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Classical versus quantum structure of the scattering probability matrix: Chaotic waveguides
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The purely classical counterpart of the scattering probability matrix~SPM! uSn,mu2 of the quantum scattering
matrix S is defined for two-dimensional quantum waveguides for an arbitrary number of propagating modesM.
We compare the quantum and classical structures ofuSn,mu2 for a waveguide with generic Hamiltonian chaos.
It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM
allows us to predict the global structure of the quantum one and, hence, understand important quantum
transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being
an intensity measure, can give additional dynamical information to that obtained by the Poincare´ maps.
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I. INTRODUCTION

The S matrix is the most fundamental tool for analyzin
quantum scattering phenomena in various fields of phys
for it provides us with the most complete scattering data@1#.
Moreover, it is often of interest to extend the analysis to
semiclassical regime. The first semiclassical formulation
the S matrix appeared in the early 1970s in the works
Miller @2# and Marcus@3# in applications to atomic physics
and some years later extensions to their work were car
out by Heller@4#. Their common approach uses the Feynm
propagator in the WKB approximation, thus taking into a
count classical dynamics together with quantum-mechan
interference, where the phases are given by the classica
tions. In Ref.@5# some important further developments o
the semiclassical treatment of scattering systems are lis
Quantum and semiclassical calculations of theSmatrix have
become essential for the understanding of transport phen
ena in mesoscopic systems@6#. In particular, in the ballistic
regime, the conductance is well described by the Landa
Buttiker formula @7# G5(2e/\2)(n(mutn,mu2, where tn,m
are the transmission elements of theS matrix. Semiclassica
expressions for the transmission amplitudes for collin
leads were obtained by Jalabert, Baranger, and Stone@8# ~see
also Lin @9#!.

One of the aims of studying ballistic motion in meso
copic systems has been to relate the experimentally obse
behavior of transport quantities, in the classical and quan
regimes, to their underlying classical dynamics@10#. This is
particularly interesting when the associated classical dyn
ics can be chaotic; then the purpose is to identify signatu
of chaos in the transport@11#. In a very recent example o
this kind of work, Ketzmerick@12# showed that the fracta
fluctuations ofG as a function of magnetic field in a chaot
cavity are related to the Poincare´-Birkhoff hierarchical struc-
ture of the phase space of the corresponding classical
tion. Previously, Baranger and co-workers@13# performed
detailed quantum and semiclassical calculations of cond
tance in mesoscopic systems that display chaos in the
sical regime. An important conclusion from their work is th
1063-651X/2002/65~4!/046605~8!/$20.00 65 0466
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the behavior of the average conductance can already dis
whether the underlying classical dynamics is regular or c
otic. Specially relevant for our purposes here is their find
that the dominant contributions to the average quantum c
ductance are classical. Thus it is natural to expect that us
information may be obtained by analyzingpurely classical
quantities, disregarding interference effects complet
Clearly, all the information contained in the phases of t
quantumS matrix, necessary to calculate, e.g., the Wign
Smith delay time, does not exist in the purely classical
scription. Nevertheless, as we shall show, important inform
tion can be extracted by studying thescattering probability
matrix ~SPM!; its elements are defined by the square mod
of the S-matrix elementsuSn,mu2, which give the transition
probability for an incoming modem to scatter into a moden.
The analysis of quantum and classical SP matrices is rele
also for the study of the wave-ray correspondence of elec
magnetic fields propagating in cavities@14# since, under cer-
tain conditions, the wave equations are the same as for
quantum ballistic transport@15#.

In this paper we shall construct the purely classical co
terpart of the quantum SPM valid for any two-dimension
~2D! waveguide of arbitrary shape. Before doing so, in t
following section we briefly review the definition of theS
matrix in its application to cavities connected to leads.
Sec. III we construct the classical SPM and compare
quantum and classical structures for a model of a mesosc
ballistic 2D waveguide that displays generic chaos in
classical limit. We shall show that the good global corresp
dence between classical and quantum SPM enables u
understand the classical dynamical origin of features of
quantum SPM and to clearly identify the differences p
duced by the wave nature of the quantum state. In Sec.
we make some concluding remarks.

II. S MATRIX FOR WAVEGUIDES

The S matrix relates incoming waves to outgoing wave

Vout5ŜVin, ~1!
©2002 The American Physical Society05-1
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whereVin andVout stand for vectors specifying, respective
waves coming into and going out of the interaction regio
For a system composed of a 2D waveguide of arbitrary sh
connected to two leads, say left~L! and right~R! leads, the
solutions in the leads are

CL,R~x,y!5 (
m51

@am
L,R exp~ ikm

L,Rx!

1bm
L,R exp~2 ikm

L,Rx!#fm
L,R~y!, ~2!

where

fm
L,R~y!5S 2

dL,R
D 1/2

sinS mpy

dL,R
D ~3!

is the component of the wave function along they axis, per-
pendicular to the direction of propagation~x axis!; dL stands
for the constant width of the left lead, which may be differe
from the widthdR of the right lead. For simplicity we shal
usedL5dR for the rest of the paper. The sum is over all t
propagating modes supported by the leads at a given F
energyE.

With this notation theSmatrix and the incoming and out
going waves can be written in the form

Ŝ5S t r 8

r t 8
D , Vin5S aL

bRD , Vout5S aR

bL D .

The symbolst, t8, r, and r 8 in the S matrix areM3M
matrices, whereM is the highest mode~given by the largest
m beyond which the longitudinal wave vector

km
L,R5A2meE/\22m2p2/dL,R

2

becomes complex!. The symbolsaL,R andbL,R stand for the
vectorsam

L,R andbm
L,R , m51,2, . . . ,M . Thesquaredmodulo

elementutn,mu2 (utn,m8 u2) gives the probability amplitude for a
left ~right! incoming modem to be transmitted to the righ
~left! lead into the moden. Similarly, ur n,mu2 (ur n,m8 u2) is the
probability for a left~right! incoming modem to be reflected
to the left ~right! lead into moden.

The quantum SPM is simply defined asuSn,mu2; it gives
the transition probability for the incoming modem to scatter
into an outgoing moden.

III. CLASSICAL SCATTERING PROBABILITY MATRIX

Since the energy of the system is given by its express
in the leads,

E5
\2

2me
S km

2 1
m2p2

d2 D , ~4!

classically we can associate an angleum between the longi-
tudinal component of the momentumkm and the total mo-
mentumA2meE/\. That is,
04660
.
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um5sin21F mp\

dA2meE
G . ~5!

For a finite numberM of modes there corresponds a ran
of anglesDum[um2um21 for each modem. The classical
limit is of courseM5`.

Consider a classical particle entering, say, from the
side and making an angleu i , within a range corresponding
to a given modem. The particle~ray! will generally collide
with the walls of the waveguide a few times before exiting
the left or to the right, making a certain angleu f , to which
we can associate a moden if u fPDun . Initial conditions are
specified not just by the angle but also by the initial positi
~x,y! along the left lead. In order to account for all possib
types of trajectories, we take a large number of initial po
tions for each incoming angleu i . By recording the number
of particles scattered into the various ranges ofu associated
with different outgoing modesn, we obtain a distribution of
outgoing modes for each incoming modem. This distribution
gives theclassical counterpartof the matrix elementsutn,mu2
and ur n,mu2 of the quantum SPM. Similarly, to obtain th
classical counterparts ofutn,m8 u2 and ur n,m8 u2 we repeat the
above process but for particles entering from the right le
This defines the procedure to construct theclassical counter-
part of the SPM.

Clearly, the semiclassical regime is defined byl/a!1,
wherel is the de Broglie wavelength. To get an express
of this condition in terms of the number of open modesM for
a given energy, we use the formula for the energy in
leads,

E5
\2

2me

~2p!2

l2 '
\2

2me

~Mp!2

d2 .

Here we neglected the value of the longitudinal wave vec
km

L,R . This givesl52d/M and the conditionl/a!1 gives
M@2d/a. Below, when we compare quantum and classi
calculations, we shall see how large this inequality should
in order to get a decent quantum-classical corresponde
~QCC!.

A. The waveguide model

We now specify a waveguide model on which to explo
the quantum and classical structures of the SPM. We cho
the geometry of the waveguide to be that of a ‘‘rippled
billiard, shown in Fig. 1, which is connected to two colline
leads of the same width. As a prototype of a quantum
electromagnetic waveguide, it has been used to study ce
transport manifestations of chaos in the classical@16,17# as
well as quantum@18# regimes. On the other hand, the infi
nitely long ~i.e., periodic! version of the rippled billiard, in-
troduced first in connection with beam acceleration proble
@16,19#, has been useful also for the understanding of typi
features of crystals~e.g., energy band structure, LDOS, etc!
and their quantum-classical correspondence@20–22#.

Although, as a scattering system, thefinite version of the
rippled channel is the relevant one, it is convenient first
5-2
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CLASSICAL VERSUS QUANTUM STRUCTURE OF THE . . . PHYSICAL REVIEW E 65 046605
review briefly the motion in the infinitely long rippled bil
liard, L→`. As usual, to get the dynamical panorama,
look at a Poincare´ map of the system. As the Poincare´ sur-
face of section, we choose, for reasons of symmetry,
bottom boundaryy50; the Poincare´ map is given by the
pair of Birkhoff variables (xj ,u j ), labeling the longitudinal
components of the position and angle of the particle ri
after its j th collision with the bottom wall. Since the chann
is periodic, the Poincare´ map is on the cylinder@i.e.,
x~mod 1!#. Depending on the geometrical parameters~aver-
age widthg and amplituden of the ripple! the dynamics is
either regular, mixed, or fully chaotic. Figures 2~a! and 2~b!
show, respectively, typical Poincare´ sections for a wide (g
50.5, n50.12) and a narrow (g50.25,n50.025) channel.
In general, for small amplitudes of the ripple (n!1) wide
channels (g* 1

2 ) give rise to global chaos, whereas narro
channels yield mixed dynamics, as exemplified by Figs. 2~a!
and 2~b!. For future reference in this paper we shall den
the system displaying globally chaotic dynamics (g50.5,n
50.12) as theG systemand the mixed one (g50.25,n
50.025) as theM system.

Since the Poincare´ plots of theperiodic rippled billiard
show topological chaos~i.e., a heteroclinic tangle!, it is not
surprising that afinite rippled billiard connected to the lead
shows chaotic scattering, as evidenced by the fractal na
of its scattering functions@17#. In fact, as is well known@23#,
topological chaos is responsible for the fractality of the sc
tering functions.

IV. RESULTS

In the following we shall compare the quantum and cl
sical SP matrices for both systems,G andM, and for various
lengths of a rippled waveguide. In all cases we will consid
energies that allow for 33 propagating modes.

A. The G system

Figures 3~a! and 3~b! show, respectively, the quantum an
classical SPM for the rippled waveguide whose length equ
one period of the ripple (L51). The resemblance betwee
the classical and quantum SP matrices is remarkable. Le
consider first the reflection part of the SP matrices, say
left bottom blockur n,mu2. Notice, in the classical SPM, th
high intensity in the neighborhood of the (n,m)5(11,11)

FIG. 1. Geometry of the waveguide.
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element and along a hyperbolalike curve centered on it.
quantum SPM also shows the same pattern. The same is
for the conelike shape starting at the (n,m)5(11,11) ele-
ment. More impressive is the similitude of triangular shap
near the top right corner. This global correspondence ena
us to predict, based solely on the classical pictures, impor
quantum transport features. For example, the classical S
predicts that there will be negligible reflection for modesm
<4. This is confirmed in Fig. 4, which shows in detail ho
the incoming modes 2 and 3 do not reflect, whereas the
coming mode number 5 does reflect partially into the out
ing mode number 24, just as predicted classically@note the
high-intensity element (n,m)5(24,5)#. These figures also
show that the modes 2, 3, and 5 transmit predominantly o
the same modes as the incoming ones; this would be just
the classical probabilities except that the quantum o
shows, in addition, small transmission to some modes off
diagonal. Detailed analysis of the data shows that the cla
cal SPM also gives transmission off the diagonal but it is
evident because their intensity is weak and almost unifo
over all modes. This difference is due to quantum interf
ence, which is also responsible for the larger width of t
diagonal elements of the transmission parts. As another
ample, the classical SPM predicts that mode 11, incom
from the left, will reflect and transmit predominantly on
the same channel number, which is confirmed by Fig. 4~b!.

It is instructive to identify the type of trajectories tha
form the most salient features of the classical SPM si
these are also evident in the quantum SPM. As an illus
tion, the triangular shape~see Fig. 5! that appears near th
top right corner of theur n,mu2 block results from incoming
trajectories colliding onlyoncewith the rippled boundary in
the neighborhood ofx5 1

2 , the hyperbolalike curve and als
the conelike shape are formed by trajectories collidingtwice
with the rippled boundary.

FIG. 2. Poincare´ surface of section atg50 for ~a! (g,n)
5(0.5,0.12) and~b! (g,n)5(0.25,0.025).
5-3
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FIG. 3. ~a! Quantum and~b!
classical SPM, uSn,mu2, for the
one-period waveguide with (g,n)
5(0.5,0.12).
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An important aspect of the quantum-classical corresp
dence, which was not expected, is the particlelike beha
that results from the interaction with the rippled wavegu
of certain plane waves. As an example, Fig. 6 illustrates
behavior for the incoming waves with mode numbers 24 a
29. Note that a high-intensity pattern is formed on the l
side of the rippled waveguide, resembling a ray trace. T
angle this pattern makes with the horizontal, labeleda in the
figure, corresponds precisely with the angle of reflection p
dicted by the classical SPM. In general, we see that w
there is ahigh-intensityelement in the classical SPM one ca
expect the wave function to form a ray pattern along
classical trajectory just outside the cavity. This may be
garded as a ‘‘short-lived scar.’’

In contrast, when the classical SPM showshomogeneous
areas of low intensityprobabilities, the quantum SPM is ex
04660
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pected to show a mottled pattern of medium-intensity pr
abilities. A homogeneous area of low-intensity classi
probabilities results when incoming particles within a ran
Dum scatter uniformly throughout a much wider range
angles. This effect, the defocusing caused by the ripp
boundary, is responsible for the strong sensitive depende
to initial conditions, the main ingredient of chaos. Clear
the larger the number of periods forming the rippled wav
guide, the stronger this effect should be. Figures 7~a! and
7~b!, showing the quantum and classical SP matrices for
same geometry as just above (g50.5,n50.12), but six times
longer (L56), confirm this expectation for thetransmission
parts. Comparison of the classical SP matrices@Figs. 3~b!
and 7~b!# shows that, with the exception of a high-intensi
spot near the transmission element (n,m)5(28,28) and a
short diagonal contribution (n,m),(5,5), all the distin-
-
FIG. 4. Reflection and trans
mission probabilities from the
classical SPM for~a! the incom-
ing modes 2, 3, 5 and~b! 11. The
one-period waveguide with (g,n)
5(0.5,0.12) is considered.
5-4
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FIG. 5. Typical types of trajec-
tories that contribute to the zone
marked in the reflection par
ur n,mu2 of the classical SPM of
Fig. 3.
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guishing features of the transmission parts obtained fo
one-period-long waveguide@Fig. 3~b!# are washed out in the
case of the six-period-long waveguide. The remaining hi
intensity diagonal elements for low modes are due to dir
transmission, i.e., to trajectories that transmit without coll
ing with the upper wall. To get an estimate for the number
incoming modes that transmit predominantly onto the sa
mode, we assume flat boundaries~since the amplitude of the
ripple is small compared to the widthg! and consider a
04660
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bundle of particles injected at (x,y)5(0.0,0.5). The particles
can transmit directly~no collisions with upper or lower
boundary! if their initial angle u i is in the interval
(2uc ,uc), whereuc[tan21(2L/d), andL is the length of the
channel. For the one-period-long and six-period-long wa
guide, these angles are, respectively, 0.46 and 0.083 rad.
ratio sin(0.083)/sin(0.46) is 0.18, which agrees with the ra
between the lengths of the high-intensity diagonals in
transmission of Figs. 3~b! and 7~b!.
e

FIG. 6. Wave function of the
incoming mode ~from the left!
number ~a! 24 and ~b! 29. ~a! a
;60° and~b! a;47° are the re-
flection angles predicted by th
classical SPM of Fig. 3.
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FIG. 7. ~a! Quantum and~b!
classical SPM,uSn,mu2, for the six-
period waveguide with (g,n)
5(0.5,0.12).
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We remark that the homogeneous spread of intensitie
the transmission part of the classical SPM for (n,m)
.(5,5) is consistent with the ‘‘equala priori distribution’’ of
theSmatrix required for the validity of the randomS-matrix
theory approach to chaotic cavities@24#. But note that in the
reflection parts of the classical SPM the inhomogeneity
especially strong. In fact, while the definite transmiss
structures of the one-period waveguide have been some
washed out in the six-period waveguide, classically, the
flection blocks remain practically the same as for the o
period-long waveguide. This is because the reflection st
tures are mainly formed by particles reflecting within the fi
period of the ripple, see Fig. 5. On the other hand, ba
scattering after the first period of the rippled wavegu
shows up classically as an almost homogeneous sprea
intensity throughout the reflection blocks~including the area
below the hyperbolalike curve for which there was no refl
tion for the one-period waveguide!. Thus, while classically
the definite pattern produced by the first period of the wa
04660
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guide persists, quantum interference of the backscatte
from the whole waveguide starts to destroy the pattern
served in the classical SPM.

Another interesting feature comes from the analysis of
relatively bright spot observed in the transmission part of
classical SPM near the site (n,m)5(28,28). An enlargemen
of this spot is shown in Fig. 8~a! and a typical trajectory
belonging to this pattern is shown in Fig. 8~c!. The distinc-
tive feature of these types of trajectories is that they coll
twice with the rippled boundary for each bounce with the fl
boundary. These are periodic or quasiperiodic orbits adva
ing always to the right and form the stability island surroun
ing the stable period-one fixed point shown in Fig. 8~b!. It is
important to remark that this miniscule Poincare´-Birkhoff
structure~note the scale of the axis! is not visible in the
whole Poincare´ map of Fig. 2~a!, even though its effect is
clearly manifested in the classical SPM. Hence, we see
the SPM construction can give complementary informat
to that obtained by the Poincare´ maps because it is an inten
l

r-
-

FIG. 8. ~a! Enlargement of the
transmission part of the classica
SPM around the site (n,m)
5(28,28). ~b! Phase space gene
ated by the trajectories that pro
duce the structure of~a!. ~c! Typi-
cal orbit belonging to the pattern
in ~a!.
5-6
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FIG. 9. ~a! Quantum and~b!
classical SPM, uSn,mu2, for the
one-period waveguide with (g,n)
5(0.25,0.025).
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sity measure. On the other hand, such a spot is not prese
the quantum SPM because the size of the Poincare´-Birkhoff
structure is too small to be resolved quantum mechanic
~there are other spots visible but they do not correspon
the classical one; they originate from constructive interf
ence!.

B. The M system

Now we examine briefly the classical and quantum
matrices for theM system. Figures 9~a! and 9~b! show these
matrices for a one-period-long waveguide. Again, a qu
comparison of these shows that the global features of
quantum SPM can be predicted by the classical SPM. We
that regions of high-intensity areas in the quantum SPM c
respond roughly to the high-intensity areas of the class
SPM, albeit fluctuations within them. However, there a
some important differences that we shall discuss now. N
that both classical and quantum SP matrices show that re
tion occurs only for high modes but the classical reflect
occurs only for modes higher or equal tom531 while quan-
tum reflection~although weak! exists even for modes as low
as m510. The mechanism responsible for the reflection
classical particles can be understood by examining the P
caré map of the infinitely long channel, Fig. 2~b!, which
shows a large resonance island centered atx5 1

4 . This reso-
nance is produced by trajectories executing librational m
tion, bouncing between the two walls in the neighborhood
the widest part of the channel,x5 1

4 . It is clear then that
particles entering the rippled waveguide from the left ax
50 can reflect~after one or several bounces! within thefirst
periodof the channel if their trajectories fall within the res
nance island. Trajectories falling on the chaotic sea outs
the resonance island~hence low transversal mode numbe!
can also reflect via the chaotic separatrix but not within
first period of the ripple. The longitudinal momentum
these librational orbits is relatively small@see Fig. 2~b!#,
hence their transverse momentum is large. Detailed ana
using Eq.~5! and data from Fig. 2~b! shows that indeed the
lowest mode that can reflect ism531, in agreement with
Fig. 9~b!. In contrast there is a strong quantum reflection
modes as low asm525. Heisenberg’s uncertainty principl
is responsible for this difference. Namely, the quantum s
cannot resolve the fine classical boundaries defining the r
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nance island and consequently even smaller values ofm can
‘‘tunnel’’ into the resonance island to cause partial reflectio

As regards the usefulness of our classical approach,
recall that good QCC is expected forM@2d/a. For theG
system, where 2d/a'8, our calculations showed that alread
for M533 the classical SPM reproduces the essential
tures of the quantum SPM. Note thatM533 implies l
'a/4, which seems to be sufficient to yield good QCC. F
the M system we also usedM533, however, since here
2d/a520, thenl is only slightly less thana (l50.6a) and
consequently the classical SPM showed important diff
ences from the quantum one, ascribed to Heisenberg’s un
tainty principle. It is important to remark that good QC
depends not on the type of dynamics~global or mixed chaos!
but on the conditionl/a!1 or, equivalently,M@2d/a.
Thus, it is possible to have such a condition satisfied
channels that display mixed chaos, e.g.,l/a! 1

4 .

V. CONCLUDING REMARKS

We have studied quantum scattering properties of typ
waveguides with mixed and global chaos by examining
quantumscattering probability matrix~SPM! and its classi-
cal counterpart. We emphasize that the definition of the c
sical SPM does not include any semiclassical aspects.
showed that the structure of the classical SPM allows us
predict the global structure of the quantum SPM. Since f
tures of the classical SPM can be understood by the ana
of the trajectories, it was possible to understand the class
dynamical origin of important features of the quantum SP
Consequently, the analysis of the classical SPM of a gi
electron waveguide system is useful for the understandin
its quantum transport properties, e.g., conductance. Plot
the classical SPM can be examined quickly to determine
influence of the cavity on the various modes. For a giv
energy, some modes may show ballistic behavior while o
ers may display diffusive transmission, as observed rece
in Ref. @25#.

Our analysis of the quantum-classical correspondenc
the SPM led us to discover the existence of ‘‘short-liv
scars.’’ Specifically, we have seen that the wave funct
forms a ray pattern along the outgoing classical trajectory
modes corresponding to high-intensity elements of the c
5-7
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sical SPM. They can be considered as short-lived scars
cause after a few bounces the ray pattern is destroyed
quantum interference.

Finally, we wish to mention that certain small but rel
tively high-intensity areas in the classical SPM led us
disclose the presence of extremely small Poincare´-Birkhoff
structures of the otherwise globally chaotic billiard. Hen
the SPM gives complementary information to that obtain
.
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solely by topological tools~e.g., Poincare´ maps! since it is an
intensity measure.
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