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The effect of three-center interactions on the formation of a superconducting phase with  symmetry is

considered using the diagram technique for Hubbard operators and irreducible Green’s functions. It is shown
that these interactions lead to a decrease in Tc by a factor of several tens.© 2002 MAIK “Nauka/Interperi-
odica”.
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1. It is known that, in spite of its relative simplicity,
the Hubbard model [1] reflects the most essential fea-
ture of the behavior of an ensemble of strongly corre-
lated electrons and is frequently used as a base model
for constructing the effective Hamiltonian Heff acting in
a truncated Hilbert space. The expedience of construct-
ing Heff is determined by the possibility of explicitly
obtaining interactions that open, for example, addi-
tional ways for Cooper instability. Thus, when the t–J
model is derived [2, 3], an interaction leading to the
magnetic mechanism of Cooper pairing is distin-
guished.

In this work, it is shown that the three-center inter-
actions arising in constructing Heff and having the same
parametric smallness as exchange interactions radically
affect the properties of the superconducting phase,
decreasing (by more than an order of magnitude) Tc

with model parameters remaining unchanged.
2. Using an atomic representation, let us write the

Hamiltonian in the Hubbard model

(1)

where H0 takes into account contributions of one- and
two-electron states on one site with energies e and 2e +
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U, respectively; U is the Coulomb interaction parame-
ter between two electrons located on one site; and µ is
the chemical potential of the system. The operator V
describes the hopping of electrons within the lower and
the upper Hubbard subbands and also hopping from

one subband to another;  are the Hubbard operators

(2)

The symbol σ in Eq. (1) designates the quantity that
takes values ±1 and corresponds to two possible projec-
tions of the electron spin moment  = –σ.

In addition to the energy parameters of the model,
an essential factor is the electron concentration on a
per-site basis n = Ne/N (Ne is the total number of elec-
trons in the system, N is the number of sites in the lat-
tice). At n < 1 and large Coulomb repulsion U @ |tfm |,
electrons will tend to fill the lower Hubbard subband.
The effect of states with two electrons on one site can
be taken into account by perturbation theory based on
the use of the small parameter |tfm |/U ! 1. An elegant
implementation of such a program is provided, for
example, by perturbation theory in the operator form
[4] indicating a particular algorithm for constructing
the effective Hamiltonian.

In the case under consideration, Heff acts in the Hil-
bert subspace containing no doubles. The contributions
of double states are reflected in Heff as additional terms
that represent an operator series in increasing order of
the smallness parameter. With an accuracy quadratic in
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tfm/U, the effective Hamiltonian is determined by the
equation [4]

(3)

where P is the operator of projection onto the Hilbert
subspace without doubles. Using the multiplication

rules for Hubbard operators  = δml , we
obtain

(4)

With regard to these relationships, we find the form of
the third term in Heff,

(5)

Addition of the first two terms from Eq. (3) leads to the
following structure of Heff:

In this equation, the projection operator is omitted,
because the Hilbert subspace of states without doubles
is invariant with respect to the action of Heff. Among
others, the last summand in Heff contains terms with f =
g, which, taken together with the two first terms of Heff,
give the Hamiltonian of the t–J model

(6)

Thus, Heff (thereafter Ht – J*) can be written as
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Let us discuss the differences between Ht – J* for the
metallic phase and for the case of half-filling. At n = 1,
each site is occupied by one electron. Therefore, the
Hilbert subspace for Ht – J* represents a set of homopo-
lar states, when not only doubles but holes as well are
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absent. In this case, the projection operator can be writ-

ten as P = Πf( ), and, to a given accuracy,
Ht − J* is reduced to the Heisenberg model [5]. On the
other hand, if n < 1, holes are present in the system.
Therefore, electron hopping processes (the second term
in Eq. (6)) and three-center interactions H(3) are
included in Ht – J*.

It is evident from Eq. (7) that the parametric small-
ness of three-center interactions H(3) is the same as for
the exchange part of the t–J model, but it is consider-
ably lower than for the kinetic part. This fact explains
the smallness of the effect of H(3) on the spectral prop-
erties of the system in the normal phase [2, 3].

The situation is different when a superconducting
state with the d-type symmetry of the order parameter
(OP) is formed. In this case, the coupling constant in
the superconducting phase J ~ t2/U is of the same order
of magnitude as three-center interactions. This is why
one should expect that H(3) will strongly affect super-
conductivity with the d-type symmetry of OP. Below,
the truth of this statement will be confirmed by numer-
ical calculations.

3. Two methods were used in the solution of the
problem. In the first case, the diagram technique for the
Hubbard operators [6, 7] was generalized to the case
where three-center interaction is taken into account. In
the second approach, the apparatus of two-time irreduc-
ible Green’s functions was used in the same way as in
the consideration of the t–J in [8, 9]. Self-consistent
equations obtained within the above methods coincide
completely.

The linearized system of equations for normal and
anomalous Green’s functions is reduced to the standard
form of the Gor’kov equations:

(8)

In Eq. (8), the renormalized electron spectrum  is
described by the equation

(9)

where the Fourier transform of the hopping integral tq =
2t(cosqx + cosqy) is written in the nearest neighbor
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Fig. 1. Diagrams for the anomalous component of the mass operator in the t–J* model.
approximation, Jq = (2t/U)tq, and nqσ is determined by
the equation

(10)

Here, Eq =  is the spectrum of quasi-
particle excitations, and ∆q designates the OP of the
superconducting state.

To demonstrate the relative role of three-center
interactions, the contributions of the mass operator
Σ0↑ , ↓0(p, ωn) to the component are given. This contribu-
tion determines the superconducting order parameter.
Ten graphs are shown in Fig. 1, whose analytical
expressions in total determine

(11)

In Eq. (11), the contribution ~2tq originates from the
first two graphs and determines the kinematic mecha-
nism [10]; the term in round brackets reflects the con-
tribution determined by the third and fourth graphs [7]
and is responsible for the magnetic mechanism of the

t−J model. Finally, the term ~  is induced by three-
center interactions H(3) and is determined by the last six
graphs in Fig. 1.

The last term in ~  is the most significant factor
for the d-symmetry OP. It leads in the total Σ0↑ , ↓0 to the
renormalization of the coupling constant by the sce-
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nario J  J[1 – (1 – n/2)] = (n/2)J. It is this renormal-
ization that determines the strong effect of H(3) on the
formation of superconductivity with the d symmetry of
OP. The self-consistent equation for OP can be found in
the conventional way:

There are two things distinguishing this equation from
the corresponding equation for the t–J model. First,
additional terms appear, which can be easily distin-
guished by the explicit dependence on the parameter U.
The second distinction is more important and is associ-
ated with the renormalization of the coefficient before
the terms Jk ± q indicated above.

4. Within the nearest neighbor approximation, the
equation for OP possesses solutions differing in the
symmetry types of the order parameter ∆k. The solution
with the s type of symmetry ∆k = ∆0 does not obey the
sum rule [9] and is not considered here. The solution
with the d symmetry of OP ∆k = ∆0(coskx – cosky) is of
prime interest. In this case, the equations for determin-
ing the temperature dependence ∆0(T) and for calculat-
ing the critical temperature Tc can be written as follows:

(12)

The results of the numerical solution of the equation
for Tc are given in Fig. 2 at various n for the t–J* model
(curve 2). For comparison, the dependence of Tc on the
electron concentration obtained without regard for H(3)
is also given in this figure (curve 1). The numerical cal-
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culations were performed under the assumption that the
ratio 2|t |/U equals 0.25. It is evident that the inclusion
of H(3) leads to a significant decrease in the supercon-
ducting transition temperature (hatched region).

The decrease in the critical temperature caused by
H(3) is due to two factors. The first (and the main) factor
is in the renormalization of the coupling constant. The
second factor is the additional renormalization of the
electron energy spectrum. In order to demonstrate the
role of the second factor, Fig. 3 displays (on an enlarged
scale as compared with Fig. 2) the critical temperature
in the t–J* model as a function of electron concentra-
tion both with regard for the contributions of H(3) to the
renormalization of the electron spectrum (curve 2) and
without these contributions (curve 2'). It is evident that
the second factor affects Tc much more weakly.

Figure 4 shows the dependence of Tc on the ratio
2|t |/U obtained without regard for three-center interac-
tions (curve 1) and with regard for these interactions
(curve 2). The electron concentration in the plots corre-
sponds to the optimal doping level (n = 0.665). It is evi-
dent that, at 2|t |/U = 0.25 (dashed lines), Tc obtained
taking into account the effect of H(3) is 25 times smaller
than Tc calculated without taking the three-center inter-
actions into account.

5. In order to demonstrate clearly the physical
nature of the renormalization of the coupling constant
by three-center interactions obtained in this work, con-
sider the action of the Ht – J and H(3) operators on a sin-
glet pair. If there are no other electrons, the state of a
system with this pair is described by the ket vector

where |0〉  is the state without electrons. This pair corre-
sponds to an eigenvector of Ht – J

ψ f f ∆+,( )| 〉 1

2
------- X f

↑ 0X f ∆+
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↑ 0–( ) 0| 〉 ,=

Ht J– ψ f f ∆+,( )| 〉 2e 4t2/U–( ) ψ f f ∆+,( )| 〉 .=

Fig. 2. Regions of the superconducting state in the (1) t–J
and (2) t–J* models.
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After the action of H(3) on the singlet pair, a superposi-
tion of states is obtained:

It is evident that the effect of H(3) is reduced to rotations
through the angles π/2, π, and 3π/2 of the singlet pair
under consideration around sites f and f + ∆. It is essen-
tial that the energy parameter in this case equals –2t2/U.
Because of this, when the right-hand side of the last
equation is written in the form that does not contain the
restriction ∆1 ≠ ∆ (one has to make an operation of this

H 3( ) ψ f f ∆+,( )| 〉 2t2/U–( )=

× ψ f f ∆1+,( )| 〉 ψ f ∆ ∆1+ + f ∆+,( )| 〉+{ } .
∆1 ∆–≠
∑

Fig. 3. Variations of Tc caused by the renormalization of the
spectrum due to H(3).

Fig. 4. Effect of H(3) on the dependence of Tc on the param-
eter 2t/U.
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kind when passing on to the Fourier representation), the
term (+4t2/U)|ψ(f, f + ∆)〉  should be added, and this
term fully compensates the action of the exchange part
of the Hamiltonian Ht – J. Thus, it can be seen that three-
center interactions make a significant contribution to
the dynamics of singlet pairs, whose formation under-
lies the mechanism of superconducting pairing. There-
fore, in the case where the system contains only one
singlet pair, one can talk about the full compensation of
the corresponding two-center terms of the effective
Hamiltonian. If the system contains other electrons,
three-center terms act in such a way that the states aris-
ing because of changes in the lattice sites adjacent to
the singlet pair under consideration start to make a con-
tribution to the resulting superposition. These addi-
tional contributions increase as electrons fill the sites
adjacent to the pair. These circumstances explain the
appearance of the concentration factor, which leads to
the renormalization of the coupling constant mentioned
above.

We note in conclusion that the analysis performed
unambiguously points to the essential role of three-cen-
ter interactions in the formation of a superconducting
state with the d-type symmetry of OP. Since it was
found that without H(3) Tc ~ 100 K at typical values of
parameters [2], we found, with regard to these terms,
that Tc ~ 4 K for the same parameters.
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