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We study classical and quantum scattering properties of particles in the ballistic regime in two-dimensional
chaotic billiards that are models of electron- or micro-waveguides. To this end we construct the purely classical
counterparts of the scattering probabili{§P matrix |Sn,m|2 and Husimi distributions specializing to the case
of mixed chaotic motioriincomplete horseshpeComparison between classical and quantum quantities allows
us to discover the purely classical dynamical origin of certain general as well as particular features that appear
in the quantum description of the system. On the other hand, at certain values of energy the tunneling of the
wave function into classically forbidden regions produces striking differences between the classical and quan-
tum quantities. A potential application of this phenomenon in the field of microlasers is discussed briefly. We
also see the manifestation of whispering gallery orbits as a self-similar structure in the transmission part of the
classical SP matrix.
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[. INTRODUCTION trices for a large number of modes. Section IV concerns the
dynamical analysis of the classical SP matrix, the existence
At present, the majority of studies on the quantum-of whispering gallery orbits, and the structure that these cre-
classical corresponden¢®CO) of chaotic systems concern ate in the classical SP matrix. Some aspects of the QCC are
boundedmotion, for which very important results have been studied in Sec. V in terms of the Husimi distribution and its
obtained[1—3]. Most works also treat the situation when classical counterpart, thecal Poincaremap The appear--
chaos isfully developed. Here we would like to contribute to @nce of purely quantum effects in our system and a possible
the understanding of the QCC fopensystems withmixed application is analyzed in Sec. VI. In Sec. VIl we make some
chaotic motion, in particular, we consider particle motion in€oncluding remarks.
two-dimensional2D) billiards whose phase space is charac-
terized by incompletéSmale horseshoes. As is well known,

2D billiards are popular models of ballistic mesoscopic sys- Quantum scattering is studied via the scattering mairix

II. QUANTUM AND CLASSICAL SP MATRICES

tems[4—6] and microwave cavitief7]. which relates incoming to outgoing waves
Usually and naturally, QCC is explored by means of semi- o
classical calculationg8]. Unfortunatelly, this approach poses veut=svin, (€8]

limitations since semiclassical quantities involve the cumber- in out . .
some determination of the action associated with the trajecV—Vhe.re theV™ and V"' vectors specify, respectively, waves
coming into and going out of the interaction region. In the

g)rles and sm:jms Wh'ckh cgftehn do ant gotEvergﬁ.tEqwever_, aBase of a 2D waveguide of arbitrary shape connected to two
aranger and co-worke{§] have found through their semi- 10545 of equal width, = dg=d, the expression for the en-
classical calculations of conductance, the dominant contribus ; ;
. g ergy in the leads is
tions to the average quantum conductance are classical. This
motivates us to construct purely classical counterparts of the h? m?m?
scattering probabilitfSP) matrix |S, ,/? and Husimi distri- E= 2m. —7 |
butions for 2D open billiards. In a previous padé&] we

showed that knowledge of the classical counterpart of the S®herek,, and (m=/d) are, respectively, the longitudinal and
matrix enables us to predict the global structure of the quantransversal momentum components of the total wave vector

tum SP matrix. Here we further our study, specializing to theK of magnitudeK = y2mcE/%.

2

case of mixed chaotic motion, by1) analyzing in more The S matrix attains the fornfsee Ref[9] for detaily
detail the type of trajectories responsible for the formation of

certain structures in the classical and quantum SP matrices; . [t

(2) comparing Husimi distributions with classical phase Y 3)

space structures; an(@) identifying certain purely quantum

effects in the behavior of the conductance. Here,t, t’, r, andr’ are the transmission and reflection
This paper is organized as follows. In Sec. Il we reviewM XM matrices, whereéM is the highest modéthe largest

briefly the general construction of the quantum and classicdransversal mode beyond which the longitudinal wave vector

SP matrices. In Sec. Il the 2D waveguide model is preky;~=(2m,E/%n?) —(m?>m?/d] g) becomes complex The

sented, as well as its resulting quantum and classical SP malements of the transmissighandt’) and reflectionr and
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r’') matrices are the transmission and reflection amplitudesy
given, respectively, byt (E)=(Vkn/kpa/ak, t. (E)

= (VKn/Ke)BS/BR . Trun(E) = (VKo Tk bl/al,, and ry,(E)

= (Vkn/km)a/bR . Here,ak (af) is the amplitude of the
forward traveling plane wave efif"(x)]\/2/d sin(mmy/d)
on the left(right) lead corresponding to thath transversal
mode. Similarly,b: (bY) is the amplitude of the backwards
traveling plane wave eXp-ik; (x)]v2/d sin(may/d) on the FIG. 1. Geometry of the waveguidg(x) =1-cos(2m/L). The
left (right) lead. See Ref9] for details. Thesquaredmodulo three fundamental orbits of the cavity are shown in dashed lines.
elementt, ,|(|t;, /%) gives the probability amplitude for a
left (right)-incoming modem to be transmitted to the right
(Ieft) lead into the mode. Similarly, |r, | (|}, %) is the
probability for a left(right)-incoming modem to be reflected

yix) =d +ag(x)

0

|
'
1
'
'
'
1
'
'
:
L

the width of the waveguide and is the amplitude of the

ripple. For concreteness, the periodic function in this paper is

given by &(x)=1-cos(2mx/L), which defines theosine bil-

: > liard also analyzed extensively by Ketzmerick and co-

to Epr?el%ﬂp(%g:ttgiiﬁ:ddler;itr?e??Jdegﬁ ABX 2M matrix |S, |2 workers[5,10]. Our waveguide system is defined by a cavity
y n,mi formed by asingle period of the cosine billiard attached to

representing the transition probablhty_ for the incoming mode,[WO aligned semi-infinite leads each of widthsee Fig. 1.
m to transmit or reflect into an outgoing mode

The connection to the classical description is given by the This finite length version of the rippled billiard, a model
) of a quantum or electromagnetic waveguide, has been used
angle betweetky andK: to study certain transport manifestations of chaos in the clas-
sical [11,12 and quantum[5,6,9,1Q regimes. Moreover,

0, =sin"* mm i —sin~ ! mmh _ (4) sFu_dies of .th_einfinitgly long (periodic with no Ieaa)srippled_
d K dv2m.E billiard, originally introduced to model beam acceleration

problemq 13], has also provided insight in the understanding

Classically, a particle can enter the lead at any angle in thef general features of periodic structur@sg., energy band
continuous range- (w/2)<§<(w/2), but since theM open  structure, structure of eigenfunctions, tand has been uti-
modes for a given energi are discrete, we associate a lized to explore the problem of quantum-classical correspon-
range of anglesA 6,,=6,,— 6,,—, to each moden. That is, dence of classically chaotic systefrist—16.
we coarse grain the classical angles. Clearly the classical The most useful tool to obtain the whole panorama of the
limit is M=o, classical dynamics of a bounded systéeng., a closed or

The procedure to construct the purely classical counterperiodic billiard is the phase portrait given by the Poincare
part of|S, % is the following[9]. Consider a classical par- map (PM) of a representative set of initial conditiotsee,
ticle entering the cavity of the waveguide, say, from the lefte.g., Ref[11]). However, for an unbounded system such as
lead and making an angl within a range corresponding to our waveguide, its Smale horseshoe is more appropriate
a given modem. The particle(ray) will generally collide since it gives the topology of the homoclinic tangle which
with the walls of the cavity of the waveguide a few times completely characterizes the scattering dynamics, connecting
before exiting the cavity either to the left or to the right lead,the interacting region with the asymptotic regidig]. For
making a certain anglé; to which we can associate a mode our waveguide, the domain of the interacting region is the
nif 6;e A6, . To specify the initial conditions for the trajec- cavity, while the asymptotic regions are the leads. The num-
tory of theith particle, the initial position;,y;) and the ber of fundamental orbit§eriod-one periodic orbijsdeter-
initial angle §; must be given. In order to account for all mine the order of the horseshoe. Our cavfiyr a>0) has
possible types of trajectories, we take a large nunfbgi-  three of themshown in dashed lines in Fig) &nd hence its
cally 1P) of initial positions for each incoming angg. By  horseshoe is ternafiL8]. In Fig. 2 we present the horseshoe
recording the number of particles scattered into the variousf the systen{stable and unstable manifoldshere only the
ranges off associated with different outgoing modeswe  tendrils up to the hierarchy level three are plotted using the
obtain a distribution of outgoing modes for each incomingparametersd,a,L)= (1.0, 0.305, 5.55 In particular, for this
modem. This distribution gives thelassical counterparbf  set of parameters the horseshoe is incomplete with a “devel-
the matrix elementst, /2 and |r, ,|? of the quantum SP opment parameter? slightly less than 32, a typical situa-
matrix. Similarly, to obtain the classical counterpart of tion of mixed phase spadd9].
|t,’1,m|2 andlr,’w'm|2 we repeat the above process, but for par- For the set of parameters used, we obtain a period-one
ticles entering from the right lead. This defines the procedur@nd a period-four resonance islands, see also Fig. 2. These

for constructing theclassical SP matrix. islands are formed by trapped orbits bouncing in the neigh-
borhood of stable periodic orbits. In particular, the central
IIl. THE SYSTEM resonance is formed by trajectories colliding nearly perpen-

dicular with the walls in the neighborhood a=L/2, the
We chose the geometry of the cavity of the waveguide tavidest part of the cavity, see Fig. 1. Note that the orbits
be that of a rippled billiard, which consists of two hard walls: within these islands arelassically notaccessible to scatter-
a rippled wall modulated by a periodic functigr(x)=d ing trajectories.
+aé(x) [&(x+L)=¢(x)], and a flat wall aty=0; d is In Figs. 3 and 4 we present, respectively, the quantum and
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FIG. 2. Ternary horseshoe of the system<(3™%) using as
surface of section the bottom boundary of the cavity fdra(L) 50 100 150 200 250 300 350 400
=(1.0, 0.305, 5.5b The tendrils up to level three are plotted. The m
KAM curves (thick lines around the period-one and period-four ) ) 5 ]
resonance islands are superimposed in the plot. FIG. 4. Classical SP matrikS, |° for the one-period wave-

guide with d,a,L)=(1.0, 0.305, 5.55 andM = 200.

classical SP matrix for thene-periodwaveguide withM
=200 open channels. The quantum SP matrix was calculat
by the recursive Green’s function meth¢#,10], and the
classical SP matrix by the procedure described above wit
10° ensemblegeach characterized by a differefi) of 10°
different initial conditions. Note the rich structure present
mainly in the transmission parft(, | and|t;, ) of the SP
matrix. We note that=t’ andr=r’', as expected from the
symmetry of the system.

The similarity between quantum and classical SP matrices First we focus on the transmission part of the classical SP

is remarkable in the case of a large number of matiese  matrix which is presented in Fig. 5, this time as a function of
M =200), suggesting that the motion belongs to the deep

%emiclassical regime. Nevertheless, we have also seen a re-
€ . )
semblance between the quantum and classical SP matrices
ven for a number of modes as low as ten. Hence the calcu-
ation of the classical SP matrix as a tool for prediction be-
comes relevant in the quantum regime.

IV. DYNAMICAL ANALYSIS OF THE CLASSICAL SP
MATRIX

400

FIG. 3. Quantum SP matrikS, ,|? for the one-period wave- FIG. 5. Transmission paft, |2 of the classical SP matrix as a
guide with d,a,L)=(1.0, 0.305, 5.55 andM = 200. function of angles.
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IEig. 7 (a similar result has been reported in Ref2] for a
different type of billiard. The point of convergence of the
self-similar structure(not shown in Fig. § can be easily
] ) o ~ calculated:6=0.3325, the angle at the inflection point of the
angles. An interesting structure to analyze is in the regionyofile (x=L/4). A particle that would hit the upper bound-
0.345< #=0.48, for which an enlargement is shown in Fig. ary atx=L /4 with ¢;,=0.3325 would hit the concave part of
6. The existence ofvhispering gallery orbitsWGO) is well  the pilliard an infinite number of times before leaving it at an
known in cavities with concave wallgote that our cavity angle 6;=0.3325.
has a concave part ib/4<x<3L/4). These are guided or-  gjmilarly, we can discover the types of particle motion
bits along the inner surface of such cavities, see e.g., Refhat produce the various structures in the transmission part of
[20]. In recent works, it has been shown that WGOs producgne classical SP matrix. Fig. 8 shows typical trajectories that
fractal structures in, e.g., “virtual images” of billiard21].  contribute to the zones marked in Fig. 5. All these orbits are
Here we can see that a self-similar structure, perhaps NoRery stable, small variations of the initial conditions
fractal,.also shows up in the _SP matrix, m_partlcular, in the(xi v ,6,) follow closely the same trajectory, with the same
transmission part of the classical SP matifig. 6). . number of collisions with the upper and lower boundaries
~ We find that the structure of Fig. 6 is formed by trajecto- gnq with very similar final angles; . Noting that the matrix
ries that hit only on the concave part of thpperboundary  glementgs, |2 give a measure of the number of trajectories
before bemg transmlt'ted: the outer pe}rt of the structuie ( connecting a pair of angleg— 6;, then forevery high in-
>0.465) is due to trajectories that hit it only once; the secyensity structure in the classic&Pmatrix there corresponds
ond generation f=[0.41, 0.469) is due to trajectories that 4 hoyungle of stable trajectoriedoreover, since all the high
hit it twice, the next generationf¢=[0.39, 0.41) is due to  intensity structures present in the classical SP matrix are also
trajectories that hit the boundary three times, and so on, S&§tesent in its quantum counterpart we can expect the stable
orbits of the underlying classical motion to play the domi-
18 T T T T T nant role in determining quantum transport properties.

FIG. 6. Enlargement of the transmission part of the classical S
matrix for 0.345< 6<0.48.

y V. LOCAL POINCARE MAP

To further analyze our waveguide system we shall use the
local Poincaremapwhich has the same meaning as the PM,
but now constructed only from the images of incoming tra-
jectories in the cavity region. Since these eventually leave
the cavity region, they are transient. The local RWith
surface of section ag=0) is presented in Fig. 9; Fig.(8
shows the part of the local PM generated by trajectories
. ) . . ) whose initial conditions start in the left lead only and Fig.

! 2 x 8 4 s 9(b) shows the contribution of trajectories starting from both,
right and left leads. Comparison of Figgb®and(2) shows,

FIG. 7. Trajectories that contribute to the first six generations ofas expected, that the resonance islands produced by bounded
the structure of Fig. 6 are shown. motion inside the cavitysee Fig. 2 are forbidden phase

-

0.6

0.2
[}
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FIG. 10. Local Poincarenap with Poincarsurface of section at
the top boundary and the locatighighlighted of the WGOs that
contribute to the structure of Fig. 6.

of minimum uncertainty. The Husimi distribution can be
viewed as a quantum phase space probability density that can
be directly compared with the classical phase space. See Ref.
[14] for details of the calculation of the Husimi distributions
for the infinetly periodic rippled billiard. In a recent work
0 1 2 8 4 5 [10], the Husimi distributions were used in the cosine billiard

X to show, among other things, the relation between the scat-

FIG. 9. Local Poincarenap generated by particles entering to {€ing resonances and the eigenstates of the corresponding

the cavity of the waveguidéa) from the left lead andb) from both ~ closed system. Here, for our waveguide system we calculate
leads. In both cases the Poincateface of section is located wt  the Husimi distributions for each one of theopened modes

=0. at certain Fermi energy and compare them with the local PM

generated solely by trajectories starting with the correspond-
space regions in the local PM. Also note that the structure oiihg A 6, (note that the Husimi distributions for the scattering
the local PM shadows the unstable manifold of the ternarystates reported in Refl10] are superpositions of several
horseshoe of the system, clearly visible up to the tendril oinodes. Then, using a Fermi energy that supports 20 modes,
level three. The stable manifold is not present in the structureve present in Figs. 1&)—11(d) the local PM generated by
of the local PM because for the construction of the horseparticles entering from the left lead with angles correspond-
shoe, time-reversed trajectories are included, which is not thiag to the 2nd, 5th, 10th, and 20th mode, respectively, to-
case for the local PM.

Now we can ask about the location in the local PM of the
WGO. For this purpose we construct the local PM choosing ,,
now as surface of section thep boundary because, as ex-
plained in Sec. IV, the WGOs are guided orbits along the
concave part of the boundary. The upper local PM is con-
structed by the pairsx ,Hj’ ) corresponding, respectively, to
the longitudinal component of the position and the angle
made by the total momentum with the tangent of the bound-
ary atx;, right after thejth collision with the upper wall.
The location of the WGO in the local PM is showhigh-
lighted) in Fig. 10, where the numbers label the number of
collisions the particles make with the upper boundary. A
structure of this type in phase space formed by WGOs has
been reported in Ref22]. We see that this pattern evolves
from top to bottom; the higher the number of collisions with
the upper wall, the closer the angi¢é is to zero. In the limit
0'=0, a particle will collide an infinite number of times
along the concave part of the boundary. FIG. 11. Local Poincarenaps for the mode&) 2nd, (b) 5th, (c)

A popular tool used to explore quantum-classical corre-10th, and(d) 20th for particles from the left leatblack dot$ and
spondence in billiards is the Husimi distributi¢®3]; it is  the corresponding Husimi distributicigrayish. The Poincaresur-
the projection of a given quantum state onto a coherent statace of section igy=0.

046207-5



MENDEZ-BERMUDEZ, LUNA-ACOSTA, EBA, AND PICHUGIN PHYSICAL REVIEW E66, 046207 (2002

195

@

19

185

G 18

175

17k 18 ' i

165

175
4007 4008 4009 4010

16

1565

16

145 ' ' ' ' ' ' '
3850 3900 3950 4000 4050 4100 4150

FIG. 12. Dimensionless conductan@efor the range of energy FIG. 13. Local Poincarenaps for the mode&) 2nd, (b) 5th, (¢)
that supports 20 modes for tit@ mixed case, d,a,L)=(1, 0.305, 10th, and(d) 20th for particles from the left leatblack dot? and
5.55: and (b) chaotic case,d,a,L)=(1 0.305 '27] E—g/ex  the corresponding Husimi distributicigrayish. The Poincaresur-
~MZ2m2 whereE* =(h2/2m, )'1/0]2 ' ' face of section ig=0. The resonant energy of the inset of Fig. 12

’ e, . .
is used.

gether with the corresponding Husimi distributions. Notecase, we find substancial differences between the classical
that Husimi distributions coincide with the regions of phaseand quantum quantities. As an example, in Fig. 13 we plot
space with the largest density of points. This agreement sughe same modes as in Fig. 11, but with an energy correspond-
gests that the local PM can be used to predict, at last qualing to a typical dip in the conductance, see inset of Fig. 12.

tatively, the Husimi distributions. Note that in contrast with Fig. 11 the Husinlie predomi-
nantly within the four-period resonance island$ phase
VI. PURELY QUANTUM FEATURES space. The interior of these islands are clearly unaccesible to

classicalparticles coming into or going out of the cavity. In

Recently, Ketzmerick and co-workes,10] obtained im-  contrast, as Fig. 13 indicates, guantumparticle can be
portant results concerning the transport properties ofound within these classical unaccesible regions. The culprit
waveguides which classically produce fully chaotic or mixedof this phenomenon is Heisenberg’s uncertainty principle
dynamics. They showed that the behavior of the Landauethat allows the wave function to tunnel through the KAM
conductanceG (given by (29/ﬁ2)2n2m|tn'm|2, wheret, ,  (Kolmogorov-Arnold-Moser barriers. Since the one-period
are the transmission elements of tlematrix) and the and four-period islands in phase space are formed by motion
Wigner delay time can clearly distinguish between full andwithin the cavity, they mustand dg appear for the corre-
mixed chaos. See also Ré8]. In our geometry, this distinc-  sponding closed cosine billiaktiard walls aty=0, L instead
tion is exemplified in Fig. 12, where we contrast the dimen-of leads. Hence it is expected that to each scattering state,
sionless conductande, in a range of energy that supports 20 which produces an isolated resonance in the conductance,
modes, for the cases of mix¢Big. 12a)] and globally cha- there corresponds an energy eigenstate of the closed billiard.
otic dynamics[Fig. 12b)]. For the mixed case we used the In fact, very recently Beker, et al.[10] used the same cosine
same geometrical parameters as befoféd,a,L) billiard model to demonstrate that this is indeed the case,
=(1.0,0.305,5.55) and for the globally chaotic case we use where the scattering states, belonging to sharpestcon-
(d,a,L)=(1.0, 0.305, 2.7x The difference is clear: while ductance resonances can be identified by energy and Husimi
for mixed dynamics the conductan€® fluctuates strongly distributions with energy eigenstates living in the resonance
with sharp resonances, for global chaos it is a smooth fundslands, and the less sharp conductance resonances with
tion of energy. These wild fluctuations in the mixed chaoseigenstates whose support is in the hierarchical regions of
case are due to the existence of resonances and hierarchighlase space.
states, as argued in Ref$§,10]. It is also instructive to look at the wave functions in con-

So far we have seen that the similarity between the clasfiguration space for the nonresonant and resonant cases, see
sical SP matrix and its quantum counterpart enabled us tBig. 14. The plots on the leftight) of this figure correspond
understand various quantum features in terms of purely clage the nonresonaniresonant case. The nonresonafreso-
sical dynamicgsee also Ref.9]). We have also seen a nice nand energy is the same as that used in Fig(Bity. 13 for
agreement between the local PM and its quantum countemodes 2, 5, and 20. These plots reveal a striking difference.
part, the Husimi distributions. The energies for which such &n the resonant case we noticévashaped pattern that shad-
good agreement occurs were chosen at random. However, divs the classical trajectory of a particle in a four-period pe-
we select now an energy value corresponding to a sharp digodic orbit, corresponding to the four islands in the local
or peak (isolated resonancesn the conductancémixed PM. As mentioned above, the phase space region of the pe-
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with their classical counterparts, namely, the classical SP ma-
trix and the local Poincarmaps, respectively. As a paradigm
of open billiards, we use a model of a ballistic 2D waveguide
formed by a rippled cavity attached to two collinear leads.
The classical particle motion in such cavity is known to un-
dergo the generic Hamiltonian transition to chabs,11—
16]. For the purpose of this work, the parameters of the cav-
ity were chosen to produce a ternary incomplete horshoe
(mixed chaog
We find a very good global similarity between classical
and quantum SP matrices and, as expected, this similarity is
greater as the number of open modes in the quantum system
increases. However, even for a moderate number of modes
(~ 10-20 the similarity between classical and quantum SP
matrices allows us to extract important information about
X X general as well as individual features of the quantum system.
In particular, all high intensity patterns in the classical SP
FIG. 14. Wave functions for the modés 2nd, (b) 5th, and 20th  matrix, found to be produced by bundles of stable trajecto-
for a nonresonarfleft column and the resonant energy of the inset rjeg, appear also in the quantum SP matrix. Hence, from the
of Fig. 12(right column). knowledge of the structure of theassicalSP matrix we can
) ) ) ) ) ] ) predict which incoming modes contribute dominantly to
riod four islands is not accessible tdassical particles in-  t3nsmission or reflection in the quantum systEgh We
coming from the right or left leads; only trajectories origi- haye also shown that certain self-similar structure in the
nated in the interior of the cavity can be trapped and formyansmission part of the classical SP matrix is due to whis-
this pattern. It is precisely this M-shaped pattern that hafoering gallery orbitd WGO).
been exploited experimentally in R¢24] for the construc- On the other hand, important differences occur for energy
tion of high gain microlasers with directional emission with \,5/,es corresponding to sharp peaks or dips in the conduc-
closedresonators of high refractive index. We see that such gnce. For these resonant energies, the wave functions tunnel
pattern can be obtained also fopencavities because quan- (ihanks to Heisenberg’s uncertainty principieto forbidden
tum mechanically the wave function, due to Heisenberg'gassical phase space regidnssonance islantisassociated
uncertainty, can penetrate into the classically forbidden aryiih stable periodic orbits within the cavity.
eas. Thus, as we have proposed in Réb], directional Similarly, the Husimi distributions and the local PM show
emission microlasers may also be constructed with openn excellent agreement in the case of nonresonant energies.
cavities. We have also computed “classical wave functions™rpq agreement suggests the usefulness of the local PM as a
for these type of cavities, constructed basically in the samg,) 1 predict the support of Husimi distributions for each
way as the local PM with a box-counting method to mimic open mode in the system. Also, we have seen that for a
intensity in configuration spacf26]. The classical wave (ertain resonant energy, where substantial differences be-
functions that we obtained look very much like the truly yyeen jocal PM and Husimi distributions occur, the wave
quantum wave functions for the nonresonant case except fQ{,nctions of the system form a M-shaped pattern. We have

interference patterns. Of course, the classical wave functior@prited this phenomenon to propose the construction of
do not reproduce the resonance structure as this is a purefficrolaser resonators in open cavit[&s).

guantum effect.
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