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We examine the spatial evolution of lightwaves in a nonlinear photonic crystal with a quadratic nonlinearity,
when a second harmonic and a sum-frequency generation are simultaneously quasi-phase-matched. We find the
conditions for a transition to Hamiltonian chaos for different amplitudes of lightwaves at the crystal bound-
ary. © 2002 MAIK “Nauka/Interperiodica”.
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1 Wave mixing in nonlinear optical materials is a basis
of modern optical sciences and technologies. Cascad-
ing several wave-mixing processes in the same low-loss
material, one can, in principle, achieve a high efficiency
using a large value of the lowest order optical nonlin-
earity. The theoretical investigations of cascading of
several scalar optical three-wave-mixing processes in
bulk materials with χ(2)nonlinearity has a long history
[1]. In particular, Akhmanov and coworkers found the
efficiency of third harmonic generation (THG) via cas-
cading of a second harmonic generation (SHG) and a
sum-frequency mixing (SFM) in a quadratic medium
[2], while Komissarova and Sukhorukov described an
efficient parametric amplification at a high-frequency
pump in the same system [3]. Obviously, the observa-
tion of these nonlinear effects demands the simulta-
neous fulfillment of phase-matching conditions for sev-
eral parametric processes as perfectly as possible. On
the other hand, it was shown later that the systems for
which several wave-mixing processes can be simulta-
neously phase-matched are in general nonintegrable;
therefore, the competition of two (or more) parametric
processes can often result in the chaotic spatial evolu-
tion of lightwaves [4, 5]. However, until recently, it was
unclear as to how one can achieve phase-matching for
several processes in a homogeneous medium employing
traditional techniques, such as the use of birefringence
in ferroelectric crystals.

The solution of this problem has been found rather
recently [6–8]; it consists in the introduction of differ-
ent types of artificial periodicity of a nonlinear
medium, which results in the formation of nonlinear 1D
and 2D superstructures termed optical superlattices [9]
or nonlinear photonic crystals (NPCs) [10]. In NPCs,

1 This article was submitted by the authors in English.
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there is a periodic (or quasiperiodic) spatial variation of
the nonlinear susceptibility tensor, while the linear sus-
ceptibility tensor is constant.

In these engineered nonlinear materials, a phase
mismatch between the interacting lightwaves could be
compensated by the Bragg vector of NPC. The idea of
this kind of quasi-phase-matching (QPM) was intro-
duced by Bloembergen and coworkers many years ago
[11]. However, only recently, the rapid progress in the
fabrication of high-quality ferroelectric crystals with a
periodic domain inversion has made the QPM method
very popular [9, 12]. We should stress that the condi-
tions for QPM may be fulfilled for several wave-mixing
processes simultaneously; the QPM also has an advan-
tage of using the largest nonlinear coefficient.

Nowadays, there are several experiments on the
observation of third and fourth harmonics in different
periodically or quasiperiodically poled ferroelectric
crystals with χ(2) nonlinearity [7, 13, 14], which clearly
demonstrate the importance of multiple mixing in
NPCs for potential applications. Modern theoretical
activities on the nonlinear lightwaves interactions in
NPCs are mainly focused on the studies of strong
energy interchange between the waves [12] (this is a
development of the earlier activities [2, 3]), as well as
on the formation of spatial optical solitons [15].

In this work, we describe the effect of Hamiltonian
optical chaos novel for the physics of NPCs. Namely,
we show that spatial evolution of three light waves par-
ticipating simultaneously in SHG and SFM under the
conditions of QPM is chaotic for many values of the
complex amplitude of the waves at the boundary of χ(2)-
NPC. There also exists an integrable limit, where the
evolution of waves is always regular regardless of the
absolute values of their complex amplitudes. The inte-
002 MAIK “Nauka/Interperiodica”



        

OPTICAL CHAOS IN NONLINEAR PHOTONIC CRYSTALS 175

                                                                                                                               
grable limit corresponds to the particular values of two
combinations of wave phases at the boundary of nonlin-
ear medium. In particular, the problem of THG belongs
to the integrable limit; therefore, under the conditions
of recent experiments [7, 13, 14], nonlinear light
dynamics should always be regular. However, even a
rather small change in amplitudes and phases of waves
at the boundary of crystal, with respect to those consid-
ered in [7, 13, 14], should result in a transition to chaos.

We consider a spatial evolution of three copropagat-
ing plane waves

in a periodically poled crystal under the conditions
where SHG, ω + ω  2ω, and SFM, ω + 2ω  3ω
take place simultaneously. Equations of motion for the
slowly varying complex amplitudes Al (l = 1, 2, 3) of the
waves are [9, 12]

(1)

where g(z) is a function equal to +1 (or –1) in a single
positive (negative) polarization domain of the ferro-
electric crystal. In this work, for the sake of simplicity,
we consider only a periodic alternative domain super-
lattice with a spatial period Λ. However, g(z) can be a
quasiperiodic function in the case of nonlinear quasic-
rystals [8, 9]. Note that we consider a typical situation
λ ! Λ, where λ is a wavelength [9, 12, 14].

The coupling constants between waves β2 and β3 are
defined as

where deff = 2πχ(2) and nj ≡ n(jω) (j = 1, 2, 3) are the
refractive indices for the different waves. Of course,
n1 ≠ n2 ≠ n3 because of light dispersion. However, it can
be shown that ∆n/n . λ/Λ ! 1 under the conditions of
QPM; therefore, in what follows we will take β2 = β3 ≡
β. Finally, the phase mismatches involved in Eqs. (1)
are ∆k2 = k2 – 2k1 and ∆k3 = k3 – k2 – k1. Let both these
mismatches be compensated by a reciprocal lattice vec-
tor of NPC, that is

(2)

where mj = ±1, ±2, ±5, … . The methods of achieving
QPM for several parametric processes in a single NPC
were recently discussed in [6, 8, 10] (theory) and [7, 13,
14] (experiment).
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The dynamical system (1) together with the initial
conditions, which in our case are the values of complex
amplitudes at the boundary of NPC, Aj(z = 0), com-
pletely determine the nonlinear spatial evolution of
waves. Before specification of these initial conditions,
we can further simplify the equations of motion. First,

we introduce new scaled amplitudes al = Al/ A0,
where l = 1, 2, 3 and A0 ≡ max(|A1(0)|, |A2(0)|, |A3(0)|).
Second, we make the Fourier series expansion of the
function g(z)

where index n takes only odd values. Now we substitute
this expansion into Eqs. (1), take into account the QPM
conditions (2), and make an averaging of the resulting
equations of motion over the short characteristic spatial
scale 2π/Λ. We have the following basic equations

(3)

where ξ = m2/m3 (mj are the quasi-phase matching
orders, see Eq. (2); we assume that m3 ≥ m2). The over-
dot in Eqs. (3) means the derivative with respect to z/lnl

with a characteristic nonlinear length lnl, defined as

(4)

In the derivation of equations of motion (3), we
removed all rapidly varying terms in performing the
averaging over 2π/Λ. It can be shown that such a proce-
dure is correct if lnl @ Λ [16].

Equations (3) can be represented in the canonical
form with the Hamiltonian function

(5)

In addition to the energy of wave interaction E ≡ H
(Eq. (5)), the dynamical system (3) has the integral of
motion

(6)

corresponding to the conservation of energy of nonin-
teracting waves. In the general case, the system (3) does
not have other global integrals of motion; thus, it is non-
integrable and should demonstrate chaotic dynamics
for many initial conditions al(0) [17, 18]. However, for
some values of ξ and some specific initial conditions,
an additional local integral of motion can arise. Let us
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list these cases, because they include physically impor-
tant situations.

First, if one of the parametric processes, either SHG
or SFM, is dominant (ξ ! 1 or ξ @ 1), then an addi-
tional integral of motion arises, which is of the Manley–
Rowe type [12]. Second, the nonlinear dynamics
strongly depends on the initial values of the two “reso-
nant phases” ψ2(0) and ψ3(0), where

, (7)ψ2 2θ1 θ2, ψ3– θ1 θ2 θ3–+= =

Fig. 1. Dependence of the value of the maximal Lyapunov
exponent on the amplitude of the first wave at the boundary
of optical superlattice α and for different phases: φ = –π/2
(solid line), φ = –0.1 (dotted line), and φ = –0.01 (dashed
line). The first-order QPMs (problem 1, set I).

Fig. 2. Regular (upper) and chaotic (lower) spatial evolu-
tions of scaled intensities of lightwaves at the first-order
QPMs. For the upper subplot, α = 1 and φ = 0, while for the
lower subplot, φ = 0.95 and φ = π/2.
and θj (j = 1, 2, 3) are the lightwave phases; i.e., aj =
|aj |exp(–iθj). We found that, for ψ2(0) = ψ3(0) = 0,
the   dynamics is always regular. Moreover, using
approaches [3, 19], it is possible to show that an addi-
tional local integral of motion exists in this case [20]. In
particular, the problem of THG (a1(0) = 1, a2(0) =
a3(0) = 0) belongs to this class of initial conditions.
Therefore, the spatial dynamics of lightwaves at THG
is regular (cf. [21], where an analytic solution has been
found).

We performed an intensive search of chaotic trajec-
tories solving the equations of motion (3) numerically
for two characteristic values of control parameter ξ that
correspond to the experimental situations described in
[7] and [13], correspondingly:

Set I: The QPMs of first order for both processes,

m1 = m3 = 1, ξ =  ≈ 1.73;
Set II: The QPMs of the 9th and 33rd orders, m1 = 9,

m3 = 33, ξ = 3 /11 ≈ 0.472.
We consider several types of initial conditions,

which cover practically all physically interesting cases
[note that all these initial conditions satisfy the restric-
tion arising from the integral of motion (6)]:

Problem 1: a1(0) = α, a2(0) = [1 – α2]1/2 ×
2−1/2exp(−iφ), a3(0) = 0, where the real parameters φ
and α vary in the ranges –π ≤ φ < π and 0 ≤ α ≤ 1, cor-
respondingly. Obviously, here |ψ2(0)| = |ψ3(0)| = |φ|.

Problem 2: a1(0) = [1 – 3α2]1/2 × 3–1/2exp(–iθ1),
a2(0) = [1 – 3α2]1/2 × 3–1/2exp(–iθ2), a3(0) = α exp(–iθ3),
where –π ≤ θj < π ( j = 1, 2, 3) and 0 ≤ α ≤ 3–1/2 ≈
0.57735.

Problem 3: a1(0) = α exp(–iθ1), a2(0) = 0, a3(0) =
[1 – α2]1/2 × 3–1/2exp(–iθ3), –π ≤ θj < π (j = 1, 3) and
0 ≤ α ≤ 1.

We start our analysis with problem 1. This set of ini-
tial conditions describes, in particular, the THG at α =
1 (φ = 0) and the parametric amplification with a low-
frequency pump at α ! 1 [12]. In order to increase the
efficiency of energy transformation from a basic wave
of frequency ω to a wave of frequency 3ω, it was sug-
gested recently that some nonzero signal at the fre-
quency 2ω be mixed with a basic beam [22]. This kind
of initial condition corresponds to α  1 (but α ≠ 1)
with different values of phase φ.

To distinguish between regular and chaotic dynam-
ics, we compute the maximal Lyapunov exponent λmax
for different values of initial lightwave amplitudes, α,
and phases, φ. For chaos λmax > 0, in contrast λmax = 0
for a regular motion [18]. The dependence of λmax on α
for the first-order QPMs (set I) is depicted in Fig. 1. For
φ = 0, the initial values of resonant phases, ψ2(0) and
ψ3(0), are zero, corresponding to the integrable limit
with λmax = 0 independently on the value of α (not
shown in Fig. 1). However, even a small deviation from

3

3

JETP LETTERS      Vol. 75      No. 4      2002



OPTICAL CHAOS IN NONLINEAR PHOTONIC CRYSTALS 177
the integrable limit, |ψ2(0) | = |ψ3(0) | = |φ| = 0.01,
results in chaotic motion for a quite wide range of ini-
tial conditions (dashed line). A further increase in the
value of |φ| makes chaos more strong (dotted line, |φ| =
0.1); the strongest chaos arises for |φ| = π/2 (solid line),
corresponding to the initial values of resonant phases
|ψ2, 3(0) | that are most distant from the integrable limit.

The motion is always regular for the standard THG
(α = 1), as well as for some range of α in the vicinity of
α = 1 (see the right side of Fig. 1). A regular spatial evo-
lution of lightwaves for α = 1 is shown in the upper sub-
plot in Fig. 2. However, for |φ| = π/2, strong chaos exists
already for α ≈ 0.95, i.e., for a1(0) = 0.95, a2(0) ≈ 0.22i,
and a3(0) = 0; see lower subplot in Fig. 2. Thus, the pos-
sibility of transition to chaos must be taken into account
in the application of an additional pump of frequency
2ω in order to increase the efficiency of THG [22].

We now consider the situation corresponding to the
left side of Fig. 1 with α ! 1. This is the parametric
amplification with a low-frequency pump [12]. In this
case, our analysis demonstrates that the evolution of
waves is weakly chaotic for |ψ2, 3(0)| distant from the
integrable limit. In this regime, the Lyapunov exponent
has some very small yet positive value; therefore, it is
very difficult to distinguish between weak chaos and
regular motion. In practical terms, it means that one
needs to have a very long sample to see the differences
between regular and weakly chaotic spatial evolutions
of light waves.

We now turn to the consideration of nonlinear
dynamics using the second set of QPM parameters but
the same set of initial conditions (set II, problem 1).
The main results on the transition to chaos are depicted
in Fig. 3. Again, as in Fig. 1, |ψ2(0) | = |ψ3(0) | = |φ| = 0
results in a regular motion, while motion is chaotic for
many initial conditions if |φ| > 0. However, the absolute
values of the Lyapunov exponent are small: really,
λmax . 0.1 in Fig. 1, but λmax . 0.01 in Fig. 3. Therefore,
we conclude that the multiple interaction of waves
employing high-order QPMs is more stable against a
transition to chaos in comparison with the case of first-
order QPMs.

We now consider a nonlinear dynamics in the case
when some portion of the energy is presented at z = 0 in
each of the interacting waves (Problem 2). We present
our findings in Fig. 4. Strong chaos arises as soon as
one of the resonant phases becomes different from the
integrable limit |ψ2, 3(0)| = 0 (|ψ2(0) | = π and |ψ3(0) | =
π/2 for a solid line, |ψ2(0) | = π/2 and |ψ3(0) | = 0 for a
dashed line). We should note that for the parameters
corresponding to the solid curve in Fig. 4 strong chaos
exists for almost all values of initial wave amplitudes α.
Chaos is sufficiently weaker for the high-order QPMs
in comparison with the case of first-order QPMs: cf a
dashed line with a dashed and dotted line that corre-
spond to the same values of phases θj but to the differ-
ent sets of QPM parameters.
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Finally, we analyze the set of initial conditions
termed as Problem 3. In particular, it includes the down
conversion [3, 12] or, in other words, the fractional con-
version ω  (2/3)ω [19] in the case of α ! 1. For this
set of initial conditions, we did not find visible regions
of chaotic dynamics.

In order to reliably distinguish between regular and
chaotic spatial evolutions of lightwaves in conditions of
an experiment, one needs to have many characteristic
nonlinear lengths, lnl, on the total length of the crystal

Fig. 3. The same as in Fig. 1 but for the high-order QPMs
(problem 1, set II): φ = –π/2 (solid line), φ = –0.1 (dashed
line), and φ = –0.01 (dotted line). 

Fig. 4. Dependence of the value of the maximal Lyapunov
exponent on the amplitude of the third wave at the boundary
of optical superlattice α and for different phases and QPM
orders (problem 2, sets I and II): θ1 = π/2, θ2 = 0, θ3 = π,
first order QPMs (solid line); θ1 = θ2 = θ3 = –π/2, first order
QPMs (dashed line); θ1 = π/2, θ2 = 0, θ3 = π, high order
QPMs (dashed and dotted line). 
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L: L/lnl * 10 [4, 5]. Importantly, it appears possible to
meet this condition in the typical NPCs. In actuality, for
a periodically poled lithium niobate with a period Λ =
30 µm, a crystal length L . 1 cm, a nonlinear coeffi-

cient d33 = 34 pm/V [7, 13], and a light intensity  =
0.76 GW/cm2 (λ = 1.064 µm) [23], we have L/lnl . 100.
Moreover, chaos should be more easily observable in
the GaAs optical superlattice with d14 ≥ 90 pm/V [24].

In summary, we have shown that simultaneous mul-
tiwavelength generation in typical nonlinear photonic
crystals is often chaotic. This fact must be taken into an
account for the realization of compact laser multicolor
sources for printers, scanners, and color displays based
on quasi-phase-matched harmonics generation.

We should distinguish our results from a recent
paper [25], where nonlinear spatial field dynamics and
chaos were studied in a quadratic media with a periodic
Bragg grating.
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