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Abstract—The magnetic, electrical, and thermal (derived from DTA data) properties of FexMn1 – xS polycrys-
talline sulfides (0 ≤ x ≤ 0.38) synthesized based on α-MnS (NaCl cubic lattice) and exhibiting colossal magne-
toresistance were studied. The studies were conducted at temperatures from 77 to 1000 K and magnetic fields
of up to 30 kOe. As the degree of cation substitution in the FexMn1 – xS system was increased, the magnetic order
was found to change from antiferromagnetic to ferromagnetic. In the high-temperature domain (550–850 K), the
samples undergo two phase transitions with critical temperatures  and , which are accompanied by
reversible anomalies in the magnetization and thermal (DTA) properties and by a semiconductor–metal transi-
tion. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The colossal magnetoresistance (CMR) remains an
intriguing problem, because a clear understanding of
the mechanism of this phenomenon is still lacking. The
CMR effect has been revealed recently [1, 2] in new,
NaCl-type cubic fcc compounds synthesized on the
basis of manganese monosulfide. Materials with a NaCl
lattice exhibiting CMR can be exemplified by cation-
substituted systems based on europium oxide and chal-
cogenides [3]. In these compounds, CMR is observed
to occur at low temperatures, ≤40 K. In the FexMn1 – xS
sulfides, negative colossal magnetoresistance is found
at temperatures T ≤ 200 K. A possible origin of the
CMR is the magnetic and electronic separation of crys-
tallographically similar compounds [2, 3].

2. EXPERIMENTAL TECHNIQUES

The present communication reports on a study of the
electrical, magnetic, and thermal (derived from DTA
measurements) properties of polycrystalline sulfides
FexMn1 – xS with compositions 0 ≤ x ≤ 0.38 at tempera-
tures from 77 to 1000 K in magnetic fields of up to
30 kOe. The techniques used to prepare the compounds
and to measure their electrical properties are described
elsewhere [1, 2]. The magnetic measurements in the
range 100–1000 K and in fields of up to 10 kOe were
performed using the Faraday method on samples placed
in evacuated quartz ampoules. Measurements of the
magnetic properties within the 77- to 300-K tempera-
ture interval and in fields up to 30 kOe were made in a
vibrating-sample, superconducting-coil magnetometer.
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X-ray structural measurements of the FexMn1 – xS
samples thus synthesized (0 ≤ x ≤ 0.38) showed them to
be solid solutions with a NaCl-type structure typical of
manganese monosulfide [1, 2]. The fcc lattice parame-
ter decreases as the degree of cation substitution (x)
increases, which agrees with the data from [4].

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 displays temperature dependences of the
magnetization (measured in a field of 8.6 kOe) of sin-
gle-crystal α-MnS (curve 1) and polycrystalline
α-MnS (curve 2). The magnetic susceptibility of the
polycrystalline manganese monosulfide, χ300 K = 6.9 ×
10−5 cm3/g, is in agreement with the data from [5, 6]
and is higher than that of the single-crystal compound.
In the region of the Néel temperature TN ~ 150 K, the
temperature-dependent magnetization exhibits a maxi-
mum which signals an antiferromagnetic transition.
Above the Néel temperature, the inverse magnetic sus-
ceptibility χ–1(T) of the manganese monosulfide fol-
lows the Curie–Weiss relation, with the paramagnetic
temperature Θ and Curie constant C equal to –450 K
and 4.32, respectively. At temperatures above ~450 K,
the inverse magnetic susceptibility is seen to deviate
from the Curie–Weiss law. According to [7], in this
temperature interval, the charge carriers in α-MnS
reverse sign. For T < 450 K, the manganese monosul-
fide behaves as a p-type semiconductor, with the carrier
mobility being µ ~ 0.065 cm2 V–1 s–1. For T > 450 K, the
carriers are electrons and their mobility increases by an
002 MAIK “Nauka/Interperiodica”
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order of magnitude. Measurements of the temperature
dependence of the magnetization of the cation-substi-
tuted FexMn1 − xS samples revealed (Fig. 1) that, at low
concentrations (x ≤ 0.2), sulfides (similar to manganese
monosulfide) undergo an antiferromagnet–paramagnet
transition at low temperatures, with the Néel tempera-
ture increasing from 150 K (x = 0) to 185 ± 5 K (x ~
0.2). The behavior of the magnetization σ(T) of sam-
ples with x ~ 0.2 depends on the way in which the sam-
ple was cooled, namely, in a nonzero or zero magnetic
field (Fig. 2). At T > TN , the magnetic properties of cat-
ion-substituted samples with compositions 0.05 ≤ x ≤
0.2 behave similarly to χ–1(T) of manganese monosul-
fide. The temperature dependence of the inverse mag-
netic susceptibility χ–1(T)is described by the Curie–
Weiss law, with the paramagnetic temperature Θ and
the Curie constant C increasing to –400 and 10.8 K
(x ~ 0.2), respectively. For temperatures T > 450 K,
samples with 0.05 ≤ x ≤ 0.2 exhibit a deviation from the
Curie–Weiss relation. More specifically, the magnetiza-
tion (Fig. 1) displays an anomaly at a temperature ,
which grows from 500 for x ~ 0.05 to 580 K for x ~ 0.2.
For compositions with x ~ 0.25, the behavior of the
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Fig. 1. Temperature dependences of the magnetization of
the FexMn1 – xS system measured in a field H = 8.6 kOe for
different compositions x: (1) 0, α-MnS single crystal; (2) 0,
polycrystalline α-MnS; (3) 0.05; (4) 0.15; (5) 0.25; (6) 0.29;
(7) 0.27; (8) 0.32; and (9) 0.38. Inset: differential thermal
analysis data for x ~ 0.35.
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inverse magnetic susceptibility χ–1(T) in the high-tem-
perature domain is similar to that characteristic of fer-
rimagnets (see inset to Fig. 2) [8]. The paramagnetic
Curie temperature assumes positive values (Θ ~ 106 K
for x ~ 0.25). The Curie constant becomes smaller,
which indicates a decrease in the effective paramag-
netic moment (for x ~ 0.25, C = 1.69). As seen from
Fig. 1, the temperature dependences of the magnetiza-
tion measured on samples with 0.27 ≤ x ≤ 0.38 in the
range 100–1000 K in a field of 8.6 kOe are typical of
ferromagnetic compounds. Below ~200 K, the magne-
tization of these samples decreases with decreasing
temperature. In the high-temperature region, the σ(T)
curve exhibits two magnetization anomalies at the crit-
ical temperatures  and , which are accompanied
by anomalies in the thermal (DTA) properties (inset to
Fig. 1), thus indicating the occurrence of two phase
transitions. At  ~ 550–650 K, in the region of the
reversible thermal (derived from DTA data) anomaly,
there are anomalies in the electrical resistivity (Fig. 3)
and in the fcc lattice parameter [9]. Below , the
resistivity behaves in a manner typical of the Fermi
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Fig. 2. Temperature dependence of the magnetization of
Fe0.2Mn0.8S cooled (1) in a zero magnetic field and (2) in a
field H = 2 kOe. Inset: temperature dependence of inverse
magnetic susceptibility for Fe0.25Mn0.75S.
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glass state and of systems with Anderson localization
[10]. The temperature  is the Curie point of sulfides;
this temperature increases with increasing concentra-
tion x from 730 (x ~ 0.27) to 860 K (x ~ 0.38). As seen
from Fig. 1, the magnetization of the high-temperature
paramagnetic phase (T > ) of the cation-substituted
FexMn1 – xS samples is close to that of the paramagnetic
phase of single-crystal α-MnS and, for compositions
with x ~ 0.27, 0.29, and 0.38, virtually does not depend
on temperature. According to electrical resistivity mea-
surements, the ferromagnet–paramagnet transition near

 is accompanied by a semiconductor–metal change
in the conduction character (Fig. 3).

At room temperature, the manganese monosulfide
α-MnS is in the paramagnetic state, in which the σ(H)
relation is linear (Fig. 4). The σ(H) relations for the cat-
ion-substituted FexMn1 – xS solid solutions (0.05 ≤ x ≤
0.2) measured at room temperature become nonlinear
[6], with no hysteresis in the field dependence of the
magnetization. As the degree of cation substitution x
increases, the ferromagnetic contribution to magnetiza-
tion increases and samples with x > 0.2 exhibit a mag-
netization hysteresis (Fig. 4), with the coercive force Hc

increasing from 0.8 (x = 0.25) to 1.2 kOe (x = 0.29). The
magnetization isotherms σ(H) measured for samples
with 0.25 ≤ x ≤ 0.27 at temperatures of 77 and 300 K do
not exhibit saturation. As seen from Fig. 4, which dis-
plays hysteresis loops, hysteresis is no longer seen in
comparatively weak magnetic fields (H ~ 3–5 kOe), but
the magnetization does not saturate and continues to
grow as the field increase. Such a situation is observed,
for instance, in the gadolinium ferrite garnets and can
be attributed to the positive component of magneto-
striction appearing in strong fields [8]. The magnetiza-
tion curves obtained on samples with x ~ 0.29 are typi-
cal of ferromagnets, which is supported by the presence

Tc2

Tc2

Tc2

2

0 2

lo
g

(ρ
, Ω

 c
m

)

103/T, K–1

0

4

6

8

10

–2

1

2

3

4

5
6

4 6 8 10 12

Fig. 3. Temperature dependences of the electrical resistivity
of the FexMn1 – xS system for different compositions x:
(1) 0, (2) 0.3, (3) 0.33, (4) 0.36, (5) 0.4, and (6) 0.5.
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of a hysteresis loop. The same compositions exhibit the
maximum colossal magnetoresistance (σH ~ –450% in
a field of 30 kOe at 50 K) [2].

4. CONCLUSION

Thus, studies of the magnetic, electrical, and ther-
mal properties of the FexMn1 – xS solid solutions have
revealed a sequence of phase transitions (at  and

) in the compositions of the above sulfides exhibit-

ing colossal magnetoresistance. The high-temperature
phase (T > ) is a paramagnetic metal. At T ~ , a

transition to the ferromagnetic state takes place, with
the conduction character changing from metallic to
semiconducting. The phase transition at , associated

possibly with lattice distortion, is accompanied by a
strong increase in the magnetization and by a change in
the conduction character of the semiconducting phase.
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Fig. 4. Field dependences of the magnetization of the
FexMn1 – xS system for different compositions x (a) at 300 K:
(1) 0, (2) 0.05, and (3) 0.2; and (b) at 77 K: (1) 0.27 and
(2) 0.29.
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