
                          

Rectangular microwave resonators with magnetic
anisotropy. Mapping onto pseudointegrable
rhombus
To cite this article: E. N. Bulgakov and A. F. Sadreev 2002 EPL 57 198

 

View the article online for updates and enhancements.

Related content
Point perturbations of circle billiards
S Rahav, O Richman and S Fishman

-

Induced superconductivity distinguishes
chaotic fromintegrable billiards
J. A. Melsen, P. W. Brouwer, K. M. Frahm
et al.

-

Localized low-frequency Neumann modes
in 2d systems with rough boundaries
S. Russ and Y. Hlushchuk

-

Recent citations
Multiple bound states in scissor-shaped
waveguides
Konstantin N. Pichugin et al

-

This content was downloaded from IP address 84.237.90.20 on 27/04/2021 at 03:42

https://doi.org/10.1209/epl/i2002-00561-8
http://iopscience.iop.org/article/10.1088/0305-4470/36/40/L02
http://iopscience.iop.org/article/10.1209/epl/i1996-00522-9
http://iopscience.iop.org/article/10.1209/epl/i1996-00522-9
http://iopscience.iop.org/article/10.1209/epl/i2003-10271-3
http://iopscience.iop.org/article/10.1209/epl/i2003-10271-3
http://dx.doi.org/10.1103/PhysRevB.66.155109
http://dx.doi.org/10.1103/PhysRevB.66.155109


Europhys. Lett., 57 (2), pp. 198–204 (2002)

EUROPHYSICS LETTERS 15 January 2002

Rectangular microwave resonators with magnetic
anisotropy. Mapping onto pseudointegrable rhombus

E. N. Bulgakov
1 and A. F. Sadreev

1,2(∗)
1 Kirensky Institute of Physics - 660036, Krasnoyarsk, Russia
2 Department of Physics and Measurement Technology, Linköping University
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Abstract. – A rectangular microwave resonator filled with ferrite with uniaxial magnetic
anisotropy is considered. It is shown that this task can be reduced to an empty rhombus res-
onator with the vertex angle defined by an external magnetic field, provided that the magnetic
anisotropy of the ferrite is strong. Therefore, the statistics of eigenfrequencies for TM modes
is described by the Brody or semi-Poisson distribution with some exceptional cases.

One of the main research lines in quantum chaos is to investigate the statistics of energy
levels and eigenfunctions of quantum systems whose classical counterpart is chaotic. A very
popular class of systems are the two-dimensional Euclidean billiards, which are described by
the Helmholtz equation

−∇2ψ(x, y) = λψ(x, y), (1)

with Dirichlet boundary conditions ψ(x, y) = 0 for (x, y) at the boundary of billiard. It was
shown that the eigenvalue statistics of λ obey the statistics of random matrix ensemble [1,2].
The distribution function for the amplitudes of the eigenfunctions ψ is perfectly well described
by a Gaussian distribution [3, 4]. Correspondingly, the square ρ = |ψ|2 is described by the
well-known Porter-Thomas (P-T) distribution [4]

P (ρ) =
1√
2πρ

exp[−ρ/2]. (2)

For integrable billiards, for example, a rectangular one, the eigenvalue statistics is described
by the Poisson distribution.

The distribution function of ρ is given by the formula [5]

g(ρ) =
1

π2√ρ
K(1 − ρ), 0 < ρ < 1, (3)
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where K(m) is an elliptic integral of the first kind and the eigenstate is ψ(x, y) =
sin(kxx) sin(kyy). The distribution (3) has a stepwise behavior at ρ = 1 with a step value
equal to K(0)/π2 resulting from the fact that ρ(x, y) has the same maxima.

In the last two decades the subject of these distributions was dominated by theory and
computer simulations. About ten years ago experimentalists found effective techniques to
study billiards with the help of similarly shaped electromagnetic resonators [6–10]. In most of
the experiments resonators with a cylindrical geometry and different cross-sections have been
used. Taking the z-axis parallel to the axis of the cylinder, the boundary conditions reduce to

Ez|S = 0, ∇⊥BS = 0, (4)

for electric and magnetic fields, respectively. Writing the electric field as [4]

Ez(x, y, z) = ψ(x, y) cos
(

πnz

d

)
, n = 0, 1, 2, . . . ,

Bz(x, y, z) = 0,

one can easily obtain that the function ψ(x, y) satisfies eq. (1) with λ = (ω/c)2 − (πn/d)2

and the Dirichlet boundary condition, as follows from (4). Here ω is the angular frequency, c
is the light velocity, and d is the thickness of the resonator. This way defines the transverse
magnetic (TM) modes of the electromagnetic field in the resonator. In what follows we do
not consider the transverse electric (TE) modes.

We consider the more general case of the Helmhotz equation(
µxx

∂2

∂x2
+ µyy

∂2

∂y2
+ (µxy + µyx)

∂2

∂x∂y
+ λ

)
ψ(x, y) = 0, (5)

with the Dirichlet boundary conditions, where the components of the tensor µα,β will be de-
fined below. Because of the term with mixed partial derivatives in (5), even for the rectangular
billiard the solution of this equation cannot be presented as ψ(x, y) = ψ(x)ψ(y). Below we will
show that eq. (5) for the rectangular billiard can be transformed into the isotropic Helmholtz
equation (1) but with the Dirichlet boundary conditions at the boundaries of the rhombic
billiard. Equation (5) describes a microwave resonator filled with an anisotropic magnet. The
use of magnets in microwave resonators was already described as a way to violate time-reversal
symmetry [11,12]. Here we consider a complete filling of the resonator to have a homogeneous
case for which time-reversal symmetry takes place [4].

Let us write the Maxwell equations for the TE modes of the electromagnetic fields in
two-dimensional resonators:

∇ · B = 0,

∇× nEz = −ikB,

∇× H = iknEz,

B = µ̂H, (6)

where n is unit vector parallel to the electric field direction, H is the magnetic field, B is
the magnetic induction, k = ω/c, and ω is an eigenfrequency with wave number k. In what
follows we imply the following magnetic anisotropic permeability:

µ̂ = 1 + χ̂,

χ̂ =


χxx χxy 0

χyx χyy 0
0 0 χzz


 . (7)
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Fig. 1 – Mapping of a rectangular billiard described by the anisotropic Helmholtz equation (5) onto
a polygon (a) (transformation (9)) and onto a rhombus (b) (transformation (15)).

Following [4], we consider the TM modes of the Maxwell equations (6). Substituting the
permeability (7) into the last Maxwell equation we have

(
Hx

Hy

)
=

1
D

(
µyy µxy

µyx µxx

) 


i

k

∂Ez

∂y

−i

k

∂Ez

∂x


 , (8)

where

D = µxxµyy − µxyµyx .

From this equation one can find, from the Maxwell equations (6), the wave equation (5) for
the electric field with eigenvalues equal to λ = Dk2.

By the coordinate transformation

(
x′

y′

)
=



−

√
µxxµyy − (µxy + µyx)2/4

µxx
0

−µxy + µyx

2µxx
1




(
x
y

)
, (9)

we can eliminate the cross-derivatives in eq. (5) and reduce the Helmholtz equation to the
following one:

∇2Ez + µk2Ez = 0, (10)

where

µ =
Dµxx

µxxµyy − (µxy + µyx)2/4
. (11)

Transformation (9) transforms the rectangle into a particular case of polygon, i.e. a parallel-
ogram, as shown in fig. 1(a).

Next, we consider ferrite with easy plane anisotropy, i.e. the magnetization M in equi-
librium state is perpendicular to the anisotropy axis N . As shown in fig. 2, we direct the
z-axis along the magnetization vector and the x-axis along the anisotropy axis. Thereby the
(y, z)-plane is the easy plane for the magnetization vector. Assuming that the resonator filled
with ferrite can be considered as a thin slab, we have the following demagnetization factors:
Nx = Ny = 0, Nz = 1. Moreover, following Kittel [13] and Lax and Button [14], we introduce
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Fig. 2 – Schematical view of the rectangular resonator filled with ferrite, where M is the magnetization
of ferrite and N is the anisotropy field.

an effective demagnetizing factor as follows: Na = 2Ka/M
2, which is directed along the x-

axis. Then in this specific Cartesian system of coordinates the susceptibility has the following
components:

χxx(ω) =
ω0ωM

ω2
r − ω2

,

χyy(ω) =
ωM (ω0 + ωa − ωM )

ω2
r − ω2

,

χxy(ω) =
−iωωM

ω2
r − ω2

, (12)

where

ω0 = γ(H0 − 4πM), ωM = 4πγM,

ω2
r = ω0(ω0 + ωa),

ωa = γHa, Ha = 8πKa/M. (13)

Here H0 is the external constant magnetic field applied along the z-axis, i.e. along the direction
of magnetization, and Ha is the effective anisotropy field directed along the x-axis.

Since for this case of the susceptibility µxy + µyx = 0, expression for (11) and transforma-
tion (9) are simplified as follows:

µ = µxx +
µ2

xy

µyy
, (14)

(
x′

y′

)
=


−

√
µyy

µxx
0

0 1


 (

x
y

)
. (15)

If a ferrite has the anisotropy axis directed parallel to the lateral sides of the rectangular
resonator, transformation (15) maps the rectangle onto a rectangle. However, if the anisotropy
axis of ferrite is directed differently, the rectangle is mapped onto a parallelogram, as shown
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in fig. 1(a). In the particular case of a squared resonator, transformation (15) maps a square
onto a rhombus as shown in fig. 1(b), with the vertex angle of the rhombus

α = 2arctan
√

µyy

µxx
. (16)

Because of the frequency dependence of the susceptibility components, the expressions for
eigenvalues of the wave equation (10) and the vertex angle (16) are complicated. So we consider
a case for which we can neglect the frequency ω in the denominator of the susceptibility (12).
Therefore we are to imply the inequality ω2

r � ω2. In order to fulfill this inequality, we can
apply a strong magnetic field such as γH0 � ω or explore ferrites with a large anisotropy field
Ha = 2Ka/M � ω. If we take the ferrite Ni0.932Co0.068Fe2O4 [14], we have 4πM = 3475 g s,
Ha ≈ 12566Oe. Therefore we can neglect the frequency dependence in the denominators
of the susceptibility components, if the eigenfrequencies of the resonator do not exceed the
frequency of about 1011 s−1, provided that the size of the resonator is of the order of 10 cm.
The anisotropy field is extremely large in the ferrite Ba2Co2Fe12O22 (2Ka/M = 2800Oe), so
the upper boundary for the eigenfrequencies reaches values of order 1012.

As a result, we can write the following formulas for the susceptibility components instead
of (12):

χxx ≈ 4πM

H0 + Ha
,

χyy(ω) ≈ 4πM

H0 − 4πM
,

χxy(ω) ≈ − i4πωM

γ(H0 + Ha)(H0 − 4πM)
. (17)

Correspondingly, substituting these expressions into eqs. (14) and (16), we have

µ ≈ 1 +
4πM

H0 + Ha
− 16π2M2ω2

γ4(H0 + Ha)2(H0 − 4πM)2
, (18)

α ≈ 2 arctan

√
H0

(H0 − 4πM)(1 + 4πM
H0+Ha

)
. (19)

One can see that, if the external magnetic field H0 and the anisotropy field Ha are both
strong, we obtain from (18) and (16) that µ ≈ 1, α ≈ π/2. It means that the strong magnetic
field applied along the magnetization of ferrite (z-axis) diminishes the effect of anisotropy.
Thereby we assume that only the anisotropy field is strong to obtain

µ ≈ 1, µxx ≈ 1, (20)

α ≈ 2 arctan
√

H0

H0 − 4πM
. (21)

On the one hand, formula (20) shows that the eigenfrequencies of the filled resonator coincide
with those of the empty resonator. On the other hand, formula (21) gives a remarkable
possibility to change the vertex angle of the rhombus by an external magnetic field.

While integrable billiards, for example, a rectangular billiard, and chaotic billiards, for
example, the Sinai billiard, represent two extreme billiards, the rhombus with at least one
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angle in the form mπ/n(m �= 1) belongs to the pseudointegrable systems [15–18]. Date et
al. [19] have numerically shown that these systems have a spectral statistics which cannot
be presented as a mixture of Poisson statistics (the integrable systems) and Wigner-Dyson
one (chaotic systems). An integrable billiard generally leads to uncorrelated energy levels
(Poisson statistics) and a chaotic billiard corresponds to the Wigner-Dyson statistics [4].
Rhombus billiards are peculiar, as they are pseudointegrable systems and for this reason their
statistical properties belong to another class of universality [20]. Using the boundary element
method, Shudo and Shimizu [17] have found that the data of nearest-neighbour level spacing
distributions are described by the Brody distribution

Pβ(s) = Asβ exp
[ − as1+β

]
,

A = (1 + β)a, a =
[
Γ
{

2 + β

1 + β

}]
. (22)

The Brody distribution is a semiempirical interpolation between Poisson and Wigner-Dyson
distributions [21]. Shudo and Shimizu compared the Brody parameter β for irrational angles
with that for the rational angles and found that the differences observed are very small.
However, spectral rigidity reveals that the possibility of the rationality of the vertex angle is an
important signature of the level spacing distribution. Grémaud and Jain [22] and Bogomolny
et al. [23] performed extensive numerical calculations for α = π/n, n = 5, 7, . . . , 31 and
typically 20000 [23] and even 34000 [22] eigenvalues, and found that the nearest-neighbour
level spacing distribution is described by the semi-Poisson statistics

Pβ(s) = 4se−2s. (23)

Biswas and Jain [16] numerically considered the amplitude distributions P (ψ) of the eigen-
functions of the π3 rhombus. They have found that eigenfunctions even-even and even-odd
relative to the x, y axes (fig. 2) for this rhombus P (ψ) have a Gaussian distribution in con-
trast to the odd-odd and odd-even eigenfunctions which are identical to those of an equilateral
triangle. From the equations α = 2π/3 and (21), we obtain that this integrable case of the
anisotropic square resonator takes place if

H0 = 2πM, (24)

otherwise the resonator is a non-integrable one.
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