
  

JETP Letters, Vol. 76, No. 5, 2002, pp. 270–274. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 76, No. 5, 2002, pp. 328–332.
Original Russian Text Copyright © 2002 by Krasnov, Polyutov.

                                                                               
Confinement of Atoms with Nondegenerate Ground States
in a Three-Dimensional Dissipative Optical Superlattice

I. V. Krasnov* and S. P. Polyutov
Institute for Computational Modeling, Russian Academy of Sciences, Siberian Division,

Krasnoyarsk, 660036 Russia
*e-mail: krasn@icm.krasn.ru

Received July 15, 2002

Based on the developed kinetic theory of rectified radiative forces, we found sufficient conditions for purely
optical (nonmagnetic) three-dimensional confinement and cooling of atoms with the J = 0  J = 1 quantum
transition in a weak field of mutually orthogonal bichromatic standing waves. We show that a deep stable atom
localization of atoms in the cells of an effective light superlattice (with a spacing much larger than the light
wavelength) can be achieved by controlling the phase shifts (time-difference phase) of the temporal oscillations
in orthogonally polarized field components and by specially choosing the field parameters. The proposed
scheme of purely optical confinement can be directly used for a large group of atoms like Yb isotopes and alkali-
earth elements with even–even nuclei. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 32.80.Pj; 42.50.Vk
Because of its unique physical applications, the
optical localization of atoms is an extremely important
trend in current studies of resonant light pressure [1–3].

One of the most successful and fruitful solutions to
this problem is the confinement of atoms in a magneto-
optical trap (MOT)1 [4]. A nonuniform magnetic field
is an integral MOT element, because it allows the Earn-
shaw optical theorem (EOT) [5] to be circumvented.
This theorem states that a stable localization of atoms
by spontaneous light pressure forces in a weak (unsat-
urating the quantum transition) resonant field is not
possible. Bouyer et al. [6] showed how the EOT could
be circumvented by purely optical (nonmagnetic)
methods using optical pumping of atoms with degener-
ate ground states. This scheme does not work for atoms
with the ground-state angular momentum Jg = 0.

Meanwhile, the EOT was proved [5] (see also [6] for
a discussion) precisely for atoms with scalar linear
polarizability, which the atoms with the Jg = 0  Je = 1
quantum transition are. The principal possibility of
overcoming the fundamental EOT constraints (without
applying a magnetic field) for such atoms using the so-
called rectified radiative forces (RRFs) in weak2

bichromatic fields was pointed out in [7] (2D localiza-
tion) and [8] (3D localization). However, the final solu-
tion of the problem and the elucidation of specific prac-
tical conditions for the achievement of dissipative opti-
cal confinement by this method requires a mandatory

1 By its nature, a MOT is a dissipative optical trap, because the par-
ticles are simultaneously cooled and confined in it.

2 Here, we do not consider the use of rectified gradient (dipole)
forces in strong bichromatic fields [7, 9] for the localization of
atoms.
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allowance for quantum RRF fluctuations and for the
effect of field phases on the RRF spatial structure.

Here, these factors are simultaneously taken into
account in the Wigner atomic density matrix formalism
for a simple field model in the form of mutually orthog-
onal bichromatic standing waves. We found sufficient
conditions (imposed on the relative initial phase shifts
and on the wave parameters) that provide a deep stable
3D localization of atoms and, thereby, ensure that the
EOT constraints (i.e., suppression of the vortex RRF
component and long-term particle confinement in
ultradeep light-induced potential wells) are overcome.

The problem under study also has an interesting
research-and-application aspect, because it is directly
related to the purely optical confinement of a large
group of atoms like odd–odd Yb isotopes and alkali-
earth elements with the Jg = 0  Je = 1 quantum tran-
sition (strong singlet, 1S0–1P1, and intercombination,
1S0–3P1, transitions of this type were effectively used in
MOT experiments [10–12]). These atoms are believed
to be very promising objects for carrying out new fun-
damental cold-particle experiments (see [10–13] and
references therein). We emphasize that the presence of
a magnetic field (as in MOTs) is undesirable for several
important physical applications of the optical confine-
ment of atoms [6, 9].

Consider an ensemble of atoms in a bichromatic
field with a complex amplitude,

(1)

where ∆0 and ∆1 are the frequency detunings of the
fields E0 and E1 from the frequency ω0 @ |∆0 |, |∆1| of
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the quantum transition between the ground (with angu-
lar momentum Jg = 0) and excited (with angular
momentum Je = 1) atomic states.

As was shown in [7, 8], zero total radiation flux den-
sities for each field mode frequency are a necessary
condition for stable confinement of atoms with the type
of transition under consideration in weak biharmonic
fields (it predetermines the suppression of the principal,
quadratic (in field) vortex RRF component):

where Jjα is the energy flux density of the field compo-
nents in superposition (1) that are polarized along the
unit vector ej of a Cartesian coordinate system and that
have the frequency detuning ∆α; the angular brackets
denote averaging over microscopic spatial oscillations
with a period of the order of the light wavelength. The
field model in the form of a superposition of mutually
orthogonal standing waves satisfies this condition:

(2)

where Vjα(r) = d(ejEα(r))/" are the local Rabi frequen-

cies, d = ||d ||/ , ||d || is the reduced matrix element of
the transition dipole moment, kα = (ω0 + ∆α)/c are the
wave numbers, ξjα and ϕj are the phases of the temporal
and spatial oscillations in the field components, and Vα
are their real amplitudes. Note that the phase shifts of
the spatial oscillations in the complex field amplitudes
that have identical polarizations but belong to different
frequency modes can always be made equal by appro-
priately choosing the coordinate system. Therefore, the
phases ϕj in expression (2) do not depend on α.

We describe the state of the atoms interacting with a
resonant optical field by using the Wigner matrix of
density ρ(r, v, t) [1, 2]. In the quasi-classical limit
"kα ! mv  (v  and m are the characteristic atomic veloc-
ity and mass, respectively) and in interaction represen-
tation, this matrix satisfies the kinetic equation

(3)

where "  is the dipole atom-field interaction operator;
 is the relaxation operator that includes the recoil

effect during spontaneous transitions [1, 2]; and the
square brackets and braces denote the commutator and
anticommutator, respectively. Below, it is convenient
for our analysis to consider  in Cartesian representa-

J jα〈 〉
j

∑ 0, j x y z, α, , 0 1,,= = =

V xα r( ) Vαe
iξzα kαz ϕ z+( ),cos=
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tion [8], i.e., in the representation of basis wave func-
tions (intra-atomic motion) for the ground (ϕ g) and

excited ( ) states, in which the matrix elements of the

transition dipole moment  are directed along the unit
vectors of the Cartesian coordinate system:

In the resonance approximation, the system of equa-
tions (3) can then be represented as

(4)

(5)

where γ is the decay rate of the excited state, γ⊥  = γ/2,
f(r, v, t) = Sp( ) is the Wigner particle distribution
function in phase space (r, v), qii(r, v, t) and ρi(r, v, t)
mean the densities of the distributions of the population
difference and the projections of the complex ampli-
tude of the induced dipole moment onto the axes of the
Cartesian coordinate system, the functions qij(r, v, t)
for i ≠ j describe the coherence between the excited

atomic states, and the term (ρ) on the right-hand side
of Eq. (5) describes the recoil effect during spontaneous
transitions in the quasi-classical limit:
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Let the resonant fields be weak and the frequency
detunings ∆0 and ∆1 be not very close to each other:

(6)

where να = ∆α + iγ⊥ .

In that case, the excited-state populations and the
Stark energy-level shifts are small [8] and the distribu-
tion function (DF) can be represented as the sum of a
slowly varying [on time scales t > τ = (ωRg)–1, ωR =

"k2/2m, k = ω0/c] principal component  and a small
rapidly oscillating (with characteristic frequencies

Ω1 @ τ–1) addition to it  (cf. [14]):

(7)

The density matrix elements that describe the light-
induced internal motions in the atom can be eliminated
from the system of equations (4) and (5) by the expan-
sion of the field in powers (actually in the parameter
g ! 1) of the following structure:

(8)

where  and  are the linear differential operators

acting on  and the superscript denotes the order of
smallness of the corresponding terms in g ! 1.

Below, we restrict our analysis to slow atoms (kv  ! γ)
and take into account the fact that in our problem (as we
will see), the atomic temperature T (in energy units)
that corresponds to the Doppler cooling limit is always
much higher than the depth of the microscopic potential
wells produced by rapidly oscillating (with a period of
~1/k) gradient forces,

(9)

because T * "γ/2. Using the expansion (8) and addi-
tional averaging of the DF over small-scale spatial
oscillations with a period of the order of the light wave-
length [valid under the condition (9)], we obtain the fol-
lowing Fokker–Planck equation for the DF (for the
averaged DF, we retain the original designation):

(10)

where the linear (in velocity) force F1R and the RRF FR,
respectively, match the general formulas (11) and (12)
from [8] derived in a simple model of preset motion and
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the velocity diffusion tensor Dij, in the second order of
smallness in the field, is given by the formula (ri = rei)

For our case of the fields (2), we have

(11)
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where the scalar, U(r), and vector, A(r), RRF potentials
are defined by the expressions

(14)

Thus, the quadratic (in field) force F1R is the friction
force and the RRF FR, which arises in the fourth order
of smallness in the field, is generally a potential-vortex
force in nature. The latter is attributable to interference
effects in the resonant light pressure [7, 8], which, in
particular, shows up in the dependence of its spatial
structure on the relative phase shifts of the standing
waves: (ξjα – ξiα). In this case, the vortex RRF compo-
nent is determined by the correlators (of the fourth
order of smallness in the field) of the mixed products of

Dij
"

2γ
5

-------- 5
2
--- 1

να
2

----------
∂Vlα*

∂ri

-----------
∂Vlα

∂r j

----------- 
l

∑




α 0=

1

∑=

  –
k

2

2
----

ViαV jα*

να
2

---------------- k
2

2
----δij

Viα
2

να
2

------------- 2
Vlα

2

να
2

-------------
l

∑+
 
 
 

+




.

F1R mκv, κ–
"k

2γ
m

-----------
V0

2∆0

ν0
4

------------
V1

2∆1

ν1
4

------------+ ,–= =

FR ∇ U– curl A,+=

Dij Dδij, D
"k
m
------ 

 
2γ
2
---

V0
2

ν0
2

----------
V1

2

ν1
2

----------+
 
 
 

,= =

U
"kΓ1V0

2
V1

2

4δk ν0
2 ν1

2
------------------------------ 2δke jr( )cos

j

∑




–=

+
1
2
--- Ψij δk ei e j–( )r[ ]cos δk ei e j+( )r[ ]cos+( )cos

i j≠
∑





,

A
"kΓV0

2
V1

2

2δk ν0
2 ν1

2
------------------------------–=

× ey Ψzx δk z x–( )[ ]cos δk z x+( )[ ]cos–( )sin{

+ ex Ψyz δk y z–( )[ ]cos δk y z+( )[ ]cos–( )sin

+ ez Ψxy δk x y–( )[ ]cos δk x y+( )[ ]cos–( )sin } ,

δk k1 k0, Ψ ji– ξ j1 ξ i1–( ) ξ j0 ξ i0–( ),–= =

Γ1 γγ⊥ ∆1 ∆0–( ) 1

ν1
2

---------- 1

ν0
2

----------+ 
  ,=

Γ ∆1∆0 γ⊥
2

+( ) γ
ν1

2
---------- γ

ν0
2

----------+ 
  .=
JETP LETTERS      Vol. 76      No. 5      2002



CONFINEMENT OF ATOMS WITH NONDEGENERATE GROUND STATES 273
the projections of the field amplitudes and their deriva-
tives that refer to standing waves of different frequency
modes and different polarizations (in the notation of

[8], the terms in the expression for the RRF ∝ ,
α ≠ α', j ≠ l).

Even for overdamped motion, where Ω2/κ2 = ε ~
γδk/ωRk ! 1 (Ω2 ~ Fδk/m), the vortex RRF component
curlA can result in unstable motion (the EOT manifes-
tation mechanism!) and hamper particle localization [7,
8]. Let us show that by controlling the relative phase
shifts ξjα – ξiα of bichromatic fields of the form (2), we
can successfully solve this problem. Note that for two
intersecting monochromatic standing waves (polarized
along the same direction), control of the spatial radia-
tive-force structure by varying the relative phase shifts
of the waves was convincingly demonstrated in experi-
ments [15].

Let the phase shifts of the bichromatic field compo-
nents satisfy the condition (n1 and n2 are arbitrary inte-
gers)

(15)

In particular, this condition is always satisfied if the
phase differences between orthogonally polarized
waves, ξjα – ξiα, are multiples of π: ξjα – ξiα = πmij,
where mij are arbitrary integers of the same parity. In
that case, sinΨij = 0, cosΨij = 1, and, as follows from
(12) and (14), the RRF is a purely potential (A = 0)
force. For κ > 0, it can generate a body-centered cubic
superlattice (with spacing L = π/δk @ λ = 2π/k) of
atoms localized in potential wells with the characteris-
tic depth

(16)

Indeed, in this case, the Fokker–Planck equation
(10) for κ > 0 admits a steady-state solution of the Boltz-
mann form:

(17)

The condition for deep localization of atoms in
superlattice cells follows from Eqs. (17):

If this condition is satisfied, the sizes of the localized
bunches of atoms are estimated as r0 ~ 1/δkη1/2 !
1/δk ~ L. Thus, the localization parameter η is a com-
plicated function of the field amplitudes and frequency
detunings: η = η(∆1, ∆2, V1, V2). The stability of deep
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(η @ 1) atom localization is characterized by the mean
lifetime of an atom in an individual superlattice cell
(determined by the time of particle diffusion from one
well into another). The latter is estimated as

(18)

where Ds . D/κ2 is the coefficient of spatial diffusion of
the atoms in the field of radiative forces and τ0 has the
meaning of the particle lifetime in the so-called optical
molasses with sizes L/2 (see, e.g., [2]). The estimate
(18) was obtained from (10) in the limit (ε ! 1) of over-
damped particle motion (which is reached in most real
situations [8]) based on the approximation of the
boundary of the region of attraction of a stable RRF
node by an atom-absorbing sphere of radius L/2.
Clearly, it makes sense to speak about stable localiza-
tion of atoms in the superlattice if τ is much longer than
the lifetime of viscous confinement, i.e., when
(1/η)3/2eη @ 1.

To obtain specific estimates showing the real possi-
bility of deep atom localization, we choose field fre-
quencies and amplitudes to satisfy the conditions

(19)

In that case, only the field E0 is responsible for cool-
ing (because g1 ! g0), T . "γ/2, the frequency detuning
∆1 of the field E1 determines the superlattice spacing
(because δk . ∆1/c), and all conditions (6) for the appli-

cation of perturbation theory (  ~ 0.1) are sat-
isfied. The atom localization parameter η is determined
only by the ratio of the transition frequency to the
detuning ∆1,

and the field intensities Jα with the frequency detuning ∆α
required for particle localization are related to the radia-
tion intensity saturating the quantum transition, Js, by sim-

ple formulas, J0 = Js × 10–2 and J1 =  × 10–2 (|∆1|/γ)Js.
For example, for the 1S0–1P1 singlet transition of the
ytterbium atom with λ = 398.8 nm, γ = 1.8 × 108 s–1, and
detuning |∆1| ~ 2 × 1011 s–1, we have the following esti-
mates: L . 0.5 cm, η = 14, r0 ~ 0.1 cm, τ0 . 0.01 s, τ ~
250 s, T = 7.2 × 10–4 K, J0 ~ 0.6 mW cm–2, and J1 .
0.8 W cm–2. For the same detuning ∆1 of the quasi-res-
onant field and for the 1S0–3P1 intercombination transi-
tion [11] with λ = 555.6 nm and γ ~ 1.2 × 106 s–1, we
have L . 0.5 cm, η ~ 10, r0 ~ 0.1 cm, τ0 . 1 s, τ ~ 250 s,
T = 5 µK (!), J0 ~ 1.4 × 10–6 W/cm2, and J1 .
280 mW/cm2.
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Thus, the atom localization conditions are satisfied
for extremely low intensities. By decreasing the detun-
ing |∆1|, we can increase the localization parameter η
and decrease the quasi-resonant field intensity J1. In
this case, the confinement of atoms may require
increasing the cross-sectional laser-beam sizes R
because of the condition R > 1/δk.

In conclusion, note that the vortex RRF component
of atoms in a bichromatic field of the form (2) for arbi-
trary relative phase shifts of the standing waves can be
suppressed by a purposeful choice of field detunings

[see expressions (12) and (14)]: ∆1∆0 = – . In such a
situation, however, the stability condition (η @ 1) is
very difficult to satisfy for realistic superlattice param-
eters, because the field frequency detunings are “rig-
idly” related to each other. In particular, the regime of
atom confinement that corresponds to the conditions
(19) cannot be achieved; in this regime, cooling to lim-
iting temperatures ~"γ is combined with stable deep
localization and a relatively small (L < 1 cm) adjustable
superlattice spacing.

The vortex RRF component is also suppressed for
uncorrelated fluctuating phases of orthogonally polar-
ized standing waves [in superposition (2)], which can
be produced, for example, by using independent
sources of laser radiation. In this case, the localization
conditions deteriorate, because the depths of the light-
induced potential wells decrease and the relative phase
shifts of the waves completely lose their role of control-
ling parameters.
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