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By means of a diagram technique for Hubbard operators, we show the existence of a spin-dependent
renormalization of the localized levels in an interacting region, e.g., quantum dot, modeled by the An-
derson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a
given spin direction is due to kinematic interactions with the conduction subbands of the opposite spin.
The consequence of this dressing of the localized levels is a drastically decreased tunneling current for
ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the
studied system shows a spin-dependent resonant tunneling behavior for ferromagnetically ordered leads.
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Spin-dependent tunneling [1] and tunneling magnetore-
sistance [2,3] have recently been studied extensively. Con-
cerning spin-dependent tunneling through a quantum dot
(QD), or similar interacting regions, the main focus has
been to investigate the effects of a magnetic field applied
over the interacting region [4–7]. The opportunity of
changing the magnetic properties of the leads, leading in
and out of the QD, by an external magnetic field or by
spin injection and thereby altering the output current, has
thus far been a peripheral topic. There are theoretical re-
ports of spin filters and spin memories [8] in which the
spin polarized current is controlled by the Zeeman split-
ting of the localized levels in the QD. Another suggestion
is a three-terminal system in which two of the leads are
in antiferromagnetic order [9]. The source-drain current
is manipulated by the magnetization direction in the third
terminal. However, these studies are formulated in terms
of single-electron properties and, in addition, they cannot
be directly transformed into a time-dependent situation. To
our knowledge, there is no theoretical report of inducing a
large spin polarization in the QD by simply spin polarizing
the conduction band.

In this Letter, we use a many-body approach to demon-
strate that there is a large spin-dependent renormalization
of the levels in an interacting region, e.g., a QD, due to
the magnetic properties of the leads, which could be used
in magnetic sensor applications. By shifting the magnetic
ordering in the leads, from paramagnetic to ferromagnetic,
the levels in the interacting region experience a spin split
due to kinematic interactions with the conduction bands.
In fact, as we will show, the conduction electrons with the
spin projection s interact kinematically with the localized
level of the opposite spin s̄. This effect, in turn, causes
a drastic increase (up to 150%) of the tunneling current
through the interacting region when the conduction bands
are changed from a ferromagnetic to a paramagnetic or-
dering. Having this result at hand, we suggest a single-
electron device that is sensitive to the magnetic ordering
in the contacts and is responding with an altered output
current.
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To be specific, we are interested in an interacting region
with a single level, which is taking part in the conduction,
in the presence of a large Coulomb repulsion U. Such a
system corresponds to the experimental reality of a small
QD at low temperatures and small voltages kBT , V , U
[10], where kB is the Boltzmann contant. The interacting
region is coupled, via tunneling (mixing) interactions yks ,
to two contact leads characterized by free electrons and
the chemical potentials mL and mR for the left (L) and the
right (R) leads, respectively. A voltage applied over the
system giving rise to a difference mL 2 mR fi 0 results
in a charge current from the higher to the lower chemical
potential. The system can be realized with the degenerate
Anderson Hamiltonian [11], with two conduction bands,
in which the localized states in the interacting region are
described by HD �

P
p EpXpp , where the Hubbard op-

erator Xpp0 � jp� �p0j represents the transition from the
state jp0� to jp� [12]. The summation is taken over the
state labels p [ �0, ", #� (p � 0 corresponds to the local
vacuum whereas the doubly occupied state j "#� is excluded
because of the large U). A conduction electron with the
energy ´ks in the lead a � L, R is created (annihilated)
by cy

ks
(cks), ks [ a. The Hamiltonian of the system

can be written as

H �
X

ks[L,R

´ksc
y
kscks 1

X
p

EpXpp

1
X
ks

�yksc
y
ksX0s 1 H.c.� . (1)

The dynamics of the operator X0s is given by the Heisen-
berg equation of motion,

i
≠

≠t
X0s � �X0s ,H 	 � D0

s0X0s

1
X
k

�y�
ks�X00 1 Xss�cks 1 y�

ks̄Xs̄scks̄	

(note that s and s̄ denote opposite spin projections). It is
the last term in this expression that gives the mixing in-
duced spin-dependent dressing of the localized level. For
a clarification of this fact, let us consider the difference
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of the diagram expansions for standard fermion operators
and Hubbard operators. When one is dealing with the ex-
pectation value of N operators, pN � �T

QN
i�1 hi�, Wick’s

decoupling of two operators hi, hj results in the anticom-
mutator �hi , hj�. In the case of standard fermion opera-
tors, this anticommutator is a scalar, cij , and the number
of operators in the expectation value is, therefore, decreased
by two, pN �

P
cijFijp

ij
N22, where Fij � �Thihj� is a

fermion propagator. Now, in the case of Hubbard operators
the anticommutator becomes yet again an operator, Pij .
The number of operators in the expectation pN value is,
thereby, reduced only by one, pN �

P
Dijp

ij
N21, where

Dij � �Thihj� is a propagator of Hubbard operators,
implying that one has to make a decoupling also with Pij ,
since it remains in the expectation value pN21. The terms
in the perturbation expansion coming from the decou-
plings with Pij give rise to the kinematic interactions and
are characteristic for strongly correlated electron systems.
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In our particular case, the decoupling in the first step gives
�X0s,

P
s Xs0cks� � �X00 1 Xss�cks 1 Xs̄scks̄, whereas

the kinematic interactions are, in the second step, generated
by the commutator �X0s, �X00 1 Xs̄s̄�cks̄ 1 Xss̄cks	 �
X0s̄cks. This effect is clearly seen to arise solely due to
correlations.

The density of electron states (DOS) for each spin pro-
jection s in the interacting region is given by rs�v� �
21
pImGr

ss�v�, where the Green function (GF)
Gss0�t, t0� � �2i� �TSX0s �t�Xs 00�t0��
�TS�, with S �
exp�2i

R2ib
0 H 0�t� dt�	. The Hamiltonian,

H 0�t� � U0�t�X00 1
X
s

�Us�t�Xss 1 Uss̄�t�Xss̄	 ,

is a time-dependent disturbance to the system, by which
a perturbation expansion of Gss 0 is generated through
functional differentiation with respect to the fields Uj�t�
[13]. The equation of motion for the GF of the interacting
region is
µ

i
≠

≠t
2 D0

s0 2 DUs0�t�
∂
Gss 0�t, t0� 2 Us̄s�t�Gs̄s�t, t0� � d�t 2 t0�Pss 0�t� 1 �Pss�t1� 1 Rss�t1�	

3
Z 2ib

0
Vs�t, t00�Gss 0�t00, t0� dt00 1 �Pss̄�t1� 1 Rss̄�t1�	

3
Z 2ib

0
Vs̄�t, t00�Gs̄s 0 �t00, t0� dt00. (2)
Here, D
0
s0 � Es 2 E0 is the bare transition energy,

Rss 0�t� � dss 0id
dU0�t� 1 id
dUs 0s�t� and
DUs0�t� � Us�t� 2 U0�t�. The expectation value
Pss 0 � �T�X0s, Xs 00��
�TS� � dss 0N0 1 Ns 0s is the
sum of the population numbers N0 and Ns 0s corre-
sponding to the transitions �00	 and �s0s	, respectively.
Physical quantities are obtained as Uj�t� ! 0. In this
limit, all expectation values which do not conserve the
longitudinal component of the total spin vanish, although
their functional derivatives may not. The propagator
Vs�t, t0� �

P
k[L,R jyks j

2gks�t, t0�, where gks is the GF
of free electrons in the lead a.

We look for a GF of the form [13] Gss0�t, t0� �
Dss 0�t, t0�Pss 0�t0�, where the locator Dss 0 provides the
essential physical information when all the Pj are approxi-
mated by constants. A more detailed study [14] shows
that taking into account effects of dPj�t�
dUj 0�t0� only
marginally modify our results. If we neglect all functional
derivatives in Eq. (2), the Hubbard-I approximation [13]
is recovered. By also calculating the first functional
derivative of the GF, for which the only nonvanishing
contribution is

Rss̄�t1�Gs̄s�t00, t0� � 2iDs̄s̄�t00, t1�G0�t1, t2; t1�
3 Gss�t2, t0� ,

we find the first order equation in the tunneling interaction
V . Here, we have defined the zero vertex G0�t1, t2; t1� �
dd21

s̄s�t1, t2�
dUs̄s�t1� � 2d�t1 2 t2�d�t2 2 t1� [13],
where d is the locator of the interacting region for van-
ishing tunneling interactions with the leads. The Dyson
equation for the locator Dss generated by the zero vertex,
the loop correction, is graphically given by

σ
=

σ
+

σ σ

σ

where the single and double straight lines symbolize the
locators d and D, respectively. The wiggly line denotes
the effective interaction V . We draw attention to the fact
that the localized level with the spin projection s interacts
kinematically only with the conduction electrons of the
opposite spin s̄ and it is this effect that gives the possibil-
ity of a large magnetoresistance (MR). The renormalized
transition energy Ds0 is given by the equation

Ds0 2 D0
s0 � 2

X
k[L,R

jyks̄j
2 f�Ds̄0� 2 f�´ks̄�

Ds̄0 2 ´ks̄

, (3)

where f�v� is the Fermi-Dirac distribution function. Note
that results similar to Eq. (3) have been obtained earlier
by other methods for different models in equilibrium [15].
However, in none of these earlier studies the explicit spin
dependence on the conduction electrons of the opposite
spin projection, which is present in Eq. (3), was found. For
constant mixing y and conduction band density of states
ra

s , the shift, given by Eq. (3), clearly has a logarithmic
divergence at the chemical potential of the lead a. Obvi-
ously then, for certain choices of parameters, Eq. (3) has
226601-2



VOLUME 88, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 3 JUNE 2002
more than one solution, as illustrated in Fig. 1. Since the
renormalization of D"0 (solid line) depends on the dressed
transition energy D#0 (dashed line), there may be several
divergences around the chemical potential. All such
solutions correspond to possible excitations of the QD.
However, the interesting solution for each spin is that with
the lowest energy. In Fig. 2 the dressed transition energies
D"0 (solid line) and D#0 (dashed line) are plotted as a func-
tion of the spin polarization in the leads, defined as the frac-
tion �Wa

" 2 Wa
# �
W , where Wa

s is the high energy cutoff
for the constant conduction band density of states in the lead
a, and W is half the bandwidth of the conduction band.
Throughout this Letter, we consider only the case when the
polarizations in the two leads are the same. For nonpolar-
ized leads, the localized spin " and spin # levels collapse
into a twofold degenerate level. As the spin polarization in
the leads becomes nonzero, the dressed transition energies
for the two levels become distinct and, as the polarization
increases, the renormalization of the " level decreases. In
the limit of completely spin polarized conduction bands,
the renormalization vanishes and D"0 ! D

0
"0.

The splitting of the localized levels in the interacting
region due to the magnetic properties in the conduction
bands directly influences the tunneling current. Of particu-
lar interest is a comparison of the cases when the two leads
are in either paramagnetic or ferromagnetic order, since
these are the relevant states in magnetic sensors. Below,
we show that the different magnetic phases of the leads
imply a severe change in the magnitude of the tunneling
current through the system.

In the stationary regime, the tunneling current through
the interacting region, symmetrically coupled to the leads,
is given by (for a detailed discussion, see Refs. [22,23])

J �
e
h̄

X
s

Z 2Ws12W

2Ws

Gs� fL�´� 2 fR�´�	rs �´� d´ ,
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FIG. 1. The graphical solution of the renormalization [Eq. (3)]
for the spin " (solid lines) and spin # (dashed lines) level in
the interacting region. The bare transition energy D

0
s0 � 20.1

relative to the chemical potential ma � 0, the coupling strength
Ga

s � 2pjysj
2ra

s � 0.5, and the temperature kT � 0.175. The
conduction band density of states ra

s � 1
2W � 1
100. The
spin polarization in the conduction band is given by the lower
cut offs 2Wa

" � 250, 2Wa
# � 212.5 (units: meV).
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where Gs � GL
sGR

s
�GL
s 1 GR

s �, Ga
s � Ga

s �v�jma
�

2pjys j
2ra

s , and fa�´� � f�´ 2 ma�, which has proven
successful in the regime we consider [24]. In the given
approximation, the retarded GF is

Gr
ss�v� �

Pss

v 2 Ds0 1 i�GL
s 1 GR

s�Pss
2
,

with Ds0 given by Eq. (3) and Pss � N0 1 Ns , where
Ns � 21
p

R
f�v�ImGr

ss�v� dv and N0 1 N" 1

N# � 1. The corresponding DOS is shown in Fig. 3,
where the spin " and spin # are plotted on the positive and
the negative vertical axes, respectively. When the leads are
in a paramagnetic state (dashed lines), the dressed tran-
sition energies coincide having an equal probability. For
ferromagnetically ordered leads (solid lines), the D#0

transition becomes more likely (P## � 0.69) than the D"0
transition (P"" � 0.39). At the same time, the transition
to the # level retains the strong influence from the spin "

conduction electrons and therefore remains as large, or
larger, as in the paramagnetic configuration.

As for the tunneling current through the system, there
is a huge discrepancy in the current for a range of voltages
in the two cases, displayed in Fig. 4. In Fig. 4, the current-
voltage characteristics are shown for three cases in which
the leads are in paramagnetic (dashed line) and ferromag-
netic ordering with a minority spin percentage of 3.5 (solid
line) and 0 (dotted). For sufficiently small voltages, the
magnitude of the current is larger for ferromagnetic than
for paramagnetic leads. As the voltage increases, though,
the current becomes larger in the paramagnetic case, and
for certain voltages the change in the MR jRfm 2

Rpmj
Rpm can be as large as 150%, a large number in
view of existing experimental devices [25].

The solid line in Fig. 4, describing a spin-dependent
resonant tunneling behavior, represents a situation where
the spin polarization in the leads is such that there is only
a tiny fraction of the minority spin state present. As the
bias voltage is increased, the bottom of that subband even-
tually separates from the corresponding level in the inter-
acting region which gives a decreasing contribution from

0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

polarization (W↑ − W↓)/W↑

∆ σ0

FIG. 2. The dressed transition energies D"0 (solid line) and
D#0 (dashed line) as a function of the spin polarization �Wa

" 2
Wa

# �
Wa
" in the conduction bands. The polarization in the two

leads are equal.
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FIG. 3. The equilibrium DOS of the interacting region for
paramagnetically (dashed lines) and ferromagnetically (solid
lines) ordered leads. In the ferromagnetically ordered case,
there is an amount of 3.5% of the minority spin in the leads.

the minority spin to the tunnel current. This results in a
tunnel current through the system that equals the current
of the majority spin state only. The inset of Fig. 4 illus-
trates a nonintuitive and extreme case of this situation with
very narrow conduction bands. Then, for a certain voltage
range, the current is decreased as the conduction bands are
shifted from ferromagnetic to paramagnetic configuration,
giving an up to 45% inverse MR.

In conclusion, using the Anderson model, we predict that
the localized level with a given spin state in a QD is strongly
renormalized, via kinematic interactions, by the conduction
band of the opposite spin state. For ferromagnetic leads,
the levels in the QD experience a spin split which results
in a spin-dependent tunnel current through the system. We
observe a change in the MR by up to 150% as the magnetic
configuration in the leads is changed from ferromagnetic to
paramagnetic, suggesting that our findings can be used in
devicing magnetic sensors. The effect is nontrivial which
is shown by the possibility of an, up to 45%, inverse MR.
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