction is shown in Figs. 3~a! and 3~b!,
respectively, from which the different time scales are direc
seen. In this connection we also stress that the magnitude
the two curves are actually very different, where the non
thogonal picture results in a current which is approximat
one to two orders of magnitudes less than that of the ort
dox. Thus, the interpretation of experimental results requ
very different theoretical values of the couplings and t
level width, and hence the barrier widths and heights, wit
the two pictures. In Fig. 5 the different contributions to t
net current in Fig. 4~a! are shown and it is readily seen th
the tunnel current gives the main contribution to the curr
while the displacement currents tend to retard the tunnel
rent. However, the displacement current do not cancel out
ringing of the tunnel current completely and therefore th
remains a rapidly decaying ringing in the net current. T
contribution fromJLD(t) is seen to be small in this examp
but when the amplitude ofF1(t) is increased we have ob
served that this contribution plays an important role of t
complete picture.

V. CONCLUSIONS

In summary, we have shown how the transfer Hamilton
formalism can be generalized by including the nonortho
nality between the subsystems. It is formally shown that
tunnel current flowing through the left/right barrier into a
interacting region, e.g., QD, can be expressed in a w
known formulation@Eq. ~11!#, however, with an interpreta
tion of the tunneling coefficient that differs from orthodo
theories @vks(t)→VkDs(t)5vks(t)1O kDs

21 Ds0* (t)#. More-
over, we derived expressions for the displacement curre
@Eqs. ~13!, ~16!# and showed that the total current can
partitioned into two contributions, one for the flow throug
the left barrier and for the right. The QD was described
terms of Hubbard operator GF describing many-body int
actions within the QD. The QD GF was given within the HI

p

e

FIG. 5. The different contributions to the net current shown
Fig. 4~a!. The plot shows the tunnel currentJLL(t) ~solid-dotted
line! and the displacement currentsJDD

L (t) ~solid line with pluses!
andJLD(t) ~solid line!.
9-8
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EFFECTS OF NONORTHOGONALITY AND ELECTRON . . . PHYSICAL REVIEW B66, 195319 ~2002!
@Eq. ~20!# and with the loop correction@Eq. ~22!#, thus giv-
ing us the opportunity to analyze the significance of no
Fermi the statistics of the population numbers compared
Fermi statistics on the resulting current. The conclusion
that, although the behavior of the population numbers of
QD level differ considerably, the behavior of the current
only slightly affected. A comparison of the two approxima
schemes for the QD GF gives that, the many-body effe
given by the loop correction from kinematic interactions
ters the output current. Consequently, many-body effect
the QD should be considered for an adequate descriptio
the current. However, the main differences in the current
the non-spin-polarized case, is shown to be given by tak
the nonorthogonality into account. Actually, a comparison
the amplitudes of the currents with and without the over
shows a difference in the order of one to two magnitud
where the nonorthogonal representation provides the sma
This difference can be understood by that the coupling
tween, say, the left contact and the QD is not given by j
the matrix elementvLDs , as within the orthodox transfe
Hamiltonian approach, but byVLDs5vLDs1O LDs

21 Ds0,
whereO LDs

21 '2OLDs /(12uO LDsu22uO RDsu2) has the op-
posite sign ofvLDs and, therefore,decreasesthe coupling
strength. The comparison of the J-V characteristics for
thogonal and nonorthogonal cases, given in Fig. 1 of Ref.
shows that the current starts to grow at much smaller volt
in orthogonal case than in nonorthogonal, whereas for
solution on quasiclassical wave functions43 the discrepancy
even more drastical. Thus we conclude that, when interp
ing experimental results in terms of theoretical predictio
given within the nonorthogonal representation the effect
widths and/or heights of the tunnel barriers are thinner an
lower than without the nonorthogonality.
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APPENDIX A: THE COMMUTATORS
OF THE ELECTRON OPERATORS

By the definition of the electron operators in Eq.~1! the
nonvanishing anticommutator of two electron operators
given by

$cks,ck8s8
† %5 (

k1k2 ,s1s2

O ksk1s1

21 O k2s2k8s8
21 E fk1

* ~x1!fk2
~x2!

3$c~x1!,c†~x2!%dx1dx2

5 (
k1k2 ,s1s2

O ksk1s1

21 O k2s2k8s8
21 ds1s2

Ok1s1k2s2

5O ksk8s8
21 , ~A1!

since
19531
-
to
is
e

ts
-
in
of
n
g
f
p
s,
er.
-
t

r-
1,
e
e

t-
s
e
or

n-

s

$c~x!,c†~x8!%5ds8sd~r2r 8!

and

(
k1s1

O ksk1s1

21 Ok1s1k2s2
5dkk2

dss2
.

APPENDIX B: THE COMMUTATORS OF THE FERMION
AND HUBBARD OPERATORS

When the overlap between the leads and the interac
region is taken into account the general anticommutation
lation of a conduction and a localized electron is, in gene
given by36

$cks,Xā%5O ksm
21 ~dm!b«j

bāZj, ~B1!

where j is a Bose-like transition,a and b are Fermi-like
transitions,ā5@qp# is the reverse transition ofa5@pq# and
(dm)a[^pudmuq&. It should be understood that summation
taken over the Fermi-like and Bose-like transition indic
occurring twice. In the case when the dot effectively conta
only a single-orbital level and in the limit of infinite Cou
lomb repulsion, each single electron operator in the intera
ing region becomesds5X0s, wheres5↑,↓. Then, the Eq.
~B1! can, withXā5Xs80 be written explicitly as

$cks,Xs80%5O kss
21 ^0udsus&$X0s,Xs80%

5O kss
21 ~ds8sh01Zs8s), ~B2!

under the assumption that opposite spin projections are
thogonal. Witha5@0s8# we have

$cks,X0s8%50. ~B3!

The commutator

@cks,hp#5O ksm
21 ~dm!b«a

bpXa, ~B4!

wherea is a Fermi-like transition, is also nonzero, in gener
In particular, for any diagonal transitionp[@pp#
P$@ss#,@22#% the commutator in Eq.~B4! is given explic-
itly by

@cks ,hp#5O ksm
21 ^0udmum&«a

[0m] pXa

5O kss
21 ^0udsus&@X0s,hp#

5dspO kss
21 X0s, ~B5!

whereas for the transition@pp#5@00# the commutator
@cks ,h0#52O kss

21 X0s.

APPENDIX C: THE QUANTUM DOT GREEN FUNCTION

In this appendix we will show that the lesser QD GF c
be partitioned into a left and a right term, i.e.,Gs

,(t,t8)
5GLs

, (t,t8)1GRs
, (t,t8). The QD GF is defined by
9-9
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Gss8~ t,t8![~2 i !^TX0s(t !Xs80(t8)&U

5~2 i !
^TSX0s(t !Xs80(t8)&

^TS&
~C1!

with the action S5exp@i*t0

t02ibH8(t)dt# which contains

the source fields H8(t)5$U00(t)h
01(s@Uss(t)hs

1U s̄s(t)Zs̄s] %. The source fieldsUj(t) are used for con-
structing a perturbation expansion36 for the QD GF by means
of the functional derivativesRss8(t)5 i @dss8d/dU00(t)
1d/dUs8s(t)#. All information about the physics containe
in the QD GF is obtained by letting the source fieldsUj(t)
→0, in which limit all expectation values that do not co
serve the longitudinal part of the spin projection@e.g.,
Pss̄(t), Gss̄(t,t8)] vanish. We are looking for an expressio
for the QD GF on the form Gss8(t,t8)
5Dss9(t,t8)Ps9s8(t8), whereDss8(t,t8) is the locator of
the QD GF. For briefness we putGs(t,t8)5Gss(t,t8). The
QD GF is thus given by36,42

Gs~ t,t8!5E
t0

t02 ib

ds~ t,t1!$@d~ t12t8!

1vs~ t1 ,t8!Ps~ t8!#Ps~ t1!1dPs~ t1 ,t8!%dt1

1E
t0

t02 ib

ds~ t,t1!Ss~ t1 ,t2!Gs~ t2 ,t8!dt1dt2 ,

~C2!

where ds(t,t8) is the bare QD locator satisfyin
( i ]/]t 2Ds0

0 )ds(t,t8)5d(t2t8),

dPs~ t1 ,t8!5 (
s5s,s̄

S vs~ t1 ,t8!

1E
t0

t02 ib

Vs~ t1 ,t2!Ds~ t2 ,t8!dt2D
3Rss~ t1!Pss~ t8! ~C3!

is a correction to the cumulantPs(t) whereas the self-energ

Ss~ t1 ,t2!

5 (
kPL,R

O Dks
21 vks* ~ t1!1Ps~ t1

1!Vs~ t1 ,t2!

2 (
s5s,s̄

E
t0

t02 ib

Vs~ t1 ,t3!Ds~ t3 ,t4!

3Rss~ t1!Dss
21~ t4 ,t2!dt3dt4 . ~C4!

Here, we have introduced the effective interactio
vs(t,t8)5(kPL,RVDks(t)gks(t,t8)O kDs

21 and Vs(t,t8)
5(kPL,RVDks(t)gks(t,t8)VkDs(t8), where VDks(t)5vks*

1O Dks
21 «ks . The cumulant Pss8(t)[^T$X0s,Xs80%(t)&U

5dss8N0(t)1Ns8s(t) is the sum of time-dependent pop
lation numbers. For time-dependent source fields the
population numbers are not well defined since the o
diagonal expectation values are nonzero as well. Never
less, for briefness we will refer toN0(t)[^h0(t)& and
19531
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D
-
e-

Ns8s(t)[^Zs8s(t)& as the population numbers of the trans
tions @00# and @s8s#, respectively. We have also pu
Ps(t)5Pss(t).

The lesser counterpart of the QD GF is easiest found
studying the algebraic structure of Eq.~C2! Gs5ds(@1
1vsPs#Ps1dPs)1dsSsGs , remembering thatds , vs ,
dPs , Ss , and Gs are functions of two time variables
whereasPs is a function of one time variable. Applying th
rules for analytical continuation40,41yields the lesser QD GF
after tidying up the formulas

ds
r @~ds

r !212Ss
r #Gs

,5ds
,~@11vs

a Ps#Ps1dPs
a1Ss

aGs
a !

1ds
r ~vs

,PsPs1dPs
,1Ss

,Gs
a !.

~C5!

Multiplying from the left by Ds
r (ds

r )21, where Ds
r

5@(ds
r )212Ss

r #21, and noting that (ds
r )21ds

,50 identi-
cally, we arrive at

Gs
,~ t,t8!5E

2`

`

Ds
r ~ t,t1!S @vs

,~ t1 ,t8!

3Ps~ t8!Ps~ t1!1dPs
,~ t1 ,t8!#

1E
2`

`

Ss
,~ t1 ,t2!Gs

a~ t2 ,t8!dt2D dt1 . ~C6!

The effective interactionsvs and Vs are actually sums
over the left and the right conduction bands, i
vs(t,t8)5vLs(t,t8)1vRs(t,t8) and Vs(t,t8)5VLs(t,t8)
1VRs(t,t8), where

vLs~ t,t8!5(pPLVDps~ t !gps~ t,t8!O pDs
21

and

VLs~ t,t8!5(pPLVDps~ t !gps~ t,t8!VpDs~ t8!,

and analogously for the right terms. Therefore, the right ha
side of Eq.~C6! can be partitioned into a left and a right ter
according toGs

,(t,t8)5GLs
, (t,t8)1GRs

, (t,t8), where, for
example, Gas

, (t,t8) is given the replacementsvs
,(t,t8)

→vas
, (t,t8), Ss

,(t,t8)→Sas
, (t,t8) and dPs

,(t,t8)
→dPas

, (t,t8) in Eq. ~C6!.
The quantum dot population numbersN0 and N15N↑

1N↓ are calculated by using the fact thatNs(t)
5ImGs

,(t,t) and the conditionN0(t)1N1(t)51. Actually,
the sum of population numbers is only approximately eq
to 1 because of the nonorthogonal representation. Howe
the deviation is in the order ofuO kDs

21 u4 and can therefore be
neglected. The bias voltageFsd(t) is accounted for since the
lesser QD GF can be partitioned into a left and right ter
each of which depends on the quasichemical potential in
corresponding lead. To be specific, inGLs

, (t,t8) appear
the lesser effective interactionsvLs

, (t,t8) and VLs
, (t,t8),

both of which containing the lesser GFgLs
, (t,t8)

5 i f L(«) exp(2i*t8
t
@«1FL(s)#ds), where f L(«) depends on

the quasichemical potentialmL(t)5m1FL(t).
9-10



o

d

l
f

t

lf-
a-
,

the
era-

ion

EFFECTS OF NONORTHOGONALITY AND ELECTRON . . . PHYSICAL REVIEW B66, 195319 ~2002!
The conduction electron population numbers. In the deri-
vation of the current in Sec. III we used some properties
the population number̂nks(t)&[^cks

† (t)cks(t)&. The dy-
namics of the Fermion operatorcks(t) is given by the
Heisenberg equation of motion

S i
]

]t
2eksD cks5VkDs~ t !X0s1@O kDs

21 vks* ~ t !~hs1h0!cks

1O kDs̄
21 vks̄

* ~ t !Zs̄scks̄#, ~C7!

where we have used the anticommutation relations derive
Appendix B and we have putVkDs(t)5O kDs

21 (t)Ds0
0 (t)

1vks(t), where Ds0
0 (t)5Es(t)2E0(t) is the bare QD

many-body transition~analogue of the single-electron leve!.
From Eq. ~C7! we obtain the time derivative o
]/]t ^nks(t)&52 i @cks

† cks,H#52Imcks
† @cks,H#, thus

]

]t
^nks~ t !&522Im$VkDs* ~ t !^TXs0(t !cks

† ~ t !&U

2@O kDs
21 vks* ~ t !^T~hs1h0!~ t !nks~ t !&U

1O kDs̄
21 vks̄

* ^Tcks
† ~ t !Zs̄s(t !cks̄~ t !&U] %,
en

n.

s

i-

nd

, P
Le

.

on

19531
f

in

since@cks ,hs#52@cks,h0#. The last two terms to the righ
in this equation, can be rewritten in terms ofPj andRj , i.e.,

^T~hs1h0!~ t !nks~ t !&U5@Ps~ t1!1Rs~ t1!#^nks~ t !&,

^Tcks
† ~ t !Zs̄s~ t !cks̄~ t !&U

5 lim
t1→t2

lim
t2→t1

2
@Pss̄~ t1!1Rss̄~ t1!#^cks

† ~ t !cks̄~ t2!&.

In this paper we restrict the investigations to the se
consistent field approximation where the functional deriv
tives of ^nks(t)& and ^cks

† (t)cks̄(t)& can be neglected, i.e.
Rs(t1)^nks(t)&50 andRss̄(t1)^cks

† (t)cks̄(t2)&50. This is
not a severe restriction, since the interactions between
localized states are taken into account in the Hubbard op
tors. Moreover, the productPss̄(t1)^Tcks

† (t)cks̄(t2)&U50,
since we neglect all spin-flip processes for the conduct
electrons. Therefore, the time development of^nks(t)& will
be given by the equation

]

]t
^nks~ t !&522Im@~VkDs* ~ t !^TXs0(t !cks

† ~ t !&U

2O kDs
21 vks* ~ t !Pst1!^nks~ t !&]. ~C8!
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