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Abstract—The spin system of the Heisenberg model (s= 1/2) on asquare lattice with antiferromagnetic (AFM)
exchange between nearest neighbors (in which there is no long-range magnetic order at any T # 0) istreated as
a spatially homogeneous isotropic spin liquid. The double-time temperature Green's function method is used
in the framework of a second-step decoupling scheme. It is shown that, as T — 0, the spin liquid goes over
(without any change in symmetry) to a singlet state with energy (per bond) €, = —0.352 and the correlation

length divergesas ¢ [ T‘lexp(TolT). The spatial spin correlators oscillate in sign with distance, asin the AFM
state. Thetheory allows oneto cal culate the main characteristics of the systemin al temperature ranges. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The objective of this paper isto discuss the problem
of the ground state and the main thermodynamic prop-
erties of the s= 1/2 spin system described by theisotro-
pic Heisenberg model on a square lattice with antiferro-
magnetic (AFM) exchange interaction between nearest
neighbors (J > 0). The Hamiltonian H and the total spin
Sare

H = %stfsfw S=3s )
fa f

We will consider the general case of the Hamiltonian
(1) on an dternant lattice’ of N sites with periodic
boundary conditions. In Eq. (1), f specifies the lattice
sites, D isthe lattice dimensionality, z is the number of
nearest neighbors, and a are the vectors connecting
nearest neighbors. The ground state and the thermody-
namic properties of the system essentially depend on its
dimensionality D.

The problem of the ground state (at T = 0) for the
two-dimensional model (D = 2, z = 4) still remains
unsolved. Marshall [1, 2] argued that the ground state
of the Hamiltonian (1) on alternant lattices is a nonde-
generate singlet with total spin S= 0 (this statement has
been rigorously proved only for a one-dimensional
chain). On the other hand, on alternant latticesof D = 2
and 3, the spin distribution can have a chessboard pat-
tern described by the Néel wave function of an antifer-
romagnet with two equivalent sublattices which are

1A lattice is termed alternant if it is made up of two interpenetrat-
ing equivalent sublattices A and B, such that the nearest neighbors
of a site of sublattice A are sites of sublattice B alone and vice
versa.

mirror images of each other. It is generally agreed that
at T = 0, the two-sublattice AFM state with long-range
order isthe closest approximation to the ground state of
the system [3]. However, Anderson [4] assumed that the
ground state of the Hamiltonian (1) on a square lattice
can be disordered and described by a wave function
with resonant valence bonds (RVBs). Later [5], the
energy of the disordered (singlet) state was calculated
numerically with RVB wave functions on 128 x 128
and 256 x 256 | attices and was found to be —0.3344 per
bond, which isequal, within 0.1%, to the best result for
the energy of the ordered AFM state. However, in [6],
using exact diagonalization for asmall (4 x 4) cluster, the
energy of the singlet state was calculated to be —0.35009.
Different methods for solving this problem are
reviewedin[3].

The thermodynamic properties are also of funda-
mental importance. According to the Mermin-Wagner
theorem [7], long-range magnetic order can exist at T #
0 only on three-dimensional (or quasi-two-dimen-
sional) lattices (D = 3) up to the critical temperature T..
Therefore, the AFM state on a square (D = 2) lattice is
represented by the “ pricked-out” temperature point and
the problem arises of describing the systemat T £ 0. In
a sense, the case of dimensionality D = 2 is critical or
intermediate between a one-dimensional system (in
which the long-range magnetic order can never occur)
and three-dimensional systemswith along-range mag-
netic order at temperatures below the critical point.

The theory of the thermodynamic properties of this
system was developed in [8-11], where the long-range
AFM order of the Néel type was postulated to occur at
T=0.
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TWO-DIMENSIONAL HEISENBERG MODEL

In this paper, the two-dimensional system is
assumed to bein anonmagnetic state with awell-devel -
oped short-range AFM order. This stateisreferred to as
the spin liquid (SL). In describing the thermodynamic
properties of the SL, we make some assumptions and
follow the method used in [8-11]. AST — 0, the SL
goes over, without any change in symmetry, to asinglet
state with an energy per bond &,. However, it is not
known in advance whether or not this state is the
ground state, because the AFM state with energy €,
can also arise. Only a comparison between &, and €,
will allow oneto draw aconclusion asto the type of the
ground state.

2. SPIN LIQUID: CORRELATION FUNCTIONS
AND GREEN’'S FUNCTIONS

We define the spin liquid as a spatialy homoge-
neous state (with the short-range order symmetry
unbroken) in which (i) the spin correlation functions
areisotropic, i.e.,

Ny msL.0= 5y B0
f f (2)

= 23 . 023K,

f
and depend only on the magnitude r = |r | of the space

vector, with K, = 1 and, hence, 3’ 0= 3/4 (here and

henceforth, .. (s athermodynamic averageat T # O or
the expectation value in the singlet state |W,Cat T = 0),
and (ii) the following averages are zero:

0=0, [B0=0,
F'sisl0=0, fzm#n;

(32)
(3b)

the averages of any other odd products of the operators
at different sitesarealso zero (a =X, Y, zor +, —, 2).

The properties of the SL state are mainly determined
by the temperature dependence of the spin correlation
functions. The SL state energy per bond (in unitsof J) is

= HO _ 3

T (12)zNJ T At “)

where K, = K, (K; > 0) is the correlation function for
nearest neighbors (a is the lattice parameter). At T =0,
Eq. (4) givesthe energy of the singlet state €,

To describe the SL state, we go over to the Fourier
transforms of the spin operators and introduce the Fou-
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rier transform of the correlation function
K(a) = Y 'K, = 4(q)s'(-a)0
= 2[5"(g)s (—a)0 ©)

_ l iqr
q

with evident propertiesK(q) = K(—q) and K, = K_,. Given
the Fourier transform K(q), one can calculate any space
correlators K,. We follow the method applied in [8-11]
and calculate K(q) using the double-time retarded tem-
perature Green's functions [12]. Below, we calculate the

function I¥(q)|s4—q) [, = G(q, w). Since the spin corre-
latorsareisotropic, we have T$(q) |s(—q) [, = 2G(q, w).

3. EQUATIONS OF MOTION

It is convenient to go over to the dimensionless
Hamiltonian h = H/z J; all energetic parameters will
also be measured in units of z J. The equations of
motion have the form (7 = 1)

. 1 z + z +
IS = EZ(SfSHa_SHan)v

(6)
R
ISf - ZZZ(SfSHa Sf+asf)-
28 Ly (g-g.+R )
ot 274 T

where

1 z + - z 1, + - + -
Rf = Z—zaiza‘[sfshasha'+Sf+a—a’§(sfsf+a+sf+asf)

2 1, 4+ - + _
_Sf+a§(sfsf+a—a'+sf+a—a'sf) (8)

z 1 + — + —
_Sf+a'§(sfsf+a+sf+asf):|-

In the second-order differential equation, the kinematic
properties of spin operators at one site are exactly taken
into account, which is of fundamental importance.

The chain of equations is cut off at the second step
by linearizing the operator R; (a # @) according to the
scheme [8-11]

zZ + — + — Z 1 Z
stf+asf+a':a2|:tf+asf+a'[sf = éazKa—a'va

©)
z + — + — Z 1 v4
Sf+a'sfsf+a:al[:dsfSHaI:SHa' = EalKaSHa'v

where a; is a factor which corrects the decoupling
approximation for nearest neighbors (K, = —K;) and
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o, isan analogous factor for the correlators at distances

r=d= ./2a(aongadiagonal) and r = 2a (in what fol-
lows, we put a = 1) Thus, we have

(Rf)lin = 2 zz [G Ka a(sf Sf+a)

aza'

+ 0Ky (STha—

(10)
St+a-a)ls

1 1
K, = Z_ZZKa_a, = [1+(2-2)Kg+ Kyl . (1)

Using Egs. (6) and linearized equation (7), the Fourier
transform of the Green's function in the second-step
decoupling scheme is routinely found to be

6@ = 2 Aq) = F(1-v)

q
with the excitation spectrum

Qq = )\Eq(A)a Eq(A) = /\/(1_yq)(l+yq+A)1
= %Zcosqj,
’ (13

where A is the hardness parameter of the excitation
spectrum,

(12)

A = a,K,/2,

and the pseudogapAatq=Q =
is given by

_ 11426 I

The spectrum Q, > 0 describes collective triplet excita-
tionsfrom the si ngI et state. All parameters of the spec-
trum are temperature-dependent and should be calcu-
lated self-consistently.

(14)
(T, M) (Whereyg =-1)

(15

4. SELF-CONSISTENCY EQUATIONS

The imaginary part of the Green's function (12) is
equal to

—%TImG(q, w+i0)
(16)
A(‘”[a(w Q) -3(w+ Q)] =n(q, w);

therefore, the spectral density for the zcomponentsis

W/ T

I, 0 T) = ee n(d, w), (17)

wheret = T/zJ isthe dimensionless temperature. Using
a spectral theorem [12], the equal-time correlation

KUZ’MIN

function can be written as

Le(q) = A(q)cothEPoD

(@)s(-a)i=3 £ a9

or

—VYq coth[?\E (A

K(a) = )\E(A) o1 O

(19)

Using the definition of the space correlators K, of
Eqg. (5), one can derive the relations

Z( —Yg)'K(q) = n(A 1), Ko = 1, (20)
where
1 1=y (=yy)" d\E(A)D
I,(AT) = = o { coth
N% E (D) 21 1)
n=01,2.

These equations should be solved self-consistently in
combination with Eg. (15) for the pseudogap and
Eq. (14).

Asin [8-11], there are five parameters (K4, K, a4,
05, A) to be found from three equations (20) (n=0, 1,
2) and Eq. (15). The needed fifth equation can be cho-
sen arbitrarily to some extent. Shimahara and Takada
[8] put rq = (0, — 1)/(a, — 1) = const and found this
parameter from the condition that the AFM state with
sublattice magnetization m= 0.3 exist at T = 0; that is,
the ground state is postulated to be antiferromagnetic.
We will refer to this as the Shimahara—Takada (ST)
condition.

In this paper, the needed fifth equation for closing
the set of equations is chosen on the basis of Eq. (3b).
Using the rules for calculating the products of spin
operators at one site and Eq. (3b), one can exactly cal-
culate the average:

1,..
|:RfoZD_ 4_a¢za B;‘Ha +a éKZ (22)
Kz = K,-1/z,
which allows oneto find
O E
a 54 E< 42 KID (23)
D at D " 8
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In the framework of the linear theory used here, we
have

0o’
0-—0
0 ot°0,

151 Kl+[0(2(l+K1) —a,K K, —2== K%

80
(24)

From the condition that exact equation (23) and
approximate equation (24) be the same, we obtain the
fifth equation needed to close the set of equations.

Equation (24) is conveniently represented in an
equivalent form by expressing it in terms of the second
moment. Using the spectral theorem, the single-site
average can be written as

[¥(t)s/(0)0 = Ie“‘“ao(w)dw,
- (25)

Jo(w) = %ZJ(q, w; T),
q

where Jy(w) is the spectral density of the single-site
Green's function G (w) = Gy(w).

The zeroth moment is defined as the average in
Eqg. (25) att=0:

M, = (E(0)5(0) = [5isf1= 5

® (26)

_ _ A(9) o F2d]
= IJo(oo)doo N 20, cothEQ il

This relation is a sum rule and reproduces the expres-
sion for the correlator K. Differentiating Eq. (25) with
respect to time and putting t = 0, we obtain the first
moment

m, = (%50 0)

Theleft-hand side of Eq. (27) can be exactly calculated
using Eq. (6), which gives K;/4. The same is obtained
by calculating the right-hand side; that is, we have an
identity. The second moment is defined as

= J’wJo(w)dw. (27)

<5Laiz(t)m (0)> = J’wz.]o(w)doo. (28)
O o*0 |, 9

The left-hand side of Eq. (28) is given by exact
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expression (23). Calculating the right-hand side, we
represent Eq. (28) in theform

%(K2+ K./7) = %)\KlP(A, 0,

(29)
P(AT) = NZ(l Yo)Eq (A)cothEp‘D

Equation (29) is equivalent to the requirement that

Rs; CF [IR)inS Cand, therefore, that Eq. (23) beiden-
tical to Eq. (24). Thus, instead of the ST condition used
in [8], we derived a new self-consistency condition in
theform of Eq. (29). Therefore, the self-consistent sec-
ond-step decoupling scheme can be based on the
requirement that the first three moments (M,, M;, M,)
be calculated exactly.

5. SELF-CONSISTENT SOLUTION
OF THE EQUATIONS

In what follows, the set of equations (20), (15), and
(29) with Q4 = AE,(A) and A% = oK, /2 will be solved
analytically and numerlcally For this purpose, we rep-
resent Eq. (21) in the form

Ia(A, 1) = 1,(8) + By(A, 1),

(1-y)(=vy)" (30)
In(A) NZ Eq(A) 4 ]
(1-y)(=vy)"
Bn(A 1) = NZ Eq(A) ;
(31)

P
PR EL (BT 1

Theintegrals|, (A) correspond to zero temperature (T =
0); therefore, we put A = A(O) in them. The energy of
the system given by Eq. (4) isminimal when K, reaches
its maximum and, as can be easily shown, when A(Q) =
0. Inthis case, the integral s take the form

NZ

= [DW) [Ty,

1,(0) =1, = Ya( V)"

1+yq (32)

Here, D(y) isthe density of states (on the square lattice)
for the dispersion law y,, = 0.5(cosqy + cosgy); this den-
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sity of states is expressed through the complete elliptic
integral of the first kind K(x) as

D(y) = —K(«ll y )~__EE_1_'DInM’
1 (33)
_[D(v)dv = 1.

A calculation givesthefollowing values: 1, = 1.396 and
I, =1, = 0.555. The integrals B,(A, 1) can also be
expressed through the density of states.

5.1. Low-Temperature Regime

In the case of T — 0, we calculate the integrals B,
following the procedure employed in [8, 13]. When
T — 0, the vicinity of the point g = Q is the most
important, because this region can lead not only to
power-law terms but also to anomalous terms that do
not vanish ast — 0. Calculations give

By(t) = C(t) + 21 D(l) 3
(34)
By(1) = By(t) = C(1) - 2D’
to within terms O(t°). Here, D(1) = I/rtand
c@t) = _InEQAD t = T/A\(0). (35)

We represent the low-temperature dependence of
the energy gap parameter in the most general form,

2t
A(t) = AotzﬁexpD ~dl

which allows usto consider two scenarios: we will have
power-law behavior (3 > 0) if t; = 0 and exponential
behavior if t,# 0. Asin[8-11], we will say that conden-
sation occursin the vicinity of the point g = Q = (11, 1)
(where y, = —1) if the function given by Eq. (35) tends
toanonzerovalueast —» O:

a4ty _

C(0) = limC() = —2=C, (37)

which is independent of the preexponential factor in
Eqg. (36).

5.2. The Ground Sate of the Systemon a Square Lattice

The set of equations (20), (15), and (22), which
allows the parameters of the system to be determined
self-consistently, possesses the following solution for
1=0,A=0,and P(0, 0) =0.84:

A = 0744, K, = 0.469,

(38)
a, = 2236, o, = 2.65, C = 0.189.
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The energy of the system per bond (in unitsof J) is
€ = —(3/4)K, = -0.352, (39

which is lower than the energy of the AFM state €, =
—0.335 (the best result of the spin-wave theory [3]). An
energy very close to this numerical value was found in
[8] (ear = —0.3508) for the sublattice magnetization
m=0.3andin[9, 10] (exr =—0.345). Wewill show that
the solution found is asinglet. A singlet stateat T = 0
must satisfy the condition [$?[J= 0. Let us consider the
function

(1) E%ESZD - ﬁz s,
fm

(40)
=1 =3 =3
- Nlejsfsf+r|:|_ 4zKr - 4K(O)
From Eq. (19), it follows that
K(0) = IimK(q)
= Ktjim 1Yo oy - _ 4t “
Aq-o0E4(D) (bt a,(2+4)

which gives K(0) = 0 and [$’[0= 0 at T = 0. Thus,
according to the approximate analytical theories devel-
oped to date, the ground state of the spin system on a
sguare lattice is a singlet. This conclusion is supported
by the result €, = —0.3509 [6] obtained by the exact-
diagonalization method for a cluster.

5.3. The Equation for A

The solution with C # 0 obtained above implies an
exponential A(T) dependence, according to Eq. (36), and
allows one to find the parameter 1, = Aty = (TIN4)C =
0.11. In the case of a pure power-law A(T) dependence
(for which C = 0), the set of equations has no self-con-
sistent solution. It should be noted that in the three-
dimensional case, the condensate does not occur (C =
0) because of the square-root dependence of the density
of states near the limits of the spectrum.

In the low-temperature range, Eq.(15) for the
energy gap A has a solution

2
2A(T) = %\% exp(—21,/1). (42)

It follows from Eq. (42) that in this temperature range,
the parameters A, a,, and o, show a pure power-law
dependence (as was found in [8]) with the main contri-
bution [@ 3:

3 3
A(T) = A=—=(T/N)",
2T (43)
AT AT

a,(t) = o, - ay(T) = a,—

2002



TWO-DIMENSIONAL HEISENBERG MODEL

1.0

Fig. 1. Dependence of the hardness parameter of the excita-
tion spectrum A(1) (solid curve) and the modulus of the corr-
elator for nearest neighbors K (1) (dashed curve) on dimen-
sionless temperature T = T/zJ for asquare lattice (z = 4).

Since K, (1) = K; — k18 in this temperature range, the
energy of the system behaves as

g(1) = —(3/4)K,(T) = g, + (3/4)kT® (44)

and the specific heat c(t) O 12

5.4. Thermodynamic Properties of the Spin Liquid

The replacement of the ST condition by Eq. (29)
does not affect the character of the temperature depen-
dence of the model parameters; however, the numerical
values of the coefficients are changed insignificantly.
For this reason, we will only discuss the main results
and will not present details concerning self-consistent
calculations of the thermodynamic SL characteristics.

Self-consistent cal culations of the hardness parame-
ter A(T) of the excitation spectrum and the modulus of
the correlation function for nearest neighbors K, (1) are
represented in Fig. 1. Their asymptotic temperature
dependence (for T > 2) is described by a power law:
A(T) = 0.18/t¥2 and K, (1) = 0.06/.

The specific heat (in dimensionless units) is ¢(1) =
0<(1)/0t; itstemperature dependenceisshownin Fig. 2.
For T — 0, we have c(t) O 12 in accordance with
Eq. (44); the maximum is reached at the temperature
™ = 0.2 = 214, and the asymptotic high-temperature
dependenceis c(t) O U/t2, because K, (1) O /1.

The dynamic susceptibility of the spin system (in
dimensionless units) is given by [12]

x“*(q, w) = —15%(q)|s*(—q)0L,.

In the SL state, the correlation functions are isotropic
and, therefore, x*(q, w) = 2x#4q, w). The static sus-

(45)
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1.0

0.8

0.6

(1)

04

0.2

Fig. 2. Specific heat ¢(1) (in dimensionless units) of the spin
liquid on a square lattice.

ceptibility (at w = 0), in accordance with Eq. (12), has
the form

Ki(l-vg) _ Ki 1

X“(a,0) = = 1= _
2 21+y, +A
Q: 2021 +Y, )
-1 1
al+y, +A
From Eq. (46), it follows that
x*(q=0,0) = 1/2a, = 0212, 10,
2 _ 1 23 %exp(2ty/t) (A7)
X" (q=Q,0) = 6h @, 2

with thelatter expression divergingast — 0 (asinthe
AFM state).

0.6

§*(1)

0.2

0 0.5 1.0 1.5 2.0
T

Fig. 3. Temperature dependence of the mean square of the
total spin of the system (per lattice site) (1) = NS [
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The thermodynamic longitudinal susceptibility, by
definition, is[12]

X* = 2[AS(0))D- (5(0)f] = 2%
(49
0 = xA$)D= 35°(1) = ZK(0)

and equals the dynamic susceptibility for w — 0,
q —= 0. At low temperatures, we have X “(t) = x“(0) +
a,T3, in accordance with the temperature dependence of

o, (1); the numerical value of X*(0) = 1/2a, = 0.212
agrees with the result obtained in [8] if the normaliza-
tion to z = 4 is taken into account (T/J = zt, 0.212/4 =

0.053, as in [8]). The susceptibility X* (1) reaches a
maximum at T = 0.1 = 1, and then decreases, with the
asymptotic high-temperature dependence being 1/4t.
The temperature dependence of the mean square of the
total spin of the system S?(1) isshown in Fig. 3.

The coefficients characterizing the asymptotic tem-
perature dependence of the functions considered above
(in the case of T — o0, where there are no correlations)
can be found analytically under the following assump-
tions: (i) the excitation spectrum is limited, Q, —

AJD(L—-y,),i.e, \JD — const = ¢; (i) SH(T) —~
3/4; and (iii) the decoupling parameters a;(1) — 1
and a,(t) — 1 and K, — 1/4. Condition (ii) is
equivalent to K(0) — 1. Using the strong inequality
A > 2, wefindthat A(t) — 4t and condition (i) reduces
to A(T) = ©/2./1. Asymptoticaly, |, — 2T/AA, |, —»
(/2)21/A\A, and Eq. (15) for the energy gap takes the
form A = 1/8A2, from which it follows that ¢? =1/2z=
1/8 and ¢ = 0.354. Thus, we have the following asymp-

totic (T — o) temperature dependence of the parame-
ters of the system:

0.177 0.063
o Ky(t) = —,
ﬁ 1

C = A(1)J/A(T) = 0.354,

A(T) = 4t, A(T) =

(49)
1

"‘ZZ(T) - 41:

These expressions are identical to the numerical calcu-
lations to within less than one percent.

6. SPACE CORRELATIONS
Letr = (X, y) be the vector connecting two arbitrary

sites of a square lattice (a = 1). According to Egs. (5)
and (19), the space correlators have the form

= 23 K@)
q
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y P Eq(A)
E(A(; cothpy 2t U

- Kfﬁze (50)
q

<= ()Y
and oscillate in sign with distance, asintheAFM state.
By definition, K(q) = Z exp(—igr)K,; therefore, at
g=0andq =Q,Weha\/er

KO) =YK, K@ =TFIK| 6D

We note that [$?= N(3/4)K(0), i.e., H*0=0a1=0
(the ground state is a singlet); therefore, as can be seen
from the expressions for K(0), the correlations of alter-
nating sign cancel out at T = 0. It follows from the gen-
era expression for K(q) at g = Q that

hCA/200

coth 0ot O

J_

Substituting the solution for A at low temperatures
given by Eq. (42), we obtain

K(Q) = Ky (52)

K(Q) = 2K,T exp(214/1), (53)

which divergesast — 0.

Now, we discuss the behavior of the correlation
functions at large distances r of the order of the linear
dimensions of the system ./N (D =2).At1=0,A=0,
we abtain from Eq. (50)

iqr 1 —Vq d2
1+y,

(54)

r

N (2m)?

In this integral, the main contribution comes from the
region (of radius k, < 1) of the point g = Q of the Bril-
louin zone. Substituting g = Q —k, we obtain

K, =€ 1f2 IJO( )dx
(55)
_0. 284

which isindicative of the absence of long-range order
in the ground state. Integrating Eq. (55) over the two-

dimensional lattice volume, we find K(Q) O /N ; that
is, we have a divergence in the thermodynamic limit

2002
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(N — o). The staggered magnetization m is defined
as[3]

Y I R
" <5ﬁ2( ) SH>
13 _ 13
Na2 = N

In this definition, the factor /N is of importance; since

K(Q) O J/N at1=0,wehaven? 0 1/./N — Ointhe
thermodynamic limit.

(56)
K(Q).

At low temperatures, the dominant contribution in
Eqg. (50) also comes from the vicinity of the point g =
Q; this equation can be written as

|Qr4T 1 e”“

K.(1)=€
(W= ay Ik+4A

(57)

The correlation length & is commonly defined by the

equation 4A(t) = k2= &2, For large values of r, wefind
Kor ] ( )
4T 1 XJp(X
K01 = Gz 7

(58)
2exp(—Kr) 0
om/7 JKr %l 8Kr g

It follows from Eq. (42) that &/a O 1 lexp(1y/T), asin
[8, 13, 14]. Despite the fact that there are regions of
large values of r, such that kr = r/g ~ 1, the correlation
function possesses the property [K,| — Oast — 0
(thereis no long-range order).

It was shown in [14] that the behavior of the two-
dimensional Heisenberg model with AFM exchangein
the long-wavelength and low-temperature regions can
be described in terms of the quantal nonlinear ¢ model
using the renormalization group method. The results
obtai ned above correspond to the classical renormaliza-
tion regime; however, in a higher order approximation,
we have ¢/a = C;exp(2rp/T), where C; = 1; that is, the
preexponential factor is temperature-independent [3,
14]. Thus, the low-temperature dependence of & can be
different, but there is always an exponentia divergence
asT — 0inboth AFM and SL singlet states.

7. CONCLUSION

Thus, we have described the Heisenberg model with
Hamiltonian (1) on a sguare lattice as a thermodynam-
ically stable homogeneous isotropic nonmagnetic spin
liquid at any temperature T. Inthelimitas T — 0, its
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dtate is a singlet (with the total spin S = 0) with an
energy per bond g, = —0.352. At T = 0, the AFM state
with energy €, can compete with the singlet state. For
the best result obtained analytically within the spin-
wave theory, we have €, < €,f; that is, the ground state
isasinglet. It should be noted that the results of numer-
ical calculationsat T = 0 are contradictory, because the
difference in energy of these statesis very small. In the
SL state, there is awell-defined short-range AFM order
with spin correlators oscillating in sign according to
distance. At high temperatures (T > J), the system
asymptotically goes over to the paramagnetic state
(K; — 0, NIH?J— 3/4) with susceptibility x O 1T.
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