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Crossover from regular to irregular behavior in current flow through open billiards
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We discuss signatures of quantum chaos in terms of distributions of nodal points, saddle points, and stream-
lines for coherent electron transport through two-dimensional billiards, which are either nominally integrable
or chaotic. As typical examples of the two cases we select rectangular and Sinai billiards. We have numerically
evaluted distribution functions for nearest distances between nodal points and found that there is a generic form
for open chaotic billiards through which a net current is passed. We have also evaluated the distribution
functions for nodal points with specific vorticity~winding number! as well as for saddle points. The distribu-
tions may be used as signatures of quantum chaos in open systems. All distributions are well reproduced using
random complex linear combinations of nearly monochromatic states in nominally closed billiards. In the case
of rectangular billiards with simple sharp-cornered leads the distributions have characteristic features related to
order among the nodal points. A flaring or rounding of the contact regions may, however, induce a crossover
to nodal point distributions and current flow typical for quantum chaos. For an irregular arrangement of nodal
points, as for example in the Sinai billiard, the quantum flow lines become very complex and volatile, recalling
chaos among classical trajectories. Similarities with percolation are pointed out.

DOI: 10.1103/PhysRevE.66.016218 PACS number~s!: 05.45.Mt, 05.60.Gg, 73.23.Ad
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I. INTRODUCTION

Billiards play a predominant role in the study of classic
and quantum chaos~see, e.g., Ref.@1#!. Indeed, the nature o
quantum chaos in a specific system is traditionally infer
from its classical counterpart. Hence one may ask if quan
chaos is to be understood solely as a phenomenon that re
to the classical limit, or if there are some intrinsic quan
phenomena, which may contribute to irregular behavior
the quantum domain. This is one of the questions we rais
connection with quantum transport through regular and
regular electron billiards. We will assume that we deal w
billiards that are ballistic. In practice this situation is we
met when the mean free path is very long and exceeds
dimensions of, for example, electron billiards fabricated
high-mobility GaAs/AlGaAs@2#.

The seminal studies by McDonnell and Kaufman@3# of
the morphology of eigenstates in a closed Bunimovich s
dium have revealed characteristic complex patterns of di
dered, undirectional, and noncrossing nodal lines@4,5#. Such
features have also been observed experimentally for mi
wave cavities@1,6# and acoustic resonators@7#.

Here we will discuss what will happen to patterns li
these when ideal leads are attached to a billiard, regula
irregular, and an electric current is induced through the
cavity by a small applied voltage between source and dr
The wave functionc is then a scattering state with both re
and imaginary parts,

c~x,y!5u~x,y!1 iv~x,y!, ~1!

which gives rise to two separate sets of noncrossing no
lines at which eitheru or v vanish. How will the patterns o
nodal lines evolve as the energy is increased, i.e., more s
tering channels are opened? Could they tell us somet
1063-651X/2002/66~1!/016218~10!/$20.00 66 0162
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about how attached leads perturb the wave function and h
for example, an initially regular billiard might eventuall
turn into a chaotic one as the number of open modes incre
and/or the shapes of contact regions are modified? The n
points ~NPs! at which the scattering wave function equa
zero, i.e., the points at which the two sets of nodal lin
intersect becauseu5v50, carry important information in
this respect. While nodal lines are phase dependent the n
points remain fixed in space ifc is multiplied by a constant
phase factor exp(ia). Thus we will focus on nodal points an
their spatial distributions and try to characterize chaos
terms of such distributions. The question we wish to ask
simply if one can find a distinct difference between the d
tributions for nominally regular and irregular billiards@8#.

In addition, which other signatures of quantum chaos m
one find in the coherent transport in open billiards? Here
will choose to study numerically the general flow patter
derived from the probability currents associated with stati
ary scattering states. Nodal and saddle points and their
tial distributions play a decisive role in how the flow in th
system is shaped. In this sense they are very physical.
example, it has been shown recently that quantum stre
lines are effective concepts for understanding irregular c
ductance oscillations in two-dimensional rings@9#.

II. NODAL LINES AND NODAL AND SADDLE POINTS

The scattering wave functionsc for open billiards are
found by solving the Schro¨dinger equation in a tight-binding
approximation. The two-dimensional structures that we c
sider here consist of some specified cavity~e.g., a rectangle
or Sinai billiard! with two attached semi-infinite leads. Elec
trons are confined by hard-wall boundaries and the inte
potential is set equal to zero. Using the dimensionless v
ables

x→x/d, y→y/d,
©2002 The American Physical Society18-1
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and energy

e52m* d2E/\2,

whered is the width of the leads, we map the Schro¨dinger
equation for an electron of massm* onto a square lattice
with M3N sites labeled (k,l ) and with cell sizea0. Below
we will focus on the results for nodal properties and refer
Ref. @9# for details about the computational method.

A. The case of an open chaotic billiard

Figure 1 shows typical Chladni patterns for the nod
lines (Re@c#50 and Im@c#50), nodal points (c50), and
saddle points~branching points in the current flow! for the
scattering wave function in an open hard-walled Sinai b
liard.

The energy of the incident electron in Fig. 1 ise513. At
this energy there is only one open scattering channel in
leads. We let the incident state be a free particle state pr
gating along the straight lead times a transverse wave fu
tion. Moreover, the aspect ratio, i.e., ratio of the width
leads to the width of the billiard, is chosen so that the nu
ber of nodal points is relatively small. However, if we d
crease the aspect ratio this number grows drastically

FIG. 1. Nodal lines, nodal and saddle points, and probab
currents for electron transmission through a Sinai stadium wite
513 ~one transmission channel!. The uNL (Re@c#5u50) are
shown by solid lines and the vNL (Im@c#5v50) by dashed lines.
The nodal points~NPs! are denoted by circles. Open circles refer
NPs with winding numbers51 while filled circles refer tos5
21. The saddle points in the probability current flow are shown
stars. The particle is injected through the lower lead. The nume
dimensions of the Sinai billiard are 4003400,d5100,R580
whered is the width of the leads andR is the radius of the cutoff.
01621
o

l

-

e
a-
c-
f
-

as

shown in Fig. 2. The number of nodal points is appro
matelyeA/(4pd2) whereA is the area of the billiard.

Patterns of meandering, self-avoiding nodal lines t
were already found theoretically by McDonald and Kaufm
@3# for the isolated, irregular Bunimovich stadium are read
recovered here for both the imaginary and real parts ofc. As
mentioned already, the nodal lines for our complex scatter
function are not uniquely defined because the constant p
a is arbitrary. Although the overall qualitative features loo
the same for different choices ofa, i.e., there is the genera
picture of undirectional and self-avoiding lines, they are n
useful for a characterization of a complex chaotic wave fu
tion @4#. The nodal points, on the other hand, appear to
helpful in this respect because they stay invariant under
phase transformationa of the wave function.

B. Phase singularities

Explicit descriptions of the nodal points as phase sin
larities or topological charges associated with a comp
wave function are given in many articles, for example,@10–
18#. Let us write the wave function as

c~x,y!5Ar~x,y! expiu~x,y!, ~2!

where u(x,y) and r(x,y) denote the phase and norm. A
Dirac demonstrated already in 1931@10# nodal points give
rise to current vortices. This means that when the follow
loop integral encloses a nodal point one has

R vdr5 R ¹udr562p. ~3!

y

y
al

FIG. 2. Same as in Fig. 1 but for the Sinai billiard with nume
cal dimensions 5003500,R5100,d550, ande520. The numbers
of saddle and nodal points (s561) areNSP5127 andN6568,
respectively.
8-2



y

he
r

a-

-
io
E
g
o
r o
.
ed
re

po

es

e

se-

l

ay
o-
d in
d/or

ain

as
ive
ys-

d 3
nt

int
t
s
t

dle

an
or-

fo
te

CROSSOVER FROM REGULAR TO IRREGULAR . . . PHYSICAL REVIEW E 66, 016218 ~2002!
The quantum velocityv is defined in terms of the probabilit
currentj as

v5
j

r
, j5Re@c* pc#/m* , ~4!

wherep52 i\“ is the momentum operator. The sign on t
right hand side of formula~3! defines the winding numbe
~WN!. Relation~2! is illustrated in Fig. 3.

In the following discussion we will also use the altern
tive definition of the winding number@15,16#

s5sgnS ]u

]x

]v
]y

2
]u

]y

]v
]xD , ~5!

where s takes the values61 for clockwise and counter
clockwise vortices as shown in Figs. 1 and 3. The relat
between the phase of the wave function and the WN in
~3! states that the phase undergoes a discontinuous chan
62p as one encircles a nodal point. Lines of phase disc
tinuity begin at one nodal point and terminate at anothe
proceed to the boundary of the system as illustrated in Fig
Discontinuity lines of this kind have recently been obtain
for microwave billiards for which the phase can be measu
@19#.

There is a close relation between nodal points with op
site WN as discussed in@16#. As shown in Figs. 1 and 2 a
nodal lineu50 normally intersects a number of nodal lin
v50 and vice versa~for brevity ‘‘uNL’’ and ‘‘ vNL,’’ respec-
tively!. Evidently neighboring nodal points on the sam

FIG. 3. The spatial pattern of the phase of the wave function
electron transmission through a Sinai billiard with the parame
given in Fig. 1. Sharp white/black lines correspond to 2p disconti-
nuities in phase, which begin at a NP withs and terminate at
another NP with2s or proceed to the boundary of the system.
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nodal line always have opposite WNs. To prove this we
lect a small domain in Fig. 2 in which two neighboringvNLs
cross oneuNL as in Fig. 4.

Introducing local Cartesian coordinates with thex axis
along the tangent of theuNL we see that at the left noda
point ]u/]x50 and therefore the first term in Eq.~5! van-
ishes. In the second term]u/]y.0 and ]v/]x,0; hence
s51. For the nodal point to the right we get in the same w
s521. Obviously nodal points appear in pairs with opp
site WNs. This means that they are created and annihilate
pairs when nodal lines evolve, for example, as energy an
geometry change.

In contrast to the vortex lines the vortex centers rem
fixed upon a change of constant phase factora. As conjec-
tured earlier@8# the nodal points may therefore serve
unique markers which should be useful for a quantitat
characterization of scattering wave functions for open s
tems, i.e., they tell to what degree a system is chaotic.

C. Antivortices

Complementary to the vortices one finds in Figs. 1 an
that there is also a different kind of peculiarity in the curre
flow which is related to saddles@13,17#, marked by stars.
The saddle is a nodal point for the current. At such a po
the ‘‘current nodal lines’’j x50 andj y50 cross each other a
nonzerou and v. Let us write the current density vector a
j (x,y)5 j „cosu(x,y), sinu(x,y)… and then map the curren
phaseu(x,y) onto the anglef which defines a circler
5r (cosf, sinf) of radiusr around a pointu5u(f). If this
circle encircles a vortex point thenu(2p)52p irrespective
of the WN. On the other hand, if the circle embraces a sad
then u(2p)522p. For other casesu(2p)50. Therefore
the saddles are often named antivortices.

D. The case of an open rectangular billiard

Figures 1 and 2 for a Sinai billiard set the stage for
open chaotic system with its typical disorder among the v

r
rs

FIG. 4. An area with au nodal line (uNL) intersected
by two neighboring v nodal lines (vNL). Symbols (6,6)
5(sgn@u#,sgn@v#) indicate the sign ofu(x,y),v(x,y) in the differ-
ent domains.
8-3
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BERGGREN, SADREEV, AND STARIKOV PHYSICAL REVIEW E66, 016218 ~2002!
tices and antivortices. We now turn to the complement
case of a nominally regular system. The simplest choice
make is a rectangular billiard. It is instructive to first co
sider tunneling transport associated with a single isola
resonance peak. One finds essentially two different situat
depending on whether the incident electron is in perfect re
nance with the box or not.

The eigenfunctions and eigenvalues of a rectangle
well known. The dimensionless eigenvalues areemn
5p2@m2(d/Lx)

21n2(d/Ly)
2) whereLx and Ly are the ex-

tensions of the rectangle andm andn are the quantum num
bers 1,2,3, . . . . For theclosed rectangle the eigenfunction
cmn are real and form a chessboard structure.

The coupling of the leads to the cavity can be govern
by varying the hopping matrix elementt connecting the rect-
angle and the leads. For a reduced coupling and in the vi
ity of the conductance resonancee'emn the scattering state
in the interior region is mainly given bycmn . Therefore, for
the perfectly resonant case witht50.9 theuNL and vNL
will be only slightly distorted from a rectangular grid an
stay close to each other as shown in Fig. 5~a!. Consequently
the nodal points will form an almost periodic lattice. Th
will also be the case for the antivortices.

If we now keep the above energy but open the box
increasingt in the coupling region we enhance the deform
tion of the nodal lines. We are still close, however, to re
nant transmission. Consequently, the spatial structure
vortices and antivortices do not change appreciably as sh
in Fig. 5~b! for t51 although there is a rotation of phasea.

In order to change the positions of the vortices and a
vortices the energy has to be changed as well. Figure~c!
shows the case fore515.1 andt51. The pattern is now les
regular than for the resonant casee5emn .

On further deviation from the resonant energy the or
will be reduced even more, i.e., the nodal point pattern w
undergo profound changes from the crystalline to the am
phous. Does this mean that there might a gradual cross
from regular to chaotic behavior as leads are attached t
integrable billiard? If so, would the features of such a cro
over be dependent on the particular choice of integra
billiard, rectangular, circular, or triangular? Would it als
depend on the kind of attachement one makes?

III. DISTRIBUTION OF NODAL AND SADDLE POINTS

Following the discussion above we propose that an ap
priate signature of quantum chaos in open cavities may
formulated in the following way. The distributions of dis
tances between nearest nodal points are expected to be
tinctly different for nominally regular and irregular billiard
when the influence of the leads is small. For the regu
lattice in Fig. 5, for example, one expects the distribution
be sharply peaked because the nodal points nearly for
crystal lattice. In contrast, Fig. 2 shows that there are
dominant distances between the nearest nodal points.
corresponding distribution should therefore be smeared.

To be quantitative we introduce four normalized distrib
tions PNP(r ), PSP(r ), P11(r ), andP12(r ) for the separa-
tions between nearest nodal points~NP!, saddle points~SP!,
01621
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FIG. 5. Nodal lines and nodal and saddle points for transmiss
through a rectangular cavity with size 6003400, d580. ~a! Tun-
neling regime with the hopping matrix elementst50.9 connecting
the leads to the cavity. The energy of the incident electronse
514.9126, is tuned to maximum transmission (T51) via the inte-
rior state with quantum numbersm57, n54. TheuNL and vNL
then almost coincide.~b! The same as for~a! but with t51 andT
50.98. ~c! The same as~b! but with e515.1 andT50.8.
8-4
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FIG. 6. DistributionsPNP(r ), PSP(r ), P11(r ), andP12(r ) for separations~in units of mean separation! between nearest nodal poin
~NP!, saddle points~SP!, and nodal points with the same (11) and opposite winding numbers (12) in a chaotic Sinai billiard. The
dimensions of the Sinai billiard and leads are 8403400, d540, andR540. The distributions are found by averaging over 201 energie
the incident electrons, which results in the total number of points for the four casesNNP5635 322, N15317 765, N25317 557, and
NSP5607 045. Two channels in the leads are open and the corresponding conductance fluctuations are shown in the inset in~a!. The radial
distribution~6! of nearest distances for completely random points is shown by the dashed curve in~a!. The corresponding distributions fo
the Berry model function for a chaotic state~7! and random superposition~8! of 16 eigenfunctions for a rectangular box with the same s
and energy are shown by dots and thin curves, respectively.
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and nodal points with equal (11) and opposite (12)
winding numbers. For fixed energyP11(r )ÞP22(r ) and
P12(r )ÞP21(r ) within the cavity because of its finite size
For an accumulation of statistics, however,P11(r )
→P22(r ) and P12(r )→P21(r ). We chose the following
averaging over distributions. Since the spatial distribution
the nodal points may be sensitive to whether the energ
the incident electron is resonant or not we accumulate st
tical samples by sweeping the energy over an energy win
that contains at least a few resonant transmission peaks
our computer calculations show, differences betwe
P11(r ) and P22(r ) then disappear. We will also conside
the case that the positions and shapes of the leads are al

A. Case of chaotic cavities

The distributionsPNP(r ), PSP(r ), P11(r ), andP12(r )
of the open Sinai billiard are shown in Fig. 6. Two transve
modes are open in the leads. The distributions are obta
as the average over 201 different energies within the ene
window betweene549 ande550. This energy window is
wide enough to include a number of conductance oscillati
as shown in the inset of Fig. 6~a!. The total number of noda
points with specific winding number and the total number
saddle points are given in the figure caption.
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We have also considered other cases of averaging, suc
over different energy windows and positions of leads, a
the influence of wider leads. In all these cases the distri
tions of nearest neighbors were practically the same a
Fig. 6. We therefore argue that there are generic distributi
for nearest neighbor separations which may be taken as
natures of wave chaos@8#.

Figure 6 shows the general result that nodal points w
opposite WN have a tendency to attract each other, w
points with equal WNs repel. Hence quantum chaos is
the same as complete randomness. This is also evident
the distribution for nearest neighbors among random po
@20#

P~r !5
p

2
r exp~2pr 2/4!, ~6!

wherer is the separation between points in units of the me
separation̂ r &. The distribution is shown for comparison i
Fig. 6~a! The distinct difference between the curves th
demonstrates that there is an underlying correlation betw
the nodal points in the irregular cavity. Figure 6~d!, finally,
shows the distribution of nearest distances between
saddle points. This distribution is apparently quite close
8-5
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BERGGREN, SADREEV, AND STARIKOV PHYSICAL REVIEW E66, 016218 ~2002!
P12(r ). As will be seen below,PNP(r ) is the distribution
that is most sensitive to geometry. To test the idea of gen
distributions further we have investigated variations of
Sinai billiard with the same results. We have also conside
the irregular Bunimovich billiard@21#. Except for slight nu-
merical deviations, the Bunimovich billiard gives rise to t
same distributions as the Sinai billiard.

B. The Berry wave function and complex combination states

There is a simple way to understand the nature the gen
distribution above. Intuitively a wave chaotic state may
viewed as a random superpostion of monochromatic pl
wave states. For any point not too close to the boundary
billiard and for Fermi wavelengths much smaller than t
dimensions of the enclosure, we thus assume that we
approximate the true state with the Berry conjecture@22#

c~x,y!5(
j

aj exp@ i ~k j•r1f j !# ~7!

whereaj andf j are independent random real variables a
k j are randomly oriented wave vectors of equal length.

Correlation functions@18,23# for nodal points and the dif-
ferent distributionsPNP(r ), P11(r ), and P12(r ) for the
Berry function have been considered previously@23,24#. The
dotted curve in Fig. 6 shows the results forPNP(r ), which
are typical also for the remaining distributions. The quali
tive picture is indeed quite satisfactory. In spite of numeri
deficiencies, in particular around the peak values, the B
state apparently provides a key for understanding the di
butions in a Sinai billiard.

As mentioned the Berry function should be a good rep
sentation of the true scattering state for points not too cl
to the boundaries@25#. On the other hand, whenever fini
size and the boundaries play a role the probability for la
separations between nearest points is reduced. Becaus
distributionsPNP(r ) in Fig. 6~a! are normalized, a reductio
in the high tail is compensated by an increase in the do
nant peak region, as shown by the figure. As an easy rem
for boundary effects we therefore modify the Berry functi
as @21#

c~x,y!.(
mn

amncmn~x,y!, ~8!

wherecmn(x,y) are the eigenstates of a closed rectangu
cavity and the mixing coefficients Re(amn) and Im(amn) are
independent random Gaussian variables. These kind
‘‘combination state’’ are also known from other parts
wave physics. The summation in Eq.~8! includes states
within a narrow energy energy window, i.e., a number
reshuffled and ‘‘lifetime broadened,’’ nearly monochroma
states are allowed to mix when there are many open chan
and/or the energy is high. In principle we should sum o
the eigenfunctions of the Sinai billiard but these are com
tationally cumbersome. In doing so we would also lose
01621
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simplicity of Eq. ~8!. Since the rectangle coincides with th
Sinai billiard except for the rounded corner this differen
may be ignored.

The Berry function in Eq.~7! represents a random Gaus
ian complex field. The function~8! may also be considere
as such a field provided the number of superposed state
large enough. As indicated, the expansion~8! is limited to
states within a small energy window arounde. In practice,
superpositions of 16 or 24 states approximate a random
rather well. As a consequence we do not find any visi
differences in the distributions displayed in Fig. 6 with the
two choices. In a statistical sense our modified combinat
states thus represent the true interior chaotic scattering
quite well. As a consequence the corresponding distributi
of nodal points and antivortices are also well describ
within this framework.

C. Case of rectangular cavities

Let us now turn to the case of nominally regular caviti
and how leads affect the different statistical distributions.
chose an open rectangle as an example of such a bil
because it is the limiting case of the Sinai billiard as t
radiusR→0 for the cut corner. Figure 7 shows the distrib
tions at two-channel transmission with the same energy
eraging procedure as for the Sinai billiard. The distributi
PNP(r ) clearly displays a central peak corresponding to p
tial order among the nodal points and is therefore distinc
different from the Sinai case. The height of the distributi
P11 indicates that the partial order relates to nodal poin
This is also the case at much higher energies. On the o
hand, the distribution for saddle points,PSP in Fig. 7, shows
little difference from the chaotic case. We take this to me
thatPSP is a less useful discriminator and will not consider
further.

One may suspect that a reason for the partial regula
among the nodal points is due to the symmetric attachm
of leads. We have therefore consideredPNP also for asym-
metric positions of leads. Moreover we performed an av
age over positions of the input lead at fixed energy. In
cases the signs of partial order remain. Therefore an o
rectangular billiard with two straight sharp-cornered lea
displays robustness and considerable regularity among
nodal points. Consequently the various attachments of le
do not turn regularity into chaos in this case.

D. Analysis of the numerical scattering states

In order to understand the above features of the distri
tions let us find the coefficientsamn in the function~8! by
projecting the numerical scattering functions on the eig
functionscmn . A typical case is shown in Fig. 8. As antic
pated the expansion is heavily dominated by eigenstatescmn
with effectively the same energiesemn as the incoming elec-
tron @26#. Hence the coefficientsuamnu2 in the (m,n) plots in
Fig. 8 fall more or less on an elliptic curve. The speci
composition of eigenstates and nodal points may, howe
change swiftly with energy.

Figure 8 pinpoints a key difference between the regu
rectangular and the chaotic Sinai billiards. Evidently the
8-6
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FIG. 7. Energy averaged dis
tributions PNP(r ), PSP(r ),
P11(r ), andP12(r ) for an open
rectangle at two-channel transmis
sion. The entrances of leads form
sharp corners and are positione
as in Fig. 5. The total numbers o
points included in the statistics ar
NNP5619 158, N15309 563,
N25309 595, andNSP5583 288.
The distributions for the random
combination state~8! with 16 ran-
domly superposed eigenfunction
for the rectangle are shown by th
thin curves. The dimensions of th
system are 8403400 andd540.
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are only a few dominant eigenstates that constitute the s
tering wave function, too few to make a chaotic state as
Fig. 6. The question is, therefore, how to increase the num
of contributions if one wants the system to cross over
chaos. One may think that a widening of the leads and/o
increase of the energy would engage more eigenstates.
experience shows, however, that the number of domin
states stays small in either case. Consequently the recta
lar billiard with sharp-cornered leads does not cross ove
irregular behavior.

E. Role of soft leads

In the above analysis of a rectangular billiard we ha
found that only a few dominant eigenstates contribute to
transmission. Figure 8 shows, however, that there are m
states available along the elliptic curve. Sharp-cornered le
are evidently too selective. The question is how to get all
states engaged on equal footing and thereby reach a r
combination state.

FIG. 8. Relative weightsuamnu2 of the eigenstatescmn partici-
pating in the electron transmission through a rectangular billi
with size 8403400, d540, and energye540.
01621
at-
n
er
o
n
ur

nt
gu-
to

e
e
re
ds
e
er

One way to achieve a better mixing of states is to alter
shape of the leads. If we replace the sharp corners
rounded or flared ones the injection into the billiard will b
more collimated@27#. We should therefore expect a broad
representation of eigenstates with large weightuamn

2 u. The
choice of rounded corners, for example, is a natural one
ballistic semiconductor devices in which depletion effe
normally gives rise to smeared features.

Figure 9 showsPNP for the rectangular billiard with the
same dimensions and averaging procedure as in Fig. 7.
viously the features related to partial ordering of nodal poi
have now disappeared andPNP is close to the generic form
found for the chaotic Sinai billiard. We may therefore s
that there is a crossover to irregularity as we insert roun
or flared contacts. Multiple probes would accelerate suc
crossover.

d
FIG. 9. Histogram for rounded asymmetric leads as shown

the insets.PNP for the Sinai billiard is also shown. The radius of th
rounded sections isR;d.
8-7
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IV. QUANTUM STREAMLINES

The vortices and antivortices are intimately connec
with current flow. Vortices play the role of impurities whic
the net current through the system must circumvent. Antiv
tices act as beam splitters. To get further insight it is usefu
analyze velocity fields and streamlines. We therefore c
sider the velocityv as defined in Eq.~4!

v5 ẋ5\“u/m* , ~9!

which integrated over time gives the streamlines. The qu
tum streamlines are sometimes referred to as Bohm traje
ries @28#. In this alternative interpretation of quantum m
chanics an electron is viewed as a ‘‘real’’ particle in t
classical sense, following a continuous and causally defi
trajectory ~streamline! with a well defined positionx and
velocity v. The electron is thought to move under the acti
of a force which is not obtained entirely from the classic
potentialV, but also contains a ‘‘quantum mechanical’’ p
tential

VQM52
\2

2m*
¹2r1/2

r1/2 . ~10!

This quantum potential is negatively large where the wa
function is small, and becomes infinite at the nodal poin
Therefore, the close surounding of a nodal point is forbidd
for the quantum streamlines contributing to the net transp
from source to drain. One may say that the nodal po
effectively act as impenetrable impurities with the same
tensions as the vortices. Moreover, the nodal points are
pological singularities of the wave function; therefo
‘‘open’’ streamlines associated with the net current can
encircle a nodal point.

As seen from Fig. 2 the nodal points for the Sinai billia
are disordered while for the rectangular case in Fig. 5 t
may form a ‘‘nodal crystal.’’ We should therefore expect d
ferent behavior for the quantum streamlines for these
cases. Figure 10 shows the flow lines~Bohm trajectories! in
the case of the rectangular cavity. The general features o
flow lines connecting input and output leads are remarka

FIG. 10. Streamlines for the net flow and positions of no
points with different winding numbers~open and filled circles! and
saddle points (3) in a rectangle of size 4203200 andd520 at
resonant transmission:e519.2727, t50.75. The magnification
shows streamlines for the indicated ‘‘interior’’ region, which do
not contribute to the net flow.
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It is clearly seen how the flow of particles~trajectories! ef-
fectively ‘‘channel’’ through the nodal crystal. The sadd
points at the contacts act as branching points. This pictur
evidently very different from semi-classical physics and p
riodic orbit theory@29#. The contributions to the net curren
are displayed in Fig. 10 and the following figures. In additi
there are also closed vortical motions around the nodal po
as described above and illustrated by the insets in Figs

l

FIG. 11. Streamlines for the net flow and positions of nod
points with different winding numbers~open and filled circles! for a
Sinai billiard at energy 49.9~upper case! and 50.0~lower case!.
Two channels are open. Sizes of billiard and leads are the sam
in Fig. 6. The inset in the upper case shows a magnification of
net flow in the region indicated by a square. Crosses denote sa
points. The inset in the lower panel shows the whirling clos
streamlines for the indicated ‘‘interior’’ region, which does not co
tribute to the net flow.

FIG. 12. Streamlines for the net flow through a rectangle w
sharp corners at energy 50.1. The dimensions are the same as i
7. The offset of the input lead is 2d.
8-8
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and 11. The net current through the billiard is actually rat
small compared with the flow absorbed in the vortical m
tions. To a good approximation one may then work out c
rent statistics using the random functions in Sec. III B. If w
choose the Berry function this can be done analytically@30#.

As seen from Fig. 10 saddle points are also import
because they are related to spatial instabilities of the stre
lines leading to the branching of the injected beam. As
the vortices we may regard the antivortices as scatterer
Fig. 10 the branching takes place near the entrance.
‘‘particles’’ then channel through the nodal crystal.

If we now go to the complementary case, the Sinai b
liard in Fig. 11, the streamlines look extremely comple
Because the distributions of nodal points are irregular
streamlines also form an irregular pattern when finding th
way through the potential landscape. Figure 11 and the
lowing figures bring to mind the classical example of mea
dering rivers in a flat delta landscape. As is well know
slight changes in the topography, for example, by mov
only a few stones to new positions, may induce differe
flow patterns in sometimes dramatic ways. In the same w
slight variations of the energy, for example, affect the qu
tum streamlines in an endless way. Figure 11 shows
cases which differ in energy by only 0.2%.

Let us now return to the rectangular billiard in Fig. 10 b
let the energy be much higher and assume asymmetric p
tions of the leads. One notices in Fig. 12 that the nodal po
are still partially ordered in accordance with the discussi
above. Because of this we find traces of channeling in o
‘‘corridors.’’ Figure 13 shows the importance of the shape
the contact regions. As is to be expected, flared cont
break up the ordering among nodal points in the previ
figure and spread the flowlines.

In all the complex figures above there are regions betw
strands with opposite winding numbers. A net current fl
occurs when there are regions that happen to connect the
leads. This feature recalls percolation and we suggest
this might be an alternative useful way to analyze irregu
transport through an open billiard.

V. SUMMARY AND CONCLUDING REMARKS

We have considered quantum ballistic transport in so
typical two-dimensional open billiards which are nomina

FIG. 13. Same as in Fig. 12 but with flared leads, effectively
the same size as the rounded leads in Fig. 9.
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integrable or nonintegrable. We have emphasized the rol
vortices and antivortices in the scattering wave function a
illustrated how the array of such points is intimately relat
to the net current flow through a ballistic billiard. Dependin
on the geometry, energy of an injected particle, positions
shapes of leads, etc., a rich variety of flow patterns or qu
tum trajectories is found, ranging from channeling to volat
situations in which the flow lines may rearrange swiftly aft
small changes. In this sense there is an analogy with clas
chaos as to the extreme sensitivity of trajectories. Figure
shows how the quantum trajectories may change drastic
on only a tiny changeDl of the wavelengthl. In the limit of
of very smalll, as in the semiclassical limit, effects of th
kind can become very dramatic. The spacing between no
points is roughly equal tol. Thus asl→0 even infinitesimal
alterations in, for example, lead positions will induce ne
flow patterns that are not foreseeable. We have also s
gested that percolation theory might be useful for analyz
these features.

We have also argued that there are generic distribu
functions for the nearest separations between vortices in
regular open systems. The distributions may thus be take
a signature of quantum chaos and may be used for diagn
purposes. We have used these distributions to find out a
the effects of leads attached to a regular billiard, in our c
a rectangle. In general, leads induce disorder among
nodal points although preferred directions may still rem
as in Fig. 12. If contacts excite more eigenmodes, as in
case of rounded or flared contacts, there is a crossove
distributions that are generic for chaotic billiards. The mat
is not the shape of the billiard but how many eigenmodes
the billiard couple to the leads.

The phenomena we have discussed here derive from
eral properties of waves and are therefore not unique
quantum mechanics. There is, for example, a close simila
with planar electromagnetic wave guides and cavities@1#.
The basic equations take the same form and, in particular
Poynting vector is the analog of the quantum mechan
current. It should therefore be possible to observe exp
mentally nodal points and streamlines in microwave billiar
@19,31#. In principle, these phenomena could also be o
served in wave transmsission in other analogous ma
scopic systems@32#. In particular, the conjecture of gener
forms for the nearest neighbor separations might be te
experimentally. The close relation between relative positio
of nodal points, vorticity, channeling, and meandering ch
otic streamlines might also be observed. It is promising a
that experimental techniques to image coherent elec
flows through semiconductor nanostructures are becom
available using scanned probe microsopes@33,34#.
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