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Abstract

The ground state of two-dimensional Heisenberg spin-1/2 antiferromagnet (AF) with the spin–phonon coupling is stud
by the quantum Monte Carlo method. The magnetic moment per site, mean-square vibration of ion, phase diagram o
range order—quantum spin liquid are simulated. The spin–phonon coupling is estimated for R2CuO4, R= Gd, Eu.
 2003 Elsevier Science B.V. All rights reserved.
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The two-dimensional (2D) quantum spin Heise
berg antiferromagnet (AF) has attracted a great d
of attention in connection with the properties of m
terials with high-temperature superconductivity. T
parent compounds R2CuO4, R = Nd, Gd, Eu revea
low value of magnetic moment on siteσ � 0.4 [1]
with fairly high Neel temperatureTN ∼ 250–280 K.
These materials have theT ′ tetragonal structure an
strong lattice fluctuations. The reflexes of X-ray me
surements show spread ellipsoidal patch which are
terpreted as a strong vibrations of oxygen ions
The mean-square vibrations of Cu2+ in plane CuO
in Eu2CuO4 are decreased with increasing tempe
ture and exhibit minimum atT ∼ 160 K [3]. The in-
teraction between magnetic and elastic subsyste
taken into account by spin–phonon coupling(α). Us-
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ing perturbation theory up to fourth order inα in the
antiadiabatic regime authors [4] have been derived
fective spin Hamiltonian with long range interactio
consisted of four- and six-spin coupling(Si · Sj )×
(Sk ·Sl) · · · (Sm ·Sn). The additional four-spin couplin
(K) and next-nearest-neighbor(J2) antiferromagnetic
interaction result in spin nematic state [5] and qu
tum spin liquid (QSL) atK/J1 = 2 [6]. A frustration
caused by the competition between nearest-neig
(J1) andJ2—interaction breakdowns long-range ord
and also forms the quantum spin liquid in the param
ter rangeJ2/J1 � 0.2–0.4 [7]. The larger valuesK,
J2 imply the larger spin–phonon coupling. It mea
the interaction between spin and phonon subsyst
needs to consider nonadiabatic limit. Using the u
tary transformation and the second-order of expan
in terms of small parameter the sublattice magn
zation, phase diagram AF-QSL [8], spin–spin cor
hts reserved.
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lation functions [9] have been calculated in the A
on a square lattice. These values may be essen
changed if the higher order terms of expansion w
take into account.

In this Letter we consider interaction of spinsS =
1/2 with acoustic phonons by quantum Monte Ca
method. Monte Carlo approaches restricted to fin
lattice but without any adiabatic approximation a
the truncation of the infinite phonon Hilbert space. T
method [10] is based on a path-integral representa
for discrete system in which we work directly
the Euclidean time continuum. All the configurati
update procedures contain no small parameters.

We consider a model Hamiltonian of an spi
phonon system:

H =
∑
i,j

[
J + α(ui,j − ui+1,j )

]
× [

Szi,j S
z
i+1,j + (

S+
i,j S

−
i+1,j + S−

i,j S
+
i+1,j

)
/2

]
+ [

J + α(ui,j − ui,j+1)
]

× [
Szi,j S

z
i,j+1 + (

S+
i,j S

−
i,j+1 + S−

i,j S
+
i,j+1

)
/2

]
+Mu̇2

i,j /2+K(ui,j − ui+1,j )
2/2

(1)+K(ui,j − ui,j+1)
2/2.

Here Sz,± are a spin operator components asso
ated with the site(i, j), J > 0 is the usual antifer
romagnetic exchange integral,α is the spin–phonon
coupling constant,ui,j is the displacement in thex-,
y-direction,M is the mass of the ion andK is the
spring constant. Using the quantum representation
phonon operatorsb, b+, the Hamiltonian maps to:

H =
∑
i,j

Ji,jSiSj

+
∑
qx,qy

∑
n,m

α

√
h̄

MΩ(q)

[
sin(qxn+ qym+ π/4)

− i sin(qxn+ qym− π/4)
]

× (
bq + b+−q

)
× [

sinqxSn,mSn+1,m + sinqySn,mSn,m+1
]

+
∑

q

h̄Ω(q)b+
q bq,

Ω(q)= ω0

√
2− cos(qx)− cos(qy),
(2)ω0 =
√

2K

M
.

Spin–phonon coupling parameterα and tempera
ture are normalized on the exchangeJ , h̄= 1,M = 1.
The temperature used in calculation isβ = J/T = 50.
The elastic subsystem is described by phonons
the number of occupationnph = 0,1,2 . . . and mag-
netic subsystem is in theSz representation. The con
tinuous time world-line Monte Carlo approach bas
on the expansion of the statistical evolution opera
e−H/T in powers ofJ andα is applied. The world-
line configuration of spins and phonons are upda
through the space–time motions of the creation
annihilation operators. The periodic boundary con
tions are applied onL ·L,L= 32 square lattices. 400
Monte Carlo steps (MCS) per site are spent to re
equilibrium and another 8000 MCS are used for
averaging. The root mean square errors of the c
puted quantities lie in the range 0.1% to 0.6%.

Magnetic moment per site is evaluated by summ
over imaginary-time and over lattice

σ =
〈

1

N

∑
i,j

(−1)i+j
β∫

0

Szi,j (τ ) dτ

〉
,

where bracket〈· · ·〉 denotes the thermal average
Mean-square vibration of ion〈u2〉 is simulated by

(3)〈u2〉 = h̄

2MN

∑
q

2nq + 1

Ω(q)
.

More important is to determine the relative chan
〈U2〉 = 〈u2(α)〉 − 〈u2(α = 0)〉.

The values ofσ(α) and〈U2(α)〉 are simulated for
set of acoustic frequencyω0/J = 1,2,4,6,8,10 vs.
spin–phonon coupling. The normalized valueσ(α)/
σ(0) and 〈U2(α)〉 reveal universal dependence
α/αc for caseω0 < 2J and ω0 > 2J , as shown
in Figs. 1 and 2. This difference may be due
appearing additional peculiarities in the density st
of spin and phonon excitations if the branches
the corresponding excitations are intersected.
magnetic moment per site fits well to a straight li
σ/σ(0) = 1.14 − 1.3α/αc, ω0 < 2J and σ/σ(0) =
1.12 − 0.96α/αc, ω0 > 2J in the parameters rang
0.15< α/αc < 0.7 and disappears sharp at the criti
spin–phonon couplingα = αc . Mean square vibration
of ions exhibit anisotropy, as illustrated in Fig.
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Fig. 1. The magnetic moment per site as a function of
spin–phonon coupling forω0 = J (1),ω0 = 6J (2).

Fig. 2. Mean-square vibration〈U2〉 vs. spin–phonon coupling
at ω0 = J (2,4), ω0 = 6J (1,3) along [10] (1,2, β = x), [01]
(3,4, β = y) directions.

as result of dynamical lattice dimerization favored
decreasing magnetic energy.

Models of a static dimerized exchange are wid
used to describe the spin-Peierls materials. Cons
ation of various kinds of exchange dimerizationδ =
Ji,i+1 −Ji,i−1 in square lattice [11] shows existence
the critical valueδc ∼ 0.5. Forδ < δc the energy gain
is achieved by exchange dimerization along of one
rection lattice so-called(π,0) mode condensation an
(π,π) mode condensation forδ > δc. Long range AF
order becomes unstable at the critical valueδc ∼ 0.75
simulated by quantum Monte Carlo [12] in terms
Heisenberg model with exchange dimerization alo
Fig. 3. The phase boundary AF-QSL calculated by MC and
expansion in terms of small parameter (EX) [8].

of one direction lattice. The exchange dimerization
δ ∼ αu and shows nonlinear dependence on the
displacementu. Interaction between elastic and ma
netic systems causes elastic tensions that induc
cal exchange dimerization. Staggered magnetiza
is decreased and disappeared atδ > δc. Ions displace-
ment anisotropy corresponds to symmetry lowering
lattice and qualitatively agrees with results obtain
for static lattice dimerization [11].

Phase diagram of AF long range order—quant
spin liquid in plane the upper bound of acoustic ph
non frequency—spin–phonon coupling is presente
Fig. 3. The phase boundary AF-QSL is well appro
mated by the power functionω0 = 1.65(3)α1.31(4)

c . For
comparison the boundary computed by unitary tra
form up to the second-order ofα (all higher order
terms are omitted) [8] is shown in Fig. 3. When ban
widths of the spin-wave and phonon spectrum beco
comparable in magnitude the contribution of all high
order terms of expansion are important.

Low magnetic moment on siteσ = 0.4(1) in
Gd2CuO4 and Eu2CuO4 [1], established from neutro
scattering and electronic spin resonans on Gd+3 ion
in Eu2CuO4, σ = 0.35(4) [13] seem results from
spin–phonon coupling. This confirms the anomaly
acoustic phonon excitation alongΓX direction in
parent compound Nd2CuO4 [14], strong vibrations of
oxygen ion in CuO plane in Gd2CuO4 [2] and small
decreasing mean square vibration of Cu+2 in plane
CuO in Eu2CuO4 [3] with temperature rise. Typica
upper bound of acoustic frequency isω0 � 4×1012 Hz
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[14], antiferromagnetic exchangeJ � 0.1 eV and
parameters of spin–phonon coupling in Gd2CuO4 and
Eu2CuO4 determined fromσ(α) areα ∼ 0.06,∼0.07.

So, summarizing, the dependence of magnetic
ment per site in two-dimensional antiferromagnet a
function of spin–phonon coupling is determined. P
rameters of spin–phonon coupling in Gd2CuO4 and
Eu2CuO4 are found. The calculated phase diagr
AF-QSL allows to estimate the validity of using sm
expansion parameter for calculation of sublattice m
netization.
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