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Abstract—The temperature evolution of the current–voltage (I–U) characteristic of a contact of the break-junc-
tion type with direct conduction is investigated on a polycrystalline HTSC of the Y–Ba–Cu–O system. The
experimental I–U characteristics possessing a hysteresis are correctly described in the framework of the Küm-
mel–Nicolsky theory for an S–N–S contact (S stands for a superconductor; N, for a normal metal) in which the
Andreev reflection of quasiparticles from the N–S interface is considered. It is shown that the shape of the I–U
curve, as well as the existence of a hysteresis, is determined by the ratio of the number of “long” and “short”
intergranular boundaries in the polycrystal under investigation. The coincidence of the calculated and experi-
mental I–U curves made it possible to estimate the effective length of “natural” intergranular boundaries in
polycrystalline HTSC materials. The estimate is obtained from the experimental temperature dependence of the
critical current in the sample under investigation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Bulk HTSC polycrystals possess much lower cur-
rent-carrying capacity than single crystals and thin
films. It is well known that the main limiting factor is
the intergranular boundaries, whose presence results in
the formation of a random network of weak links S–N–
S (S is a superconductor and N is a normal metal) in a
polycrystal. The distribution of geometrical parameters
of individual weak links in such a network is described
by a certain distribution function determined by the
technology of the synthesis of polycrystals.

Junctions at microcracks (break junctions) were
actively studied during the first years following the dis-
covery of HTSC materials. However, break junctions
continue to be attractive objects of investigation [1],
since they make it possible to study both tunnel junc-
tions and contacts with direct (metallic-type) conduc-
tion. The formation of a microcrack in a bulk HTSC
sample in the case of a direct-conduction contact leads
to a decrease in the effective cross-sectional area. The
current density in the breaking region is much higher
than the current density in the sample volume; conse-
quently, weak links in the breaking region are the first
to pass to the resistive state and determine the critical
current and the current–voltage (I–U) characteristic of
the sample until degradation of the superconductivity
begins in the bulk of the sample. Consequently, the
resistive state of a contact of the break-junction type is
determined by the superposition of a finite number of
weak links. It becomes possible to measure the I–U
1063-7834/02/4407- $22.00 ©1229
characteristics of junctions at natural intergranular
boundaries over a wide temperature range in the region
of current densities much higher than the critical value;
this almost entirely eliminates the effect of self-heating,
which is difficult to achieve in bulk HTSC samples.

In order to describe the experimentally observed I–
U curves for S–N–S junctions of the Josephson type, the
resistive shunted junction (RSJ) model [2] or its modi-
fications [3, 4] are often used. However, this model is
only an equivalent electric circuit and does not reflect
the quantum physical processes of charge carrier trans-
port in an S–N–S junction [2, 5, 6].

The charge carrier transport in an S–N–S junction is
determined by physical processes such as tunneling, the
proximity effect, and Andreev reflection [7]. Starting
from the publications by Artemenko, Volkov, and Zaœ-
tsev [8, 9], several models have been developed in
which the major role in the formation of I–U character-
istics is assigned to Andreev reflection. In the pioneer-
ing works [8, 9], the I–U curves for microbridges were
calculated only for the limiting cases, namely, near Tc

and at voltages across a junction much larger than the
energy gap in the superconductor. Blonder et al. [10]
described the I–U curves of an S–N point contact and of
a microconstriction; in this case, the shape of the I–U
curve is determined by the barrier transparency. The
theory describes the excess current and arc-shaped fea-
tures in I–U curves (subharmonic gap structure) but
fails to describe the negative differential resistance
(NDR). In experiments, the NDR is manifested in the
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fixed stable current mode as a hysteresis loop on the I–
U curves [11]. Some authors analyze the I–U curves of
S–N–S junctions in various approximations (see, for
example, [12–14]); however, I–U curves calculated on
the basis of these models do not contain segments cor-
responding to NDR.

In our opinion, the most attractive theory capable of
describing I–U curves of S–N–S structures in wide
ranges of the mean free paths (l) of carriers in the N
layer and geometrical thicknesses of the N layer (2a) is
the Kümmel–Nicolsky theory [15]. This theory takes
into account the contribution from Andreev reflections
in the S–N–S to the current junction and predicts the
existence of NDR in pure (l > 2a [11]) S–N–S struc-
tures. This theory also describes the excess current and
gap singularities at voltages that are multiples of the
energy gap ∆. The theory developed in [15] was suc-
cessfully used to describe some results obtained on S–
N–S contacts with low-temperature superconductors
[6]. The authors of [15–17] pointed out that the hyster-
esis observed on I–U curves of a weakly linked HTSC
can be interpreted in the framework of this theory.

It has been proved [18] that a simplified version of
the Kümmel–Nicolsky theory [5] satisfactorily
describes the experimental I–U curves for composites
Y0.75Lu0.25Ba2Cu3O7 + BaPb1 – xSnxO3 (x = 0, 0.1) mea-
sured at 4.2 K. In these composites, the normal metal
BaPb1 – xSnxO3 forms artificial metal boundaries
between HTSC crystallites. For x = 0, the “clean” limit
is realized in composites, while for x = 0.1, an effec-
tively dirty limit (l < 2a [11]) exists.

The aim of the present work is to demonstrate the
applicability of the theory [15] not only to a network of
weak links with artificially created metallic intergranu-
lar boundaries [18] but also to I–U characteristics of
polycrystallites with natural intergranular boundaries
in HTSC materials.

We measured I–U curves with a hysteresis loop of
break-junction-type contacts with direct conduction in
the temperature range 4.2–95 K. The results obtained
are described satisfactorily in the framework of the the-
ory [15] under the assumption that junctions of various
geometric length are connected in series.

2. EXPERIMENT

We used the standard ceramic technology of fabrica-
tion of HTSC Y0.75Lu0.25Ba2Cu3O7. The time of final fir-
ing was 40 h at 910°C. The Debye powder pattern dis-
plays only reflections corresponding to the 1-2-3 struc-
ture. The superconducting-transition temperature Tc as
determined from magnetic measurements coincides
with the temperature corresponding to the beginning of
the resistive transition and amounts to 93.5 K.

Samples with a typical size of 2 × 2 × 10 mm were
sawed out from synthesized pellets. The sample was
glued to a sapphire substrate. The central part of the
sample was polished down to obtain a cross-sectional
P

area S ~ 0.2 × 1 mm. For such a value of S, the critical
current at 4.2 K was ~2 A (current density 1000 A/cm2).
Further controllable decrease in the area S under inevi-
table mechanical stresses at current and potential con-
tacts is very difficult. In order to obtain a contact of the
break-junction type, the sample with the above value of
S was bent together with the substrate with the help of
screws of spring-loaded current contacts, which led to
the emergence of a microcrack in the part of the sample
between the potential contacts. As a result, either a tun-
neling contact (with resistance R > 10 Ω) or a direct-
conduction contact (R < 10 Ω) was formed. For R ~
1−2 Ω , the samples possess a critical current Jc ~ 1–
10 mA at 4.2 K, which corresponds to a decrease in the
value of S by a factor of ~102–103. It should be noted
that the shape of the I–U curves for the samples was
completely preserved after thermocycling from 4.2 to
100 K, but thermocycling to room temperature
increased the value of R and the contact was converted
into a tunneling contact.

During measurements, the samples were held in a
helium heat-exchange atmosphere. The I–U-curve
measurements were made under steady-state condi-
tions in the fixed current mode. Relatively low values of
the transport current (up to 150 mA) and of the voltage
drop across the sample (up to ~100 mV) made it possi-
ble to eliminate the effect of self-heating [19]. The crit-
ical current was determined from the I–U curve using
the 1-µV criterion [20].

3. RESULTS AND DISCUSSION

Figures 1 and 2a show typical examples of experi-
mental I–U curves recorded at 4.2 K. The curves dis-
play the presence of a critical current and a segment
with a nonlinear U(I) dependence followed by a jump-
wise (repeated in some cases) increase in the value of U
accompanied by a hysteresis. In the region of large val-
ues of I and U, the U(I) dependence is close to linear,
and its extrapolation to the value U = 0 gives an excess
current Iex whose existence confirms the metallic type
of conduction of the junctions formed [10].

The current due to Andreev reflections in an S–N–S
contact, according to theory [15], has the form (in the
notation used in [15])

(1)

Here, f(Ek) is the Fermi energy distribution function
for quasiparticles, PN is the probability of finding a qua-

siparticle in the N region, (E) and (E) are the
probabilities of the nth Andreev reflection for holes (+)
and electrons (–), b is the starting position from which
quasiparticles begin their motion when an electric field

j C PN Ek( ) f Ek( )ke 1 f Ek( )–( )kh–[ ]{
n 1=

∞

∑
k

∑=

× 2na a– b+( )/l–( ) An
– 2

An
+ 2

–( )exp } .

An
+

An
–

HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002



PHYSIC

TEMPERATURE EVOLUTION OF THE HYSTERESIS 1231
Ic

60

50

40

30

20

10

0 20 40 60 80 100 120
I, mA

U
, m

V

Fig. 1. Experimental I–U curve recorded for a sample at T = 4.2 K.
starts acting in the N layer, n is the number of Andreev
reflections, and C is the constant defined in [15]. In our
calculations, we used the density of states for charge
carriers in an HTSC material [21].

The theory describes the I–U curves for S–N–S con-
tacts with the above characteristic features excluding
the region near U ≈ 0, since the calculation of the criti-
cal current is a separate problem [7].

An example of a theoretical I–U curve is given in
Fig. 2b. It can be seen that such a theoretical depen-
dence cannot describe the experimental I–U curves
shown in Figs. 1 and 2a, in which the hysteresis is
observed for larger values of U. On the other hand, the
multiple hysteresis loops observed on some I–U curves
(Fig. 1) indicate that the U(I) dependence is formed by
a superposition of I–U curves for several contacts with
different parameters. A similar conclusion was drawn
for a point HTSC contact from an analysis of the effect
of radiation on the shape of I–U curves [22].

We processed the experimental curve shown in
Fig. 2a by using the formula

(2)

where Ui(I, 2ai) are the I–U characteristics of S–N–S
junctions with various values of 2a defined by Eq. (1)
and Vi are the weight factors indicating the effect of a
contact with a given value of 2a on the resultant (super-

U I( ) ViUi I 2ai,( ),
i

∑=
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position) I–U curve (with the obvious normalization
 = 1).

It was found that Eq. (2) correctly describes the
experimental data even when the sum in this formula
contains only two terms. The best agreement was
attained for values of 2a1/l = 0.15, V1 = 0.34, 2a2/l =
0.5, and V2 = 0.66. Figure 2b shows the theoretical I–U
curves for each of these two junctions, while Fig. 2a
shows their superposition. It can be seen that the theo-
retical dependence obtained as a result of superposition
coincides with the experimental I–U curve, including in
the region with hysteresis, but the segment of the exper-
imental U(I) dependence corresponding to values of U
close to zero cannot be described by the theory from
[15] (see above).

Figure 3a shows the experimental I–U curves for
one of the samples (the same as in Fig. 2a) in the coor-
dinates (T, I, U). Figure 3b presents the temperature
evolution of the superposition I–U curve shown in
Fig. 2b in the same coordinates. The only variable
parameter was the temperature-dependent energy gap
given by the BCS theory. The theory [15] correctly
describes the decreases in the area of the hysteresis loop
and its vanishing upon an increase in temperature. At
temperatures above 4.2 K, the discrepancy between the
theoretical and experimental U(I) dependences
becomes more pronounced, but the difference between
these dependences does not exceed 9%. It is important

Vii∑
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Fig. 2. Experimental I–U curve recorded for a sample at T = 4.2 K (circles). Solid curves are (a) the resultant superposition curve
calculated on the basis of Eq. (2) for V1 = 0.34 and V2 = 0.66 and (b) the theoretical I–U curves for S–N–S junctions with parameters
2a1/l = 0.15 and 2a2/l = 0.5 calculated using Eq. (1).
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to note that the experimental points corresponding to
the jumpwise change in voltage are described by the
theory quite successfully. A similar satisfactory agree-
ment was also attained for other samples under investi-
gation over a wide temperature range.

Knowing the mean free path of charge carriers, the
lengths of intergranular boundaries in the HTSC mate-
P

rial under investigation can be estimated by fitting to
the experimental I–U curves. If we take for l the value
~20 Å given in [23] for a Y–Ba–Cu–O system, we
obtain 2a1 = 3 Å and 2a2 = 10 Å. These values agree
with the results obtained for natural intergranular
boundaries in polycrystalline Y–Ba–Cu–O [24] and in
a bicrystal [25]. The obtained values of coefficients
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002
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V1 = 0.34 and V2 = 0.66 can be interpreted as follows:
the I–U characteristic is defined by at least three series-
connected contacts, one of which is 3 Å long and the
other is 10 Å.

The length of intergranular boundaries can also be
estimated from the experimental temperature depen-
dence of critical current [24–27]. The experimental
Jc(T) dependence of the sample under investigation is
shown in Fig. 4. In some theoretical works [7, 28, 29],
the dependence of the critical current of a weak link
with direct conduction on the temperature and thick-
ness of the metallic layer was investigated. The theoret-
ical curves from [7, 28], which describe similar results,
are in good agreement with our experimental data. In
the present work, we describe Jc(T) on the basis of an
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Fig. 3. Temperature evolution of I–U curves presented in
Fig. 2: (a) experiment and (b) theory.
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earlier and simpler theory [28]. Figure 4 shows the the-
oretical curves from [28]. In a wide temperature range,
good agreement is observed between the experimental
Jc(T) curve and the theoretical dependences for a weak
link having a thickness of the N layer of 2a = (0.3–
0.4ξN), where ξN is the coherence length in the normal
metal for T = Tc [28]. Figure 4 also shows the Jc(T)
dependence predicted by the theory [28] for 2a = 0,
which coincides with the Kulik–Omel’yanchuk (KO)
temperature dependence for clean short microbridges
[30] and with the dependence obtained in [7] for clean
short S–N–S junctions, as well as the Ambegaokar–
Baratoff (AB) Jc(T) dependence for tunneling contacts
[31]. The cardinal difference (even in the sign of curva-
ture) of the experimental Jc(T) dependence from the AB
dependence is an extra argument confirming that a
direct-conduction contact is formed in the sample
under investigation. In [32], the value ξN ~ 50 Å is given
for intergranular boundaries in Y–Ba–Cu–O. Using this
value, we estimate the length of the intergranular
boundary to be ~15–20 Å. This estimate is close to the
value 2a2 = 10 Å obtained from the processing of the I–
U curve (clearly, the critical current in series-connected
junctions is determined by the worst of these junctions,
i.e., by the longer one, since Jc ~ exp(–2a) in most of
the theories from [7, 11, 20, 28, 29]). It should be noted
that near Tc, the experimental and theoretical results dif-
fer noticeably; the experimental temperature depen-
dence of the critical current becomes quadratic: Jc ~
(1 – T/Tc)2. Such a behavior of the critical current near
Tc has been observed by many authors for HTSC film
structures [25, 27, 32], HTSC point contacts [33], and
in bulk HTSC polycrystals [24, 26] and has been dis-
cussed more than once. We can indicate at least two rea-
sons for such a behavior. A small coherence length in
HTSC materials reduces the pair potential at the S–N

KO AB
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K (2a/ξN = 0.3)
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Fig. 4. Temperature dependence of normalized critical cur-
rent Jc(T)/Jc(0). Circles correspond to experimental data,
and solid curves are theoretical calculations: the Ambe-
gaokar–Baratoff (AB) dependence [31], the Kulik–
Omel’yanchuk (KO) dependence [30], and the Kupriyanov
(K) dependence [28].
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interface; as a result, the function Jc(T) becomes qua-
dratic and not linear, proportional to (1 – T/Tc) [34].
Thermal fluctuations near Tc also affect the Jc(T) depen-
dence [35, 36].

4. CONCLUSION

Thus, we have proved that the theory [15] based on
Andreev reflections can be used to obtain a satisfactory
description of the temperature evolution of I–U curves
with a hysteretic behavior at junctions formed by natu-
ral boundaries in HTSC polycrystals. Such a descrip-
tion is found to be possible in the framework of a model
with metal-type series-connected contacts with differ-
ent effective lengths. The existence of a hysteresis loop
and its shape are determined by the ratio of long and
short intergranular boundaries in the HTSC polycrys-
tals under investigation.

It should be noted that materials characterized by I–
U curves with a sharp transition from a low to a high
differential resistance (i.e., possessing a clearly mani-
fested broad hysteresis loop) can be used in short-cir-
cuit current limiters [37, 38].

ACKNOWLEDGMENTS

This work was supported by the Sixth Competition
of Evaluation of Youth Projects, Russian Academy of
Sciences, 1999 (grant no. 55), and was partly supported
by the Krasnoyarsk Regional Science Foundation
(grant no. 10F162M).

REFERENCES

1. V. M. Svistunov, V. Yu. Tarenkov, A. I. D’yachenko, and
E. Hatta, Pis’ma Zh. Éksp. Teor. Fiz. 71 (7), 418 (2000)
[JETP Lett. 71, 289 (2000)].

2. D. E. McCumber, J. Appl. Phys. 39 (7), 3113 (1968).
3. R. G. Seed, C. Vittoria, and A. Widom, J. Appl. Phys. 75

(12), 8195 (1994).
4. K. Saitoh, I. Ishimaru, H. Fuke, and Y. Enomoto, Jpn. J.

Appl. Phys. 36 (3A), L272 (1997).
5. L. A. A. Pereira and R. Nicolsky, Physica C (Amster-

dam) 282–287, 2411 (1997).
6. L. A. A. Pereira, A. M. Luiz, and R. Nicolsky, Physica C

(Amsterdam) 282–287, 1529 (1997).
7. U. Gunsenheimer, U. Schüssler, and R. Kümmel, Phys.

Rev. B 49 (9), 6111 (1994).
8. S. N. Artemenko, A. F. Volkov, and A. V. Zaœtsev, Zh.

Éksp. Teor. Fiz. 76 (5), 1816 (1979) [Sov. Phys. JETP 49,
924 (1979)].

9. A. V. Zaœtsev, Zh. Éksp. Teor. Fiz. 78 (1), 221 (1980)
[Sov. Phys. JETP 51, 111 (1980)].

10. G. E. Blonder, M. Tinkham, and T. M. K. Klapwijk,
Phys. Rev. B 25 (7), 4515 (1982).

11. K. K. Likharev, Rev. Mod. Phys. 51 (1), 101 (1979).
12. A. F. Volkov and T. M. Klapwijk, Phys. Lett. A 168, 217

(1992).
P

13. U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B 50 (9),
6317 (1994).

14. E. V. Bezuglyi, E. N. Bratus’, V. S. Shumeiko, et al.,
Phys. Rev. B 62 (21), 14439 (2000).

15. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys.
Rev. B 42 (7), 3992 (1990).

16. R. Nicolsky, Cryogenics 29 (3), 388 (1989).
17. T. P. Devereaux and P. Fulde, Phys. Rev. B 47 (21),

14638 (1993).
18. M. I. Petrov, D. A. Balaev, D. M. Gohfeld, et al., Physica

C (Amsterdam) 314, 51 (1999).
19. W. Scocpol, M. R. Beasley, and M. Tinkham, J. Appl.

Phys. 45 (9), 4054 (1974).
20. A. Barone and G. Paterno, Physics and Applications of

the Josephson Effect (Wiley, New York, 1982; Mir, Mos-
cow, 1984).

21. H. Plehn, Q.-J. Wacker, and R. Kümmel, Phys. Rev. B 49
(17), 12140 (1994).

22. A. A. Verevkin, V. A. Il’in, and V. S. Étkin, Sverkhpro-
vodimost: Fiz., Khim., Tekh. 2 (7), 128 (1989).

23. L. P. Gor’kov and N. B. Kopnin, Usp. Fiz. Nauk 156 (1),
117 (1988) [Sov. Phys. Usp. 31, 850 (1988)].

24. M. I. Petrov, D. A. Balaev, B. P. Khrustalev, and
K. S. Aleksandrov, Physica C (Amsterdam) 235–240,
3043 (1994).

25. J. Manhart, P. Chaudhary, D. Dimos, et al., Phys. Rev.
Lett. 61 (21), 2476 (1988).

26. M. I. Petrov, D. A. Balaev, S. V. Ospishchev, et al., Phys.
Lett. A 237, 85 (1997).

27. S. Benacka, V. Strbik, S. Chromik, et al., Fiz. Nizk.
Temp. 24 (7), 621 (1998) [Low Temp. Phys. 24, 468
(1998)].

28. M. Yu. Kupriyanov, Fiz. Nizk. Temp. 7 (6), 700 (1981)
[Sov. J. Low Temp. Phys. 7, 342 (1981)].

29. A. Furusaki and M. Tsukada, Phys. Rev. B 43 (13),
10164 (1991).

30. I. O. Kulik and A. N. Omel’yanuk, Fiz. Nizk. Temp. 3
(7), 945 (1977) [Sov. J. Low Temp. Phys. 3, 459 (1977)].

31. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10 (11),
486 (1963).

32. J. W. C. De Vries, G. M. Stolmann, and M. A. M. Gijs,
Physica C (Amsterdam) 157, 406 (1989).

33. B. A. Aminov, N. B. Brandt, N. M. Tkhu, et al., Sverkh-
provodimost: Fiz., Khim., Tekh. 2 (1), 93 (1989).

34. D. Deutscher and K. A. Müller, Phys. Rev. Lett. 59 (15),
1745 (1987).

35. V. Ambegaokar and B. J. Galperin, Phys. Rev. Lett. 22
(25), 1364 (1969).

36. M. I. Petrov, D. A. Balaev, K. A. Shaœkhutdinov, and
K. S. Aleksandrov, Fiz. Tverd. Tela (St. Petersburg) 41
(6), 969 (1999) [Phys. Solid State 41, 881 (1999)].

37. M. I. Petrov, D. A. Balaev, V. I. Kirko, and S. G. Ovchin-
nikov, Zh. Tekh. Fiz. 68 (10), 129 (1998) [Tech. Phys.
43, 1255 (1998)].

38. M. I. Petrov, S. N. Krivomazov, B. P. Khrustalev, and
K. S. Aleksandrov, Solid State Commun. 82 (6), 453
(1992).

Translated by N. Wadhwa
HYSICS OF THE SOLID STATE      Vol. 44      No. 7      2002


