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Understanding quantum scattering properties in terms of purely classical dynamics:
Two-dimensional open chaotic billiards
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We study classical and quantum scattering properties of particles in the ballistic regime in two-dimensional
chaotic billiards that are models of electron- or micro-waveguides. To this end we construct the purely classical
counterparts of the scattering probability~SP! matrix uSn,mu2 and Husimi distributions specializing to the case
of mixed chaotic motion~incomplete horseshoe!. Comparison between classical and quantum quantities allows
us to discover the purely classical dynamical origin of certain general as well as particular features that appear
in the quantum description of the system. On the other hand, at certain values of energy the tunneling of the
wave function into classically forbidden regions produces striking differences between the classical and quan-
tum quantities. A potential application of this phenomenon in the field of microlasers is discussed briefly. We
also see the manifestation of whispering gallery orbits as a self-similar structure in the transmission part of the
classical SP matrix.

DOI: 10.1103/PhysRevE.66.046207 PACS number~s!: 05.45.2a, 89.75.Kd, 42.65.Wi
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I. INTRODUCTION

At present, the majority of studies on the quantu
classical correspondence~QCC! of chaotic systems concer
boundedmotion, for which very important results have be
obtained@1–3#. Most works also treat the situation whe
chaos isfully developed. Here we would like to contribute
the understanding of the QCC foropensystems withmixed
chaotic motion, in particular, we consider particle motion
two-dimensional~2D! billiards whose phase space is chara
terized by incomplete~Smale! horseshoes. As is well known
2D billiards are popular models of ballistic mesoscopic s
tems@4–6# and microwave cavities@7#.

Usually and naturally, QCC is explored by means of se
classical calculations@8#. Unfortunatelly, this approach pose
limitations since semiclassical quantities involve the cumb
some determination of the action associated with the tra
tories and sums which often do not converge. However
Baranger and co-workers@8# have found through their sem
classical calculations of conductance, the dominant contr
tions to the average quantum conductance are classical.
motivates us to construct purely classical counterparts of
scattering probability~SP! matrix uSn,mu2 and Husimi distri-
butions for 2D open billiards. In a previous paper@9# we
showed that knowledge of the classical counterpart of the
matrix enables us to predict the global structure of the qu
tum SP matrix. Here we further our study, specializing to
case of mixed chaotic motion, by:~1! analyzing in more
detail the type of trajectories responsible for the formation
certain structures in the classical and quantum SP matr
~2! comparing Husimi distributions with classical pha
space structures; and~3! identifying certain purely quantum
effects in the behavior of the conductance.

This paper is organized as follows. In Sec. II we revie
briefly the general construction of the quantum and class
SP matrices. In Sec. III the 2D waveguide model is p
sented, as well as its resulting quantum and classical SP
1063-651X/2002/66~4!/046207~8!/$20.00 66 0462
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trices for a large number of modes. Section IV concerns
dynamical analysis of the classical SP matrix, the existe
of whispering gallery orbits, and the structure that these c
ate in the classical SP matrix. Some aspects of the QCC
studied in Sec. V in terms of the Husimi distribution and
classical counterpart, thelocal Poincarémap. The appear-
ance of purely quantum effects in our system and a poss
application is analyzed in Sec. VI. In Sec. VII we make som
concluding remarks.

II. QUANTUM AND CLASSICAL SP MATRICES

Quantum scattering is studied via the scattering matriŜ
which relates incoming to outgoing waves

Vout5Ŝ Vin, ~1!

where theVin and Vout vectors specify, respectively, wave
coming into and going out of the interaction region. In t
case of a 2D waveguide of arbitrary shape connected to
leads of equal widthdL5dR5d, the expression for the en
ergy in the leads is

E5
\2

2me
S km

2 1
m2p2

d2 D , ~2!

wherekm and (mp/d) are, respectively, the longitudinal an
transversal momentum components of the total wave ve
K of magnitudeK5A2meE/\.

The Ŝ matrix attains the form~see Ref.@9# for details!

Ŝ5S t r 8

r t 8
D . ~3!

Here, t, t8, r, and r 8 are the transmission and reflectio
M3M matrices, whereM is the highest mode~the largest
transversal mode beyond which the longitudinal wave vec
km

L,R5A(2meE/\2)2(m2p2/dL,R
2 ) becomes complex!. The

elements of the transmission~t and t8) and reflection~r and
©2002 The American Physical Society07-1
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r 8) matrices are the transmission and reflection amplitu
given, respectively, bytmn(E)5(Akn /km)an

R/am
L , tmn8 (E)

5(Akn /km)bn
L/bm

R , r mn(E)5(Akn /km)bn
L/am

L , and r mn8 (E)
5(Akn /km)an

R/bm
R . Here, am

L (an
R) is the amplitude of the

forward traveling plane wave exp@ikm
L,R(x)#A2/d sin(mpy/d)

on the left~right! lead corresponding to themth transversal
mode. Similarly,bn

L (bm
R) is the amplitude of the backward

traveling plane wave exp@2ikm
L,R(x)#A2/d sin(mpy/d) on the

left ~right! lead. See Ref.@9# for details. Thesquaredmodulo
elementutn,mu2(utn,m8 u2) gives the probability amplitude for a
left ~right!-incoming modem to be transmitted to the righ
~left! lead into the moden. Similarly, ur n,mu2 (ur n,m8 u2) is the
probability for a left~right!-incoming modem to be reflected
to the left ~right! lead into moden.

The SP matrix is defined by the 2M32M matrix uSn,mu2,
representing the transition probability for the incoming mo
m to transmit or reflect into an outgoing moden.

The connection to the classical description is given by
angle betweenkm andK:

um5sin21Fmp

d

1

KG5sin21F mp\

dA2meE
G . ~4!

Classically, a particle can enter the lead at any angle in
continuous range2(p/2),u,(p/2), but since theM open
modes for a given energyE are discrete, we associate
range of anglesDum[um2um21 to each modem. That is,
we coarse grain the classical angles. Clearly the class
limit is M5`.

The procedure to construct the purely classical coun
part of uSn,mu2 is the following@9#. Consider a classical par
ticle entering the cavity of the waveguide, say, from the l
lead and making an angleu i within a range corresponding t
a given modem. The particle~ray! will generally collide
with the walls of the cavity of the waveguide a few tim
before exiting the cavity either to the left or to the right lea
making a certain angleu f to which we can associate a mod
n if u fPDun . To specify the initial conditions for the trajec
tory of the i th particle, the initial position (xi ,yi) and the
initial angle u i must be given. In order to account for a
possible types of trajectories, we take a large number~typi-
cally 105) of initial positions for each incoming angleu i . By
recording the number of particles scattered into the vari
ranges ofu associated with different outgoing modesn, we
obtain a distribution of outgoing modes for each incomi
modem. This distribution gives theclassical counterpartof
the matrix elementsutn,mu2 and ur n,mu2 of the quantum SP
matrix. Similarly, to obtain the classical counterpart
utn,m8 u2 and ur n,m8 u2 we repeat the above process, but for p
ticles entering from the right lead. This defines the proced
for constructing theclassicalSPmatrix.

III. THE SYSTEM

We chose the geometry of the cavity of the waveguide
be that of a rippled billiard, which consists of two hard wal
a rippled wall modulated by a periodic functiony(x)5d
1aj(x) @j(x1L)5j(x)#, and a flat wall aty50; d is
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the width of the waveguide anda is the amplitude of the
ripple. For concreteness, the periodic function in this pape
given byj(x)512cos(2px/L), which defines thecosine bil-
liard also analyzed extensively by Ketzmerick and c
workers@5,10#. Our waveguide system is defined by a cav
formed by asingle period of the cosine billiard attached t
two aligned semi-infinite leads each of widthd, see Fig. 1.

This finite length version of the rippled billiard, a mode
of a quantum or electromagnetic waveguide, has been u
to study certain transport manifestations of chaos in the c
sical @11,12# and quantum@5,6,9,10# regimes. Moreover,
studies of theinfinitely long ~periodic with no leads! rippled
billiard, originally introduced to model beam acceleratio
problems@13#, has also provided insight in the understandi
of general features of periodic structures~e.g., energy band
structure, structure of eigenfunctions, etc.! and has been uti-
lized to explore the problem of quantum-classical corresp
dence of classically chaotic systems@14–16#.

The most useful tool to obtain the whole panorama of
classical dynamics of a bounded system~e.g., a closed or
periodic billiard! is the phase portrait given by the Poinca´
map ~PM! of a representative set of initial conditions~see,
e.g., Ref.@11#!. However, for an unbounded system such
our waveguide, its Smale horseshoe is more appropr
since it gives the topology of the homoclinic tangle whi
completely characterizes the scattering dynamics, connec
the interacting region with the asymptotic regions@17#. For
our waveguide, the domain of the interacting region is
cavity, while the asymptotic regions are the leads. The nu
ber of fundamental orbits~period-one periodic orbits! deter-
mine the order of the horseshoe. Our cavity~for a.0) has
three of them~shown in dashed lines in Fig. 1! and hence its
horseshoe is ternary@18#. In Fig. 2 we present the horsesho
of the system~stable and unstable manifolds! where only the
tendrils up to the hierarchy level three are plotted using
parameters (d,a,L)5(1.0, 0.305, 5.55!. In particular, for this
set of parameters the horseshoe is incomplete with a ‘‘de
opment parameter’’g slightly less than 322, a typical situa-
tion of mixed phase space@19#.

For the set of parameters used, we obtain a period-
and a period-four resonance islands, see also Fig. 2. T
islands are formed by trapped orbits bouncing in the nei
borhood of stable periodic orbits. In particular, the cent
resonance is formed by trajectories colliding nearly perp
dicular with the walls in the neighborhood ofx5L/2, the
widest part of the cavity, see Fig. 1. Note that the orb
within these islands areclassically notaccessible to scatter
ing trajectories.

In Figs. 3 and 4 we present, respectively, the quantum

FIG. 1. Geometry of the waveguide.j(x)512cos(2px/L). The
three fundamental orbits of the cavity are shown in dashed line
7-2
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UNDERSTANDING QUANTUM SCATTERING PROPERTIES . . . PHYSICAL REVIEW E 66, 046207 ~2002!
classical SP matrix for theone-periodwaveguide withM
5200 open channels. The quantum SP matrix was calcul
by the recursive Green’s function method@5,10#, and the
classical SP matrix by the procedure described above
103 ensembles~each characterized by a differentu i) of 105

different initial conditions. Note the rich structure prese
mainly in the transmission part (utn,mu2 andutn,m8 u2) of the SP
matrix. We note thatt5t8 and r 5r 8, as expected from the
symmetry of the system.

The similarity between quantum and classical SP matr
is remarkable in the case of a large number of modes~here
M5200), suggesting that the motion belongs to the d

FIG. 2. Ternary horseshoe of the system (g&322) using as
surface of section the bottom boundary of the cavity for (d,a,L)
5(1.0, 0.305, 5.55!. The tendrils up to level three are plotted. Th
KAM curves ~thick lines! around the period-one and period-fo
resonance islands are superimposed in the plot.

FIG. 3. Quantum SP matrixuSn,mu2 for the one-period wave-
guide with (d,a,L)5(1.0, 0.305, 5.55!, andM5200.
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semiclassical regime. Nevertheless, we have also seen
semblance between the quantum and classical SP mat
even for a number of modes as low as ten. Hence the ca
lation of the classical SP matrix as a tool for prediction b
comes relevant in the quantum regime.

IV. DYNAMICAL ANALYSIS OF THE CLASSICAL SP
MATRIX

First we focus on the transmission part of the classical
matrix which is presented in Fig. 5, this time as a function

FIG. 4. Classical SP matrixuSn,mu2 for the one-period wave-
guide with (d,a,L)5(1.0, 0.305, 5.55!, andM5200.

FIG. 5. Transmission partutn,mu2 of the classical SP matrix as
function of angles.
7-3
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angles. An interesting structure to analyze is in the reg
0.345<u<0.48, for which an enlargement is shown in Fi
6. The existence ofwhispering gallery orbits~WGO! is well
known in cavities with concave walls~note that our cavity
has a concave part inL/4,x,3L/4). These are guided or
bits along the inner surface of such cavities, see e.g.,
@20#. In recent works, it has been shown that WGOs prod
fractal structures in, e.g., ‘‘virtual images’’ of billiards@21#.
Here we can see that a self-similar structure, perhaps n
fractal, also shows up in the SP matrix, in particular, in t
transmission part of the classical SP matrix~Fig. 6!.

We find that the structure of Fig. 6 is formed by traject
ries that hit only on the concave part of theupperboundary
before being transmitted: the outer part of the structureu
.0.465) is due to trajectories that hit it only once; the s
ond generation (u.@0.41, 0.465#! is due to trajectories tha
hit it twice, the next generation (u.@0.39, 0.41#! is due to
trajectories that hit the boundary three times, and so on,

FIG. 6. Enlargement of the transmission part of the classica
matrix for 0.345<u<0.48.

FIG. 7. Trajectories that contribute to the first six generations
the structure of Fig. 6 are shown.
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Fig. 7 ~a similar result has been reported in Ref.@22# for a
different type of billiard!. The point of convergence of th
self-similar structure~not shown in Fig. 6! can be easily
calculated:u50.3325, the angle at the inflection point of th
profile (x5L/4). A particle that would hit the upper bound
ary atx5L/4 with u i50.3325 would hit the concave part o
the billiard an infinite number of times before leaving it at
angleu f50.3325.

Similarly, we can discover the types of particle motio
that produce the various structures in the transmission pa
the classical SP matrix. Fig. 8 shows typical trajectories t
contribute to the zones marked in Fig. 5. All these orbits
very stable, small variations of the initial condition
(xi ,yi ,u i) follow closely the same trajectory, with the sam
number of collisions with the upper and lower boundar
and with very similar final anglesu f . Noting that the matrix
elementsuSn,mu2 give a measure of the number of trajectori
connecting a pair of anglesu i→u f , then forevery high in-
tensity structure in the classicalSPmatrix there corresponds
a boundle of stable trajectories. Moreover, since all the high
intensity structures present in the classical SP matrix are
present in its quantum counterpart we can expect the st
orbits of the underlying classical motion to play the dom
nant role in determining quantum transport properties.

V. LOCAL POINCARE´ MAP

To further analyze our waveguide system we shall use
local Poincarémapwhich has the same meaning as the P
but now constructed only from the images of incoming t
jectories in the cavity region. Since these eventually lea
the cavity region, they are transient. The local PM~with
surface of section aty50) is presented in Fig. 9; Fig. 9~a!
shows the part of the local PM generated by trajector
whose initial conditions start in the left lead only and Fi
9~b! shows the contribution of trajectories starting from bo
right and left leads. Comparison of Figs. 9~b! and~2! shows,
as expected, that the resonance islands produced by bou
motion inside the cavity~see Fig. 2! are forbidden phase

P

f

FIG. 8. Typical trajectories that contribute to the zones mark
in Fig. 5.
7-4
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UNDERSTANDING QUANTUM SCATTERING PROPERTIES . . . PHYSICAL REVIEW E 66, 046207 ~2002!
space regions in the local PM. Also note that the structure
the local PM shadows the unstable manifold of the tern
horseshoe of the system, clearly visible up to the tendri
level three. The stable manifold is not present in the struc
of the local PM because for the construction of the hor
shoe, time-reversed trajectories are included, which is not
case for the local PM.

Now we can ask about the location in the local PM of t
WGO. For this purpose we construct the local PM choos
now as surface of section thetop boundary because, as e
plained in Sec. IV, the WGOs are guided orbits along
concave part of the boundary. The upper local PM is c
structed by the pairs (xj ,u j8) corresponding, respectively, t
the longitudinal component of the position and the an
made by the total momentum with the tangent of the bou
ary at xj , right after thej th collision with the upper wall.
The location of the WGO in the local PM is shown~high-
lighted! in Fig. 10, where the numbers label the number
collisions the particles make with the upper boundary.
structure of this type in phase space formed by WGOs
been reported in Ref.@22#. We see that this pattern evolve
from top to bottom; the higher the number of collisions w
the upper wall, the closer the angleu8 is to zero. In the limit
u850, a particle will collide an infinite number of time
along the concave part of the boundary.

A popular tool used to explore quantum-classical cor
spondence in billiards is the Husimi distribution@23#; it is
the projection of a given quantum state onto a coherent s

FIG. 9. Local Poincare´ map generated by particles entering
the cavity of the waveguide~a! from the left lead and~b! from both
leads. In both cases the Poincare´ surface of section is located aty
50.
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of minimum uncertainty. The Husimi distribution can b
viewed as a quantum phase space probability density that
be directly compared with the classical phase space. See
@14# for details of the calculation of the Husimi distribution
for the infinetly periodic rippled billiard. In a recent wor
@10#, the Husimi distributions were used in the cosine billia
to show, among other things, the relation between the s
tering resonances and the eigenstates of the correspon
closed system. Here, for our waveguide system we calcu
the Husimi distributions for each one of them opened modes
at certain Fermi energy and compare them with the local
generated solely by trajectories starting with the correspo
ing Dum ~note that the Husimi distributions for the scatterin
states reported in Ref.@10# are superpositions of severa
modes!. Then, using a Fermi energy that supports 20 mod
we present in Figs. 11~a!–11~d! the local PM generated by
particles entering from the left lead with angles correspo
ing to the 2nd, 5th, 10th, and 20th mode, respectively,

FIG. 10. Local Poincare´ map with Poincare´ surface of section at
the top boundary and the location~highlighted! of the WGOs that
contribute to the structure of Fig. 6.

FIG. 11. Local Poincare´ maps for the modes~a! 2nd,~b! 5th, ~c!
10th, and~d! 20th for particles from the left lead~black dots! and
the corresponding Husimi distribution~grayish!. The Poincare´ sur-
face of section isy50.
7-5
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gether with the corresponding Husimi distributions. No
that Husimi distributions coincide with the regions of pha
space with the largest density of points. This agreement s
gests that the local PM can be used to predict, at last qu
tatively, the Husimi distributions.

VI. PURELY QUANTUM FEATURES

Recently, Ketzmerick and co-workers@5,10# obtained im-
portant results concerning the transport properties
waveguides which classically produce fully chaotic or mix
dynamics. They showed that the behavior of the Landa
conductanceG ~given by (2e/\2)SnSmutn,mu2, where tn,m
are the transmission elements of theS matrix! and the
Wigner delay time can clearly distinguish between full a
mixed chaos. See also Ref.@6#. In our geometry, this distinc
tion is exemplified in Fig. 12, where we contrast the dime
sionless conductanceG, in a range of energy that supports 2
modes, for the cases of mixed@Fig. 12~a!# and globally cha-
otic dynamics@Fig. 12~b!#. For the mixed case we used th
same geometrical parameters as before@(d,a,L)
5(1.0,0.305,5.55)# and for the globally chaotic case we u
(d,a,L)5(1.0, 0.305, 2.77!. The difference is clear: while
for mixed dynamics the conductanceG fluctuates strongly
with sharp resonances, for global chaos it is a smooth fu
tion of energy. These wild fluctuations in the mixed cha
case are due to the existence of resonances and hierarc
states, as argued in Refs.@5,10#.

So far we have seen that the similarity between the c
sical SP matrix and its quantum counterpart enabled u
understand various quantum features in terms of purely c
sical dynamics~see also Ref.@9#!. We have also seen a nic
agreement between the local PM and its quantum coun
part, the Husimi distributions. The energies for which suc
good agreement occurs were chosen at random. Howev
we select now an energy value corresponding to a sharp
or peak ~isolated resonances! in the conductance~mixed

FIG. 12. Dimensionless conductanceG for the range of energy
that supports 20 modes for the~a! mixed case, (d,a,L)5(1, 0.305,
5.55!; and ~b! chaotic case, (d,a,L)5(1, 0.305, 2.77!. E5E/E*
;M2p2, whereE* 5(\2/2me)1/d2.
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case!, we find substancial differences between the class
and quantum quantities. As an example, in Fig. 13 we p
the same modes as in Fig. 11, but with an energy corresp
ing to a typical dip in the conductance, see inset of Fig.
Note that in contrast with Fig. 11 the Husimislie predomi-
nantly within the four-period resonance islandsof phase
space. The interior of these islands are clearly unaccesib
classicalparticles coming into or going out of the cavity. I
contrast, as Fig. 13 indicates, aquantumparticle can be
found within these classical unaccesible regions. The cul
of this phenomenon is Heisenberg’s uncertainty princi
that allows the wave function to tunnel through the KA
~Kolmogorov-Arnold-Moser! barriers. Since the one-perio
and four-period islands in phase space are formed by mo
within the cavity, they must~and do! appear for the corre-
sponding closed cosine billiard~hard walls aty50, L instead
of leads!. Hence it is expected that to each scattering st
which produces an isolated resonance in the conducta
there corresponds an energy eigenstate of the closed bill
In fact, very recently Ba¨cker,et al. @10# used the same cosin
billiard model to demonstrate that this is indeed the ca
where the scattering states, belonging to thesharpestcon-
ductance resonances can be identified by energy and Hu
distributions with energy eigenstates living in the resona
islands, and the less sharp conductance resonances
eigenstates whose support is in the hierarchical region
phase space.

It is also instructive to look at the wave functions in co
figuration space for the nonresonant and resonant cases
Fig. 14. The plots on the left~right! of this figure correspond
to the nonresonant~resonant! case. The nonresonant~reso-
nant! energy is the same as that used in Fig. 11~Fig. 13! for
modes 2, 5, and 20. These plots reveal a striking differen
In the resonant case we notice aM-shaped pattern that shad
ows the classical trajectory of a particle in a four-period p
riodic orbit, corresponding to the four islands in the loc
PM. As mentioned above, the phase space region of the

FIG. 13. Local Poincare´ maps for the modes~a! 2nd,~b! 5th, ~c!
10th, and~d! 20th for particles from the left lead~black dots! and
the corresponding Husimi distribution~grayish!. The Poincare´ sur-
face of section isy50. The resonant energy of the inset of Fig. 1
is used.
7-6
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UNDERSTANDING QUANTUM SCATTERING PROPERTIES . . . PHYSICAL REVIEW E 66, 046207 ~2002!
riod four islands is not accessible toclassical particles in-
coming from the right or left leads; only trajectories orig
nated in the interior of the cavity can be trapped and fo
this pattern. It is precisely this M-shaped pattern that
been exploited experimentally in Ref.@24# for the construc-
tion of high gain microlasers with directional emission wi
closedresonators of high refractive index. We see that suc
pattern can be obtained also foropencavities because quan
tum mechanically the wave function, due to Heisenber
uncertainty, can penetrate into the classically forbidden
eas. Thus, as we have proposed in Ref.@25#, directional
emission microlasers may also be constructed with o
cavities. We have also computed ‘‘classical wave function
for these type of cavities, constructed basically in the sa
way as the local PM with a box-counting method to mim
intensity in configuration space@26#. The classical wave
functions that we obtained look very much like the tru
quantum wave functions for the nonresonant case excep
interference patterns. Of course, the classical wave funct
do not reproduce the resonance structure as this is a pu
quantum effect.

VII. CONCLUDING REMARKS

The objective of this work has been to contribute to t
understanding of the classical-quantum correspondenc
regards scattering in open billiards which serve as model
mesoscopic electron waveguides as well as microwave c
ties. Here we make a comparative analysis between the
tering probability~SP! matrix and the Husimi distributions

FIG. 14. Wave functions for the modes~a! 2nd,~b! 5th, and 20th
for a nonresonant~left column! and the resonant energy of the ins
of Fig. 12 ~right column!.
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with their classical counterparts, namely, the classical SP
trix and the local Poincare´ maps, respectively. As a paradig
of open billiards, we use a model of a ballistic 2D wavegui
formed by a rippled cavity attached to two collinear lead
The classical particle motion in such cavity is known to u
dergo the generic Hamiltonian transition to chaos@5,6,11–
16#. For the purpose of this work, the parameters of the c
ity were chosen to produce a ternary incomplete hors
~mixed chaos!.

We find a very good global similarity between classic
and quantum SP matrices and, as expected, this similari
greater as the number of open modes in the quantum sy
increases. However, even for a moderate number of mo
~; 10–20! the similarity between classical and quantum
matrices allows us to extract important information abo
general as well as individual features of the quantum syst
In particular, all high intensity patterns in the classical
matrix, found to be produced by bundles of stable trajec
ries, appear also in the quantum SP matrix. Hence, from
knowledge of the structure of theclassicalSP matrix we can
predict which incoming modes contribute dominantly
transmission or reflection in the quantum system@9#. We
have also shown that certain self-similar structure in
transmission part of the classical SP matrix is due to wh
pering gallery orbits~WGO!.

On the other hand, important differences occur for ene
values corresponding to sharp peaks or dips in the cond
tance. For these resonant energies, the wave functions tu
~thanks to Heisenberg’s uncertainty principle! into forbidden
classical phase space regions~resonance islands!, associated
with stable periodic orbits within the cavity.

Similarly, the Husimi distributions and the local PM sho
an excellent agreement in the case of nonresonant ener
The agreement suggests the usefulness of the local PM
tool to predict the support of Husimi distributions for ea
open mode in the system. Also, we have seen that fo
certain resonant energy, where substantial differences
tween local PM and Husimi distributions occur, the wa
functions of the system form a M-shaped pattern. We h
exploited this phenomenon to propose the construction
microlaser resonators in open cavities@25#.
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