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Classical versus quantum structure of the scattering probability matrix: Chaotic waveguides
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The purely classical counterpart of the scattering probability m&aiiv) |S,Lm|2 of the quantum scattering
matrix Sis defined for two-dimensional quantum waveguides for an arbitrary number of propagatingvhodes
We compare the quantum and classical structure}§,p,f1|2 for a waveguide with generic Hamiltonian chaos.
It is shown that even for a moderate number of channels, knowledge of the classical structure of the SPM
allows us to predict the global structure of the quantum one and, hence, understand important quantum
transport properties of waveguides in terms of purely classical dynamics. It is also shown that the SPM, being
an intensity measure, can give additional dynamical information to that obtained by the Poagse
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[. INTRODUCTION the behavior of the average conductance can already discern
whether the underlying classical dynamics is regular or cha-
The S matrix is the most fundamental tool for analyzing otic. Specially relevant for our purposes here is their finding
quantum scattering phenomena in various fields of physicghat the dominant contributions to the average quantum con-
for it provides us with the most complete scattering dafa  ductance are classical. Thus it is natural to expect that useful
Moreover, it is often of interest to extend the analysis to thenformation may be obtained by analyzimgrely classical
semiclassical regime. The first semiclassical formulation ofiuantities, disregarding interference effects completely.
the S matrix appeared in the ear|y 1970s in the works ofCIearIy, all the information contained in the phases of the
Miller [2] and Marcug3] in applications to atomic physics, guantumS matrix, necessary to calculate, e.g., the Wigner-
and some years later extensions to their work were carrie§mith delay time, does not exist in the purely classical de-
out by Heller[4]. Their common approach uses the Feynmarscription. Nevertheless, as we shall show, important informa-
propagator in the WKB approximation, thus taking into ac-tion can be extracted by studying teeattering probability
count classical dynamics together with quantum-mechanicdnatrix (SPM); its elements are defined by the square modulo
interference, where the phases are given by the classical a@f the Smatrix elementgS, />, which give the transition
tions. In Ref.[5] some important further developments on probability for an incoming modm to scatter into a mode.
the semiclassical treatment of scattering systems are listedhe analysis of quantum and classical SP matrices is relevant
Quantum and semiclassical calculations of §mmatrix have  also for the study of the wave-ray correspondence of electro-
become essential for the understanding of transport phenonfagnetic fields propagating in cavities4] since, under cer-
ena in mesoscopic systerf8). In particular, in the ballistic tain conditions, the wave equations are the same as for the
regime, the conductance is well described by the Landauefiuantum ballistic transpoft.5].
Buttiker formula[7] G:(Ze/ﬁ2)2n2m|tn’m|2, where t,, In this paper we shall construct the purely classical coun-
are the transmission elements of Benatrix. Semiclassical terpart of the quantum SPM valid for any two-dimensional
expressions for the transmission amplitudes for collineaf2D) waveguide of arbitrary shape. Before doing so, in the

leads were obtained by Jalabert, Baranger, and $&Jrisee  following section we briefly review the definition of the
also Lin[9]). matrix in its application to cavities connected to leads. In

One of the aims of studying ballistic motion in mesos- Sec. lll we construct the classical SPM and compare its
copic systems has been to relate the experimentally observéiantum and classical structures for a model of a mesoscopic
behavior of transport quantities, in the classical and quanturhallistic 2D waveguide that displays generic chaos in the
regimes, to their underlying classical dynamjd$]. This is  classical limit. We shall show that the good global correspon-
particularly interesting when the associated classical dynanfience between classical and quantum SPM enables us to
ics can be chaotic; then the purpose is to identify signaturegnderstand the classical dynamical origin of features of the
of chaos in the transpoftL1]. In a very recent example of quantum SPM and to clearly identify the differences pro-
this kind of work, Ketzmeric{12] showed that the fractal duced by the wave nature of the quantum state. In Sec. 1V,
fluctuations ofG as a function of magnetic field in a chaotic We make some concluding remarks.
cavity are related to the PoincaBirkhoff hierarchical struc-
ture of the phase space of the corresponding classical mo- Il. SMATRIX FOR WAVEGUIDES
tion. Previously, Baranger and co-workdrk3] performed
detailed quantum and semiclassical calculations of conduc-
tance in mesoscopic systems that display chaos in the clas- o
sical regime. An important conclusion from their work is that vou=syin, (1)

The S matrix relates incoming waves to outgoing waves,
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whereV" andV°" stand for vectors specifying, respectively,

marh
waves coming into and going out of the interaction region. Op=sin" Y| ——|. (5)
For a system composed of a 2D waveguide of arbitrary shape dv2meE

connected to two leads, say l€ft) and right(R) leads, the o
solutions in the leads are For a finite numbeM of modes there corresponds a range

of anglesA 6,,=6,,— 6,,_, for each moden. The classical
limit is of courseM =oo.
PLR(x,y) = > [ahRexpikh:Rx) Consider a classical particle entering, say, from the left
m=1 side and making an angle , within a range corresponding
L.R _ LR L.R to a given modem. The particle(ray) will generally collide
b X =Tk ) I (Y, @ with the walls of the waveguide a few times before exiting to
where the left or to the right, making a certain angle, to which
we can associate a modef 6; e A6, . Initial conditions are
5 |\ 112 mar specified not just by the angle but also by the initial position
( ) sin( y) 3) (x,y) along the left lead. In order to account for all possible
types of trajectories, we take a large number of initial posi-
_ _ ) tions for each incoming anglé, . By recording the number
is the component of the wave function along thaxis, per-  of particles scattered into the various range9 afssociated
pendicular to the direction of propagatiGnaxis); d, stands  wjth different outgoing modes, we obtain a distribution of
from the widthdg of the right lead. For simplicity we shall gjyes theclassical counterparof the matrix elementkt,, |2
UsedL:dR for the rest of the paper. The sum is over all theand |rn m|2 of the quantum SPM. S|m||ar|y, to Obta’|n the
propagating modes supported by the leads at a given Fermjassical counterparts dté,m|2 and |rr,1,m|2 we repeat the

m (Y)=

dL,R dL,R

energye. . . , ) above process but for particles entering from the right lead.
With this notation theS matrix and the incoming and out- Ths defines the procedure to construct tassical counter-
going waves can be written in the form part of the SPM.

Clearly, the semiclassical regime is defined XAa<1,
. ([t . at where\ is the de Broglie wavelength. To get an expression
S= Vvin= VOUt: . . .
rot)? bR/ of this condition in terms of the number of open mod&$or
a given energy, we use the formula for the energy in the
The symbolst, t', r, andr’ in the S matrix areMxM  leads,
matrices, wheré/ is the highest modégiven by the largest
m beyond which the longitudinal wave vector _h? (2m)?* K7 (Mm)?

kiiR=\2mE/h2—m?m?/df ¢
Here we neglected the value of the longitudinal wave vector
becomes complexThe symbolsa-R andb" R stand for the  k5R. This gives\ =2d/M and the condition\/a<1 gives
vectorsar, R andby®, m=1,2, ... M. Thesquaredmodulo ~ M>2d/a. Below, when we compare quantum and classical
elementt,, |? (|t;, /%) gives the probability amplitude for a calculations, we shall see how large this inequality should be
left (right) incoming modem to be transmitted to the right in order to get a decent quantum-classical correspondence
(left) lead into the mode. Similarly, |1, /2 (|, /%) is the  (QCO.
probability for a left(right) incoming modem to be reflected
to the left(right) lead into moden. A. The waveguide model
The quantum SPM is simply defined &, |% it gives
the transition probability for the incoming modeto scatter
into an outgoing mode.

We now specify a waveguide model on which to explore
the quantum and classical structures of the SPM. We choose
the geometry of the waveguide to be that of a “rippled”
billiard, shown in Fig. 1, which is connected to two collinear
I1l. CLASSICAL SCATTERING PROBABILITY MATRIX |eads of the same W|dth As a prototype Of a quantum or
I;;3Iectromagnetic waveguide, it has been used to study certain
transport manifestations of chaos in the classidél17 as
well as quantuni18] regimes. On the other hand, the infi-
nitely long (i.e., periodig¢ version of the rippled billiard, in-

(4) troduced first in connection with beam acceleration problems
[16,19, has been useful also for the understanding of typical
features of crystal¢e.g., energy band structure, LDOS, gtc.

classically we can associate an angjgbetween the longi- and their quantum-classical correspondejffi-23,.

Since the energy of the system is given by its expressio
in the leads,

tudinal component of the momentuky, and the total mo- Although, as a scattering system, fiirite version of the
mentumy2m.E/%. That is, rippled channel is the relevant one, it is convenient first to

046605-2



CLASSICAL VERSUS QUANTUM STRUCTURE OF TH. .. PHYSICAL REVIEW E 65 046605

y (@)
y =¥+ V sin(2nx)

v
Y1 0

0 —4—
(b)

X

FIG. 1. Geometry of the waveguide. 0

review briefly the motion in the infinitely long rippled bil-
liard, L—o. As usual, to get the dynamical panorama, we
look at a Poincarenap of the system. As the Poincaser-
face of section, we choose, for reasons of symmetry, the
bottom boundaryy=0; the Poincaremap is given by the
pair of Birkhoff variables X;,6;), labeling the longitudinal
components of the position and angle of the particle right™
after itsjth collision with the bottom wall. Since the channel
is periodic, the Poincareanap is on the cylinderi.e.,
x(mod 1)]. Depending on the geometrical paramet@eer-  element and along a hyperbolalike curve centered on it. The
age widthy and amplitudev of the ripple the dynamics is quantum SPM also shows the same pattern. The same is true
either regular, mixed, or fully chaotic. Figureéaand 2b)  for the conelike shape starting at the,i1) =(11,11) ele-
show, respectively, typical Poincasections for a wide ¥  ment. More impressive is the similitude of triangular shapes
=0.5,»=0.12) and a narrow=0.25,»=0.025) channel. near the top right corner. This global correspondence enables
In general, for small amplitudes of the ripple<1) wide us to predict, based solely on the classical pictures, important
channels §=3) give rise to global chaos, whereas narrow quantum transport features. For example, the classical SPM
channels yield mixed dynamics, as exemplified by Figa) 2 predicts that there will be negligible reflection for modas
and 2b). For future reference in this paper we shall denote<4, This is confirmed in Fig. 4, which shows in detail how
the system displaying globally chaotic dynamicg=(0.5,»  {he incoming modes 2 and 3 do not reflect, whereas the in-
=0.12) as theG systemand the mixed one ¥=0.25,»  coming mode number 5 does reflect partially into the outgo-
=0.025) as thev system o . ing mode number 24, just as predicted classicpligte the
Since the Poincarelots of theperiodic rippled billiard high-intensity elementr(,m)=(24,5)]. These figures also
show topological chaog.e., a heteroclinic tangleit is not  gpqy that the modes 2, 3, and 5 transmit predominantly onto
surprising that dinite rippled billiard connected to the leads ihe same modes as the incoming ones; this would be just like
shows chaotic scattering, as evidenced by the fractal natuige cjassical probabilities except that the quantum one
of its scattering functionfl7]. In fact, as is well knowni23],  gnows; in addition, small transmission to some modes off the
topological chaos is responsible for the fractality of the scatyjagonal. Detailed analysis of the data shows that the classi-
tering functions. cal SPM also gives transmission off the diagonal but it is not
evident because their intensity is weak and almost uniform
IV. RESULTS over all modes. This difference is due to quantum interfer-
ence, which is also responsible for the larger width of the
diagonal elements of the transmission parts. As another ex-
rample, the classical SPM predicts that mode 11, incoming
from the left, will reflect and transmit predominantly onto
the same channel number, which is confirmed by Fig).4
It is instructive to identify the type of trajectories that
form the most salient features of the classical SPM since
Figures 3a) and 3b) show, respectively, the quantum and these are also evident in the quantum SPM. As an illustra-
classical SPM for the rippled waveguide whose length equaltion, the triangular shapésee Fig. % that appears near the
one period of the ripplel(=1). The resemblance between top right corner of the&rn,m|2 block results from incoming
the classical and quantum SP matrices is remarkable. Let umjectories colliding onlyoncewith the rippled boundary in
consider first the reflection part of the SP matrices, say théne neighborhood ok= 3, the hyperbolalike curve and also
left bottom block|r, ,|?. Notice, in the classical SPM, the the conelike shape are formed by trajectories collidinige
high intensity in the neighborhood of ther,(n)=(11,11)  with the rippled boundary.

FIG. 2. Poincaresurface of section aty=0 for (a) (v,v)
(0.5,0.12) andb) (y,v)=(0.25,0.025).

In the following we shall compare the quantum and clas
sical SP matrices for both systen&andM, and for various
lengths of a rippled waveguide. In all cases we will conside
energies that allow for 33 propagating modes.

A. The G system
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An important aspect of the quantum-classical corresponpected to show a mottled pattern of medium-intensity prob-
dence, which was not expected, is the particlelike behavioabilities. A homogeneous area of low-intensity classical
that results from the interaction with the rippled waveguideprobabilities results when incoming particles within a range
of certain plane waves. As an example, Fig. 6 illustrates thid 6, scatter uniformly throughout a much wider range of
behavior for the incoming waves with mode numbers 24 andngles. This effect, the defocusing caused by the rippled
29. Note that a high-intensity pattern is formed on the leftboundary, is responsible for the strong sensitive dependence
side of the rippled waveguide, resembling a ray trace. Theo initial conditions, the main ingredient of chaos. Clearly,
angle this pattern makes with the horizontal, labeled the  the larger the number of periods forming the rippled wave-
figure, corresponds precisely with the angle of reflection preguide, the stronger this effect should be. Figurés) and
dicted by the classical SPM. In general, we see that whefi(b), showing the quantum and classical SP matrices for the
there is ehigh-intensityelement in the classical SPM one can same geometry as just above=£0.5p=0.12), but six times
expect the wave function to form a ray pattern along thelonger (L=6), confirm this expectation for theansmission
classical trajectory just outside the cavity. This may be reparts. Comparison of the classical SP matrifeigs. 3b)
garded as a “short-lived scar.” and 7b)] shows that, with the exception of a high-intensity

In contrast, when the classical SPM showsnogeneous spot near the transmission elementrt)=(28,28) and a
areas of low intensityprobabilities, the quantum SPM is ex- short diagonal contributionn({m)<(5,5), all the distin-
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guishing features of the transmission parts obtained for &undle of particles injected ak(y) = (0.0,0.5). The particles
one-period-long waveguidé-ig. 3(b)] are washed out in the can transmit directly(no collisions with upper or lower
case of the six-period-long waveguide. The remaining highboundary if their initial angle ¢; is in the interval
intensity diagonal elements for low modes are due to direc{— 6., 6,), whered.=tan *(2L/d), andL is the length of the
transmission, i.e., to trajectories that transmit without collid-channel. For the one-period-long and six-period-long wave-
ing with the upper wall. To get an estimate for the number ofguide, these angles are, respectively, 0.46 and 0.083 rad. The
incoming modes that transmit predominantly onto the sameatio sin(0.083)/sin(0.46) is 0.18, which agrees with the ratio
mode, we assume flat boundariesce the amplitude of the between the lengths of the high-intensity diagonals in the
ripple is small compared to the widtly) and consider a transmission of Figs.(®) and 7b).
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(b) flection angles predicted by the
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y .
2 25 3

046605-5



LUNA-ACOSTA, MENDEZ-BERMUDEZ, éEBA, AND PICHUGIN PHYSICAL REVIEW E65 046605

(@) ol 14 . .
9 rin
5 »
’ ’ .
20 ! Ay b
Y 7
L R . .
n a ™ LAl B Y FIG. 7. (8 Quantum and(b)
sl 4 s 1," classical SPM|S, |?, for the six-
5’ ’ ‘ ) period waveguide with +,v)
4 : _
20 "" v";. " " —(05,012)
< v
:"I’ ’ e ‘e
101 0" o wal ¢ S
[ ';' ‘ . " L
o e )
10 20 30 40 50 60 10 20 30 40 50 60
m m

We remark that the homogeneous spread of intensities iguide persists, quantum interference of the backscattering
the transmission part of the classical SPM fam,r() from the whole waveguide starts to destroy the pattern ob-
>(5,5) is consistent with the “equal priori distribution” of ~ served in the classical SPM.
the S matrix required for the validity of the randoBmatrix Another interesting feature comes from the analysis of the
theory approach to chaotic cavitig¥]. But note that in the relatively bright spot observed in the transmission part of the
reflection parts of the classical SPM the inhomogeneity islassical SPM near the sita,m)=(28,28). An enlargement
especially strong. In fact, while the definite transmissionof this spot is shown in Fig. (@) and a typical trajectory
structures of the one-period waveguide have been somewhhelonging to this pattern is shown in Fig(c8 The distinc-
washed out in the six-period waveguide, classically, the retive feature of these types of trajectories is that they collide
flection blocks remain practically the same as for the onetwice with the rippled boundary for each bounce with the flat
period-long waveguide. This is because the reflection strudoundary. These are periodic or quasiperiodic orbits advanc-
tures are mainly formed by particles reflecting within the firsting always to the right and form the stability island surround-
period of the ripple, see Fig. 5. On the other hand, backing the stable period-one fixed point shown in Fig)81t is
scattering after the first period of the rippled waveguideimportant to remark that this miniscule Poincdiekhoff
shows up classically as an almost homogeneous spread structure (note the scale of the ajigs not visible in the
intensity throughout the reflection blockscluding the area whole Poincaremap of Fig. 2a), even though its effect is
below the hyperbolalike curve for which there was no reflecclearly manifested in the classical SPM. Hence, we see that
tion for the one-period waveguigleThus, while classically the SPM construction can give complementary information
the definite pattern produced by the first period of the waveto that obtained by the Poincameaps because it is an inten-

(a) 1.021(b)
285 &)
0
4
- i 1.01
n
27.5
i FIG. 8. (a) Enlargement of the
52 transmission part of the classical
» SPM around the site n(m)
0.99 =(28,28).(b) Phase space gener-
27 275 28 285 0.746  0.748 o.;5 0752  0.754 ated by the trajectories that pro-
m

duce the structure df). (c) Typi-
cal orbit belonging to the pattern
in (a).
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sity measure. On the other hand, such a spot is not present imance island and consequently even smaller values @dn
the quantum SPM because the size of the PoirBakoff “tunnel” into the resonance island to cause partial reflection.
structure is too small to be resolved quantum mechanically As regards the usefulness of our classical approach, we
(there are other spots visible but they do not correspond tgecall that good QCC is expected f>2d/a. For theG
the classical one,; they Ol’iginate from constructive interfer-system, where @/ a~ 8, our calculations showed that a|ready
ence. for M =33 the classical SPM reproduces the essential fea-
tures of the quantum SPM. Note th& =33 implies \
B. The M system ~al4, which seems to be sufficient to yield good QCC. For
Now we examine briefly the classical and quantum SHhe M system we also uset =33, however, since here

matrices for theM system. Figures(®) and 9b) show these 2d/a=20, then\ is only slightly less thama (A =0.6a) and
matrices for a one-period-long waveguide. Again, a quickconsequently the classical SPM showed important differ-
comparison of these shows that the global features of thences from the quantum one, ascribed to Heisenberg’s uncer-
quantum SPM can be predicted by the classical SPM. We seainty principle. It is important to remark that good QCC
that regions of high-intensity areas in the quantum SPM cordepends not on the type of dynamigsobal or mixed chags
respond roughly to the high-intensity areas of the classicaput on the condition\/a<1 or, equivalently,M>2d/a.
SPM, albeit fluctuations within them. However, there are‘rhusl it is possib|e to have such a condition satisfied for
some important differences that we shall discuss now. Not@nannels that display mixed chaos, exja<?:.
that both classical and quantum SP matrices show that reflec-
tion occurs only for high modes but the classical reflection
occurs only for modes higher or equalrto= 31 while quan-
tum reflection(although weakexists even for modes as low  We have studied quantum scattering properties of typical
asm=10. The mechanism responsible for the reflection ofwaveguides with mixed and global chaos by examining the
classical particles can be understood by examining the Poirguantumscattering probability matrixSPM) and its classi-
care map of the infinitely long channel, Fig.(®, which  cal counterpart. We emphasize that the definition of the clas-
shows a large resonance island centerexi=at. This reso- sical SPM does not include any semiclassical aspects. We
nance is produced by trajectories executing librational moshowed that the structure of the classical SPM allows us to
tion, bouncing between the two walls in the neighborhood ofpredict the global structure of the quantum SPM. Since fea-
the widest part of the channel=73. It is clear then that tures of the classical SPM can be understood by the analysis
particles entering the rippled waveguide from the lefixat of the trajectories, it was possible to understand the classical
=0 can reflec(after one or several boungesithin thefirst ~ dynamical origin of important features of the quantum SPM.
period of the channel if their trajectories fall within the reso- Consequently, the analysis of the classical SPM of a given
nance island. Trajectories falling on the chaotic sea outsidelectron waveguide system is useful for the understanding of
the resonance islanghence low transversal mode numbers its quantum transport properties, e.g., conductance. Plots of
can also reflect via the chaotic separatrix but not within thehe classical SPM can be examined quickly to determine the
first period of the ripple. The longitudinal momentum of influence of the cavity on the various modes. For a given
these librational orbits is relatively smdlsee Fig. )], energy, some modes may show ballistic behavior while oth-
hence their transverse momentum is large. Detailed analysers may display diffusive transmission, as observed recently
using Eqg.(5) and data from Fig. @) shows that indeed the in Ref.[25].
lowest mode that can reflect =31, in agreement with Our analysis of the quantum-classical correspondence of
Fig. 9b). In contrast there is a strong quantum reflection forthe SPM led us to discover the existence of “short-lived
modes as low asm=25. Heisenberg’s uncertainty principle scars.” Specifically, we have seen that the wave function
is responsible for this difference. Namely, the quantum statéorms a ray pattern along the outgoing classical trajectory for
cannot resolve the fine classical boundaries defining the resoaodes corresponding to high-intensity elements of the clas-

V. CONCLUDING REMARKS
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sical SPM. They can be considered as short-lived scars beolely by topological tool$e.g., Poincarenaps since it is an
cause after a few bounces the ray pattern is destroyed kgtensity measure.
guantum interference.
Finally, we wish to mention that certain small but rela-
tively high-intensity areas in the classical SPM led us to ACKNOWLEDGMENT
disclose the presence of extremely small Poin&irkhoff
structures of the otherwise globally chaotic billiard. Hence, We wish to acknowledge financial support from
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