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Crossover from regular to irregular behavior in current flow through open billiards

Karl-Fredrik Berggrert, Aimas F. Sadreet? and Anton A. Stariko¥?
Department of Physics and Measurement Technology,” pingoUniversity, S-581 83 Lirking, Sweden
2Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia
(Received 22 December 2001; published 26 July 2002

We discuss signatures of quantum chaos in terms of distributions of nodal points, saddle points, and stream-
lines for coherent electron transport through two-dimensional billiards, which are either nominally integrable
or chaotic. As typical examples of the two cases we select rectangular and Sinai billiards. We have numerically
evaluted distribution functions for nearest distances between nodal points and found that there is a generic form
for open chaotic billiards through which a net current is passed. We have also evaluated the distribution
functions for nodal points with specific vorticifyvinding numbey as well as for saddle points. The distribu-
tions may be used as signatures of quantum chaos in open systems. All distributions are well reproduced using
random complex linear combinations of nearly monochromatic states in nominally closed billiards. In the case
of rectangular billiards with simple sharp-cornered leads the distributions have characteristic features related to
order among the nodal points. A flaring or rounding of the contact regions may, however, induce a crossover
to nodal point distributions and current flow typical for quantum chaos. For an irregular arrangement of nodal
points, as for example in the Sinai billiard, the quantum flow lines become very complex and volatile, recalling
chaos among classical trajectories. Similarities with percolation are pointed out.
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[. INTRODUCTION about how attached leads perturb the wave function and how,
for example, an initially regular billiard might eventually
Billiards play a predominant role in the study of classicalturn into a chaotic one as the number of open modes increase
and quantum chadsee, e.g., Refl]). Indeed, the nature of and/or the shapes of contact regions are modified? The nodal
quantum chaos in a specific system is traditionally inferregooints (NP9 at which the scattering wave function equals
from its classical counterpart. Hence one may ask if quantunzero, i.e., the points at which the two sets of nodal lines
chaos is to be understood solely as a phenomenon that relateé¢ersect becausa=v =0, carry important information in
to the classical limit, or if there are some intrinsic quantalthis respect. While nodal lines are phase dependent the nodal
phenomena, which may contribute to irregular behavior inpoints remain fixed in space i is multiplied by a constant
the quantum domain. This is one of the questions we raise iphase factor expg). Thus we will focus on nodal points and
connection with quantum transport through regular and irtheir spatial distributions and try to characterize chaos in
regular electron billiards. We will assume that we deal withterms of such distributions. The question we wish to ask is
billiards that are ballistic. In practice this situation is well simply if one can find a distinct difference between the dis-
met when the mean free path is very long and exceeds thieibutions for nominally regular and irregular billiardi8].
dimensions of, for example, electron billiards fabricated in  In addition, which other signatures of quantum chaos may
high-mobility GaAs/AlGaAq 2]. one find in the coherent transport in open billiards? Here we
The seminal studies by McDonnell and Kaufmi@j of  will choose to study numerically the general flow patterns
the morphology of eigenstates in a closed Bunimovich staeerived from the probability currents associated with station-
dium have revealed characteristic complex patterns of disomry scattering states. Nodal and saddle points and their spa-
dered, undirectional, and noncrossing nodal ligg§]. Such tial distributions play a decisive role in how the flow in the
features have also been observed experimentally for micresystem is shaped. In this sense they are very physical. For
wave cavitied1,6] and acoustic resonatofg]. example, it has been shown recently that quantum stream-
Here we will discuss what will happen to patterns like lines are effective concepts for understanding irregular con-
these when ideal leads are attached to a billiard, regular atuctance oscillations in two-dimensional rind.
irregular, and an electric current is induced through the the
cavity by a small applied voltage between source and drain. Il. NODAL LINES AND NODAL AND SADDLE POINTS
The wave functiony is then a scattering state with both real

and imaginary parts, The scattering wave functiong for open billiards are

found by solving the Schidinger equation in a tight-binding
approximation. The two-dimensional structures that we con-
P(X,y)=u(x,y)+iv(x,y), (1) sider here consist of some specified caviyg., a rectangle
or Sinai billiard with two attached semi-infinite leads. Elec-

hich i ise 1ot ‘ s of . dt ons are confined by hard-wall boundaries and the interior
which gives rise 1o two separate Sels of NONCTossINg Nodayyantig) is set equal to zero. Using the dimensionless vari-
lines at which eithet or v vanish. How will the patterns of ables

nodal lines evolve as the energy is increased, i.e., more scat-
tering channels are opened? Could they tell us something x—x/d, y—y/d,
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FIG. 2. Same as in Fig. 1 but for the Sinai billiard with numeri-
FIG. 1. Nodal lines, nodal and saddle points, and probabilitycal dimensions 508 500,R=100,d=50, ande=20. The numbers
currents for electron transmission through a Sinai stadium with of saddle and nodal pointsr& =1) are Ngp=127 andN.. =68,
=13 (one transmission channelThe uNL (R¢¢]=u=0) are respectively.
shown by solid lines and the vNL (Ing]=v =0) by dashed lines.
The nodal point§NP9 are denoted by circles. Open circles refer to shown in Fig. 2. The number of nodal points is approxi-
NPs with winding humbeiwr=1 while filled circles refer too= matelyeA/(47Td2) whereA is the area of the billiard.
—1. The saddle points in the probability current flow are shown by  pPatterns of meandering, self-avoiding nodal lines that
stars. The particle is injected through the lower lead. The numericalere already found theoretically by McDonald and Kaufman
dimensions of the Sinai billiard are 480l00,d=100,R=80  [3]for the isolated, irregular Bunimovich stadium are readily
whered is the width of the leads anBl is the radius of the cutoff.  a~qvered here for both the imaginary and real parig.dfs
mentioned already, the nodal lines for our complex scattering
and energy function are not uniquely defined because the constant phase
— om* d2E/72 «a is arbitrary. Although the overall qualitative features look
€~ ' the same for different choices df, i.e., there is the general
shered i the widh o the leads, we map he Sctinger  PEUTE of indrectona)and selrauadig fnes e are o
equation for an electron of mass* onto a square lattice . . i
9 9 tion [4]. The nodal points, on the other hand, appear to be

with MXN sites labeled,!) and with cell sizea,. Below helpful in this respect because they stay invariant under the
we will focus on the results for nodal properties and refer to P P y stay

Ref.[9] for details about the computational method. phase transformation of the wave function.

A. The case of an open chaotic billiard B. Phase singularities

Explicit descriptions of the nodal points as phase singu-
larities or topological charges associated with a complex
wave function are given in many articles, for exampl€)—

18]. Let us write the wave function as

Figure 1 shows typical Chladni patterns for the nodal
lines (R¢]=0 and Inf]=0), nodal points {{=0), and
saddle pointgbranching points in the current flgwor the
scattering wave function in an open hard-walled Sinai bil-
liard. — (i ) ;

The energy of the incident electron in Fig. 1ds 13. At XY =Np(xY) explorx.y), @
this energy there is only one open scattering channel in theshere 6(x,y) and p(x,y) denote the phase and norm. As
leads. We let the incident state be a free particle state prop@irac demonstrated already in 19810] nodal points give
gating along the straight lead times a transverse wave fungise to current vortices. This means that when the following
tion. Moreover, the aspect ratio, i.e., ratio of the width of loop integral encloses a nodal point one has
leads to the width of the billiard, is chosen so that the num-
ber of nodal points is relatively small. However, if we de- _ _
crease the aspect ratio this number grows drastically as f#vdr— FﬁVﬁdr—tZw. ®)
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FIG. 4. An area with au nodal line UNL) intersected
by two neighboringv nodal lines ¢NL). Symbols (+,*)
=(sgriu],sgriv]) indicate the sign ofi(x,y),v(X,y) in the differ-
ent domains.

nodal line always have opposite WNs. To prove this we se-
lect a small domain in Fig. 2 in which two neighboringlLs
cross oneuNL as in Fig. 4.

Introducing local Cartesian coordinates with theaxis
along the tangent of thaNL we see that at the left nodal
point Ju/dx=0 and therefore the first term in E¢p) van-
ishes. In the second ter@u/dy>0 and dv/dx<0; hence
o=1. For the nodal point to the right we get in the same way
o=—1. Obviously nodal points appear in pairs with oppo-
site WNs. This means that they are created and annihilated in
. pairs when nodal lines evolve, for example, as energy and/or

V= J_, j=Rd ¢* py]/m*, (4) geometry change. _ _
p In contrast to the vortex lines the vortex centers remain
fixed upon a change of constant phase faetoAs conjec-
wherep=—i#4V is the momentum operator. The sign on thetured earlier[8] the nodal points may therefore serve as
right hand side of formuld3) defines the winding number unique markers which should be useful for a quantitative
(WN). Relation(2) is illustrated in Fig. 3. characterization of scattering wave functions for open sys-
In the following discussion we will also use the alterna-tems, i.e., they tell to what degree a system is chaotic.

tive definition of the winding number5,16|

FIG. 3. The spatial pattern of the phase of the wave function for,
electron transmission through a Sinai billiard with the parameters
given in Fig. 1. Sharp white/black lines correspond te @isconti-
nuities in phase, which begin at a NP with and terminate at
another NP with— ¢ or proceed to the boundary of the system.

The quantum velocity is defined in terms of the probability
currentj as

C. Antivortices

Jdu dv  du Jdv
0'=Sgr( ————— ) (5) Complementary to the vortices one finds in Figs. 1 and 3
that there is also a different kind of peculiarity in the current

_ flow which is related to saddlgs3,17], marked by stars.
where o takes the values-1 for clockwise and counter- 1pa saqdle is a nodal point for the current. At such a point

clockwise vortices as shown in Figs. 1 and 3. The reIa‘uorthe “current nodal lines’j, =0 andj,=0 cross each other at
between the phase of the wave function and the WN in Ednonzerou andv. Let us write the current density vector as
(3) states that the phase undergoes a discontinuous chang y)—j(COSB(X y), sinA(xy)) and then map the current
+ 27 as one encircles a nodal point. Lines of phase d|sco ase d(x,y) onto the angle¢ which defines a circler
tinuity begin at one nodal point and terminate at another OP r(cosd, sing) of radiusr around a poin®= (). If this
proceed to the boundary of the system as illustrated in Fig. 3 kircle encircles a vortex point thef(2m) =2 irrespective

Discontinuity lines of this kind have recently been obtalned f the WN. On the other hand, if the circle embraces a saddle
for microwave billiards for which the phase can be measure hen 6(27) = — 2. For other case®(2)=0. Therefore

[19]. the saddles are often named antivortices.
There is a close relation between nodal points with oppo-
site WN as discussed if16]. As shown in Figs. 1 and 2 a
nodal lineu=0 normally intersects a number of nodal lines
v =0 and vice versé#or brevity “uNL” and “ vNL,” respec- Figures 1 and 2 for a Sinai billiard set the stage for an
tively). Evidently neighboring nodal points on the sameopen chaotic system with its typical disorder among the vor-

D. The case of an open rectangular billiard
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tices and antivortices. We now turn to the complementary
case of a nominally regular system. The simplest choice t
make is a rectangular billiard. It is instructive to first con-
sider tunneling transport associated with a single isolate
resonance peak. One finds essentially two different situatior
depending on whether the incident electron is in perfect resd
nance with the box or not.

The eigenfunctions and eigenvalues of a rectangle arf
well known. The dimensionless eigenvalues aeg,
= m[m?(d/L,)?+n?(d/L,)?) whereL, andL, are the ex-
tensions of the rectangle amdandn are the quantum num-
bers 1,2,3.... For theclosed rectangle the eigenfunctions
Ymn are real and form a chessboard structure.

The coupling of the leads to the cavity can be governe(
by varying the hopping matrix elementonnecting the rect-
angle and the leads. For a reduced coupling and in the vicir (a) F‘ o ‘1
ity of the conductance resonanee ¢,,, the scattering state
in the interior region is mainly given by,,,. Therefore, for
the perfectly resonant case witbh-0.9 theuNL and vNL
will be only slightly distorted from a rectangular grid and
stay close to each other as shown in Fi@)5Consequently
the nodal points will form an almost periodic lattice. This
will also be the case for the antivortices.

If we now keep the above energy but open the box by
increasingt in the coupling region we enhance the deforma-|
tion of the nodal lines. We are still close, however, to resof
nant transmission. Consequently, the spatial structures
vortices and antivortices do not change appreciably as show
in Fig. 5(b) for t=1 although there is a rotation of phase

In order to change the positions of the vortices and anti
vortices the energy has to be changed as well. Figice 5
shows the case far=15.1 andt=1. The pattern is now less
regular than for the resonant case ¢,,.

On further deviation from the resonant energy the ordel
will be reduced even more, i.e., the nodal point pattern will
undergo profound changes from the crystalline to the amot,
phous. Does this mean that there might a gradual crossov
from regular to chaotic behavior as leads are attached to g
integrable billiard? If so, would the features of such a cross
over be dependent on the particular choice of integrabl
billiard, rectangular, circular, or triangular? Would it also
depend on the kind of attachement one makes?

IIl. DISTRIBUTION OF NODAL AND SADDLE POINTS

Following the discussion above we propose that an apprd
priate signature of quantum chaos in open cavities may b|
formulated in the following way. The distributions of dis-
tances between nearest nodal points are expected to be d
tinctly different for nominally regular and irregular billiards
when the influence of the leads is small. For the regula:

lattice in Fig. S, for example, one expects t,he distribution to FIG. 5. Nodal lines and nodal and saddle points for transmission
be sharply peaked because the nodal points nearly form tArough a rectangular cavity with size 69@00, d=80. (a) Tun-

crystal lattice. In contrast, Fig. 2 shows that there are NQgjing regime with the hopping matrix elemeitts0.9 connecting
dominant distances between the nearest nodal points. Thge |eads to the cavity. The energy of the incident electrens,

corresponding distribution should therefore be smeared.  =14.9126, is tuned to maximum transmissidi=(1) via the inte-

To be quantitative we introduce four normalized distribu-rior state with quantum numbera=7,n=4. TheuNL and vNL
tions Pyp(r), Psp(r), P44 (r), andP. _(r) for the separa- then almost coincide(b) The same as fofa) but witht=1 andT
tions between nearest nodal poikéP), saddle pointgSP), =0.98.(c) The same asb) but with e=15.1 andT=0.8.
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FIG. 6. DistributionsPyp(r), Psp(r), P, (r), andP, _(r) for separationgin units of mean separatiptetween nearest nodal points
(NP), saddle point§SP), and nodal points with the same-{) and opposite winding numberst(—) in a chaotic Sinai billiard. The
dimensions of the Sinai billiard and leads are 840, d=40, andR=40. The distributions are found by averaging over 201 energies of
the incident electrons, which results in the total number of points for the four d§ges 635322, N, =317 765,N_=317 557, and
Ngp=607 045. Two channels in the leads are open and the corresponding conductance fluctuations are shown in tte.ifiéet indial
distribution (6) of nearest distances for completely random points is shown by the dashed ciay€eTine corresponding distributions for
the Berry model function for a chaotic stdf® and random superpositidB) of 16 eigenfunctions for a rectangular box with the same size
and energy are shown by dots and thin curves, respectively.

and nodal points with equal+(+) and opposite ¢ —) We have also considered other cases of averaging, such as
winding numbers. For fixed energy, . (r)#P__(r) and over different energy windows and positions of leads, and
P, _(r)# P__,(r) within the cavity because of its finite size. the influence of wider leads. In all these cases the distribu-
For an accumulation of statistics, howeveB, ,(r) tions of nearest neighbors were practically the same as in
—P__(r) andP,_(r)—P__,(r). We chose the following Fig. 6. We therefore argue that there are generic distributions
averaging over distributions. Since the spatial distribution ofor nearest neighbor separations which may be taken as sig-
the nodal points may be sensitive to whether the energy ofiatures of wave chad$].

the incident electron is resonant or not we accumulate statis- Figure 6 shows the general result that nodal points with
tical samples by sweeping the energy over an energy windowpposite WN have a tendency to attract each other, while
that contains at least a few resonant transmission peaks. Awints with equal WNs repel. Hence quantum chaos is not
our computer calculations show, differences betweerihe same as complete randomness. This is also evident from
P, .(r) andP__(r) then disappear. We will also consider the distribution for nearest neighbors among random points
the case that the positions and shapes of the leads are alter&20]

A. Case of chaotic cavities P(r)= gr exp(— ﬂ-r2/4), (6)

The distributionsPyp(r), Psp(r), P, . (r), andP, _(r)
of the open Sinai billiard are shown in Fig. 6. Two transverse
modes are open in the leads. The distributions are obtaineaherer is the separation between points in units of the mean
as the average over 201 different energies within the energyeparation(r). The distribution is shown for comparison in
window betweene=49 ande=50. This energy window is Fig. 6@ The distinct difference between the curves thus
wide enough to include a number of conductance oscillationslemonstrates that there is an underlying correlation between
as shown in the inset of Fig(®. The total number of nodal the nodal points in the irregular cavity. Figurédg finally,
points with specific winding number and the total number ofshows the distribution of nearest distances between the
saddle points are given in the figure caption. saddle points. This distribution is apparently quite close to
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P, _(r). As will be seen belowP\p(r) is the distribution simplicity of Eq. (8). Since the rectangle coincides with the
that is most sensitive to geometry. To test the idea of generiSinai billiard except for the rounded corner this difference
distributions further we have investigated variations of themay be ignored.
Sinai billiard with the same results. We have also considered The Berry function in Eq(7) represents a random Gauss-
the irregular Bunimovich billiard21]. Except for slight nu- ian complex field. The functio8) may also be considered
merical deviations, the Bunimovich billiard gives rise to the as such a field provided the number of superposed states is
same distributions as the Sinai billiard. large enough. As indicated, the expansi@n is limited to
states within a small energy window arouadIn practice,
superpositions of 16 or 24 states approximate a random field
rather well. As a consequence we do not find any visible
There is a simple way to understand the nature the generigdifferences in the distributions displayed in Fig. 6 with these
distribution above. Intuitively a wave chaotic state may betwo choices. In a statistical sense our modified combination
viewed as a random superpostion of monochromatic planstates thus represent the true interior chaotic scattering state
wave states. For any point not too close to the boundary of guite well. As a consequence the corresponding distributions
billiard and for Fermi wavelengths much smaller than theof nodal points and antivortices are also well described
dimensions of the enclosure, we thus assume that we mayithin this framework.
approximate the true state with the Berry conjec{®2]

B. The Berry wave function and complex combination states

C. Case of rectangular cavities

P(x,y)=2> a exdi(k;-r+¢))] (7) Let us now turn to the case of nominally regular cavities
J and how leads affect the different statistical distributions. We
chose an open rectangle as an example of such a billiard
wherea; and ¢; are independent random real variables andbecause it is the limiting case of the Sinai billiard as the
k; are randomly oriented wave vectors of equal length. radiusR—O0 for the cut corner. Figure 7 shows the distribu-
Correlation function$18,23 for nodal points and the dif- tions at two-channel transmission with the same energy av-
ferent distributionsPyp(r), P, .(r), and P, _(r) for the eraging procedure as for the Sinai billiard. The distribution
Berry function have been considered previog$,24. The  Pyp(r) clearly displays a central peak corresponding to par-
dotted curve in Fig. 6 shows the results #gp(r), which  tial order among the nodal points and is therefore distinctly
are typical also for the remaining distributions. The qualita-different from the Sinai case. The height of the distribution
tive picture is indeed quite satisfactory. In spite of numericalP . , indicates that the partial order relates to nodal points.
deficiencies, in particular around the peak values, the BernJhis is also the case at much higher energies. On the other
state apparently provides a key for understanding the distrirand, the distribution for saddle poin®gp in Fig. 7, shows
butions in a Sinai billiard. little difference from the chaotic case. We take this to mean
As mentioned the Berry function should be a good reprethatPspis a less useful discriminator and will not consider it
sentation of the true scattering state for points not too closéurther.
to the boundarie$25]. On the other hand, whenever finite ~ One may suspect that a reason for the partial regularity
size and the boundaries play a role the probability for larggamong the nodal points is due to the symmetric attachment
separations between nearest points is reduced. Because tfeleads. We have therefore considefegp also for asym-
distributionsPyp(r) in Fig. 6(a) are normalized, a reduction metric positions of leads. Moreover we performed an aver-
in the high tail is compensated by an increase in the domiage over positions of the input lead at fixed energy. In all
nant peak region, as shown by the figure. As an easy remedyases the signs of partial order remain. Therefore an open
for boundary effects we therefore modify the Berry functionrectangular billiard with two straight sharp-cornered leads
as[21] displays robustness and considerable regularity among the
nodal points. Consequently the various attachments of leads
do not turn regularity into chaos in this case.
YY) =2 Bmntbmn(X.Y), ®) , | |
mn D. Analysis of the numerical scattering states
In order to understand the above features of the distribu-
where ,o(X,y) are the eigenstates of a closed rectangulations let us find the coefficients,,, in the function(8) by
cavity and the mixing coefficients R&(,, and Im@,,, are  projecting the numerical scattering functions on the eigen-
independent random Gaussian variables. These kinds dfinctions,,. A typical case is shown in Fig. 8. As antici-
“combination state” are also known from other parts of pated the expansion is heavily dominated by eigensiatgs
wave physics. The summation in E¢B) includes states with effectively the same energies,, as the incoming elec-
within a narrow energy energy window, i.e., a number oftron[26]. Hence the coefficients,, | in the (m,n) plots in
reshuffled and “lifetime broadened,” nearly monochromatic Fig. 8 fall more or less on an elliptic curve. The specific
states are allowed to mix when there are many open channet®mposition of eigenstates and nodal points may, however,
and/or the energy is high. In principle we should sum overchange swiftly with energy.
the eigenfunctions of the Sinai billiard but these are compu- Figure 8 pinpoints a key difference between the regular
tationally cumbersome. In doing so we would also lose thaectangular and the chaotic Sinai billiards. Evidently there
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are only a few dominant eigenstates that constitute the scat- One way to achieve a better mixing of states is to alter the
tering wave function, too few to make a chaotic state as irshape of the leads. If we replace the sharp corners by
Fig. 6. The question is, therefore, how to increase the numbebunded or flared ones the injection into the billiard will be
of contributions if one wants the system to cross over toyore collimated27]. We should therefore expect a broader
g:haos. One may think that a widening of the Igads and/or anpresentation of eigenstates with large weigiﬁ; . The
increase of the energy would engage more eigenstates. Oulg . . n

oice of rounded corners, for example, is a natural one for

experience shows, however, that the number of dominarit 0'°€ _ . . ) .
states stays small in either case. Consequently the rectan allistic semiconductor devices in which depletion effects

lar billiard with sharp-cornered leads does not cross over tGormally gives rise to smeared features. _
irregular behavior. Figure 9 showsp for the rectangular billiard with the

same dimensions and averaging procedure as in Fig. 7. Ob-
E. Role of soft leads viously the features related to partial ordering of nodal points
. - have now disappeared amyjp is close to the generic form
In the above analysis of a rectangular billiard we havey, g for the chaotic Sinai billiard. We may therefore say
found t_hat_ only a few dominant eigenstates contribute to th(?hat there is a crossover to irregularity as we insert rounded
transmission. Figure 8 shovx{s,_however, that there are mor r flared contacts. Multiple probes would accelerate such a
states available along the elliptic curve. Sharp-cornered leal ossover
are evidently too selective. The question is how to get all the '
states engaged on equal footing and thereby reach a richer

combination state. 12 | S
1.8% o3
06
78 78 80 (o
o 1 €
=z
o
0.5
0
0 0.5 1 15 2
n m r/<r>
FIG. 8. Relative weight$a|? of the eigenstateg,, partici- FIG. 9. Histogram for rounded asymmetric leads as shown in
pating in the electron transmission through a rectangular billiardhe insetsPyp for the Sinai billiard is also shown. The radius of the
with size 840x 400, d=40, and energy=40. rounded sections iR~d.
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resonant transmissione=19.2727, t=0.75. The magnification Secos 2o e
shows streamlines for the indicated “interior” region, which does Ooe 040 So2le o
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IV. QUANTUM STREAMLINES ‘L.'e:_:;-;’g.}";}

The vortices and antivortices are intimately connected :}(:Eo," :.;’.""2

with current flow. Vortices play the role of impurities which
the net current through the system must circumvent. Antivor-
tices act as beam splitters. To get further insight it is useful to |G, 11. Streamlines for the net flow and positions of nodal
analyze velocity fields and streamlines. We therefore conpgints with different winding number®pen and filled circlesfor a

sider the velocity as defined in Eq(4) Sinai billiard at energy 49.9upper caseand 50.0(lower casg
) Two channels are open. Sizes of billiard and leads are the same as
v=x=hVe/m*, (9 in Fig. 6. The inset in the upper case shows a magnification of the

net flow in the region indicated by a square. Crosses denote saddle
which integrated over time gives the streamlines. The quanpoints. The inset in the lower panel shows the whirling closed
tum streamlines are sometimes referred to as Bohm trajectatreamlines for the indicated “interior” region, which does not con-
ries [28]. In this alternative interpretation of quantum me- tribute to the net flow.
chanics an electron is viewed as a “real” particle in the
classical sense, following a continuous and causally definet is clearly seen how the flow of particlé&rajectorie$ ef-
trajectory (streamling with a well defined positiorx and  fectively “channel” through the nodal crystal. The saddle
velocity v. The electron is thought to move under the actionpoints at the contacts act as branching points. This picture is
of a force which is not obtained entirely from the classicalevidently very different from semi-classical physics and pe-
potential vV, but also contains a “quantum mechanical” po- riodic orbit theory[29]. The contributions to the net current

tential are displayed in Fig. 10 and the following figures. In addition
there are also closed vortical motions around the nodal points
h? v2pl2 as described above and illustrated by the insets in Figs. 10
Vo=~ 5+ L (10)

This quantum potential is negatively large where the wave
function is small, and becomes infinite at the nodal points.
Therefore, the close surounding of a nodal point is forbidden [+ & =,
for the quantum streamlines contributing to the net transport AR
from source to drain. One may say that the nodal points o eo
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effectively act as impenetrable impurities with the same ex- 5. ”."’ o z .'°,':: “
tensions as the vortices. Moreover, the nodal points are to- |* ° 5=’ tRle Doteese il
pological singularities of the wave function; therefore 2 Patiet et .
“open” streamlines associated with the net current cannot | <57 % o* o=t W el SR
encircle a nodal point. S A ks 2

As seen from Fig. 2 the nodal points for the Sinai billiard
are disordered while for the rectangular case in Fig. 5 they
may form a “nodal crystal.” We should therefore expect dif-
ferent behavior for the quantum streamlines for these two
cases. Figure 10 shows the flow lin&ohm trajectorielin FIG. 12. Streamlines for the net flow through a rectangle with
the case of the rectangular cavity. The general features of theharp corners at energy 50.1. The dimensions are the same as in Fig.
flow lines connecting input and output leads are remarkablez. The offset of the input lead isd2
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integrable or nonintegrable. We have emphasized the role of
vortices and antivortices in the scattering wave function and
illustrated how the array of such points is intimately related
to the net current flow through a ballistic billiard. Depending
on the geometry, energy of an injected particle, positions and
shapes of leads, etc., a rich variety of flow patterns or quan-
tum trajectories is found, ranging from channeling to volatile
situations in which the flow lines may rearrange swiftly after
small changes. In this sense there is an analogy with classical
chaos as to the extreme sensitivity of trajectories. Figure 11
shows how the quantum trajectories may change drastically
on only a tiny chang@\ of the wavelength. In the limit of

of very small\, as in the semiclassical limit, effects of this
kind can become very dramatic. The spacing between nodal
points is roughly equal ta. Thus as\— 0 even infinitesimal
alterations in, for example, lead positions will induce new
flow patterns that are not foreseeable. We have also sug-

and 11. The net current through the billiard is actually rathegested that percolation theory might be useful for analyzing
small compared with the flow absorbed in the vortical mo-these features.
tions. To a good approximation one may then work out cur- We have also argued that there are generic distribution
rent statistics using the random functions in Sec. 11l B. If wefunctions for the nearest separations between vortices in ir-
choose the Berry function this can be done analytid&y. regular open systems. The distributions may thus be taken as
As seen from Fig. 10 saddle points are also importana signature of quantum chaos and may be used for diagnostic
because they are related to spatial instabilities of the streanpurposes. We have used these distributions to find out about
lines leading to the branching of the injected beam. As forthe effects of leads attached to a regular billiard, in our case
the vortices we may regard the antivortices as scatterers. I rectangle. In general, leads induce disorder among the
Fig. 10 the branching takes place near the entrance. Theodal points although preferred directions may still remain
“particles” then channel through the nodal crystal. a5 in Fig. 12. If contacts excite more eigenmodes, as in the
_ If we now go to the complementary case, the Sinai bil-case of rounded or flared contacts, there is a crossover to
liard in Fig. 11, the streamlines look extremely complex. gistributions that are generic for chaotic billiards. The matter

Because the distributions of nodal points are irregular theg i the shape of the billiard but how many eigenmodes of

streamlines also form an irregular pattern when finding theilihe billiard couple to the leads

?/vay thrf(_)ugh tht;e.potentigl :janﬁsc?pe.. Figlgure 11 landf the fol- 6 phenomena we have discussed here derive from gen-
owing figures bring to mind the classical example of mean- : :
dering rivers in a flat delta landscape. As is well known,eral properties of waves and are therefore not unique fo

slight changes in the topography, for example, by movin gantum mechanics. Therg is, for example, a close §!milarity
only a few stones to new positions, may induce differen ith pla_nar eleqtromagnetlc wave guides and cav_|[ﬂa]s
flow patterns in sometimes dramatic ways. In the same Wa‘ghe basic equations take the same form and, in particular, the
slight variations of the energy, for example, affect the quanP’0Ynting vector is the analog of the quantum mechanical
tum streamlines in an endless way. Figure 11 shows tw&urrent. It should therefore be possible to observe experi-
cases which differ in energy by only 0.2%. mentally nodal points and streamlines in microwave billiards
Let us now return to the rectangular billiard in Fig. 10 but[19,31. In principle, these phenomena could also be ob-
let the energy be much higher and assume asymmetric po§erved in wave transmsission in other analogous macro-
tions of the leads. One notices in Fig. 12 that the nodal pointscopic system$32]. In particular, the conjecture of generic
are still partially ordered in accordance with the discussiongorms for the nearest neighbor separations might be tested
above. Because of this we find traces of channeling in opeexperimentally. The close relation between relative positions
“corridors.” Figure 13 shows the importance of the shape ofof nodal points, vorticity, channeling, and meandering cha-
the contact regions. As is to be expected, flared contactstic streamlines might also be observed. It is promising also
break up the ordering among nodal points in the previoushat experimental techniques to image coherent electron
figure and spread the flowlines. flows through semiconductor nanostructures are becoming

In all the complex figures above there are regions betweegyajlable using scanned probe microsof3; 34.
strands with opposite winding numbers. A net current flow

occurs when there are regions that happen to connect the two
leads. This feature recalls percolation and we suggest that
this might be an alternative useful way to analyze irregular
transport through an open billiard. This work was partially supported by the Royal Swedish
Academy of Science@\.F.S and by the Russian Foundation
for Basic Research Grant No. 01-02-1607X.F.S. and

We have considered quantum ballistic transport in somé\.A.S). The computations were in part performed at the Na-
typical two-dimensional open billiards which are nominally tional Supercomputer Centre at Liniag University.

FIG. 13. Same as in Fig. 12 but with flared leads, effectively of
the same size as the rounded leads in Fig. 9.
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