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A spin liquid concept for the Heisenberg Hamiltonian~spin s51/2) with antiferromagnetic
exchange interactions between nearest neighbors is developed. The spin liquid is described by the
Green’s function method in the framework of a second-order theory. Equations are presented
for the self-consistent calculation of the parameters of the system and its thermodynamic
properties at all temperatures. A description of the spin system in the sc and bcc lattices is proposed
wherein it is treated as a spatially homogeneous spin liquid with a condensate and with a
singlet ground state. It is shown that the modulus of the ‘‘staggered’’ magnetization is expressed
uniquely in terms of a condensate at a boundary point of the Brillouin zone and is the long-
range order parameter. The existence region in temprature of the ordered state of the spin liquid
with a condensate (T,T0) is wider than the existence region of the two-sublattice
antiferromagnetism (T0,TN , whereTN is the Néel temperature!, while the energy is lower. For
T.T0 the system passes into an ordinary spin liquid state. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1596582#

1. MARSHALL EQUATION AND ANTIFERROMAGNETISM

The rigorous theoretical description of antiferromagnetic
~AF! ordering still remains an open problem after more than
half a century of history. The intensive discussion of the
necessary and sufficient conditions for the onset of long-
range AF order in a crystal has been going on for almost 50
years since a description was given in the framework of
mean ~molecular! field theory and a quantum spin-wave
theory of antiferromagnetism was developed. The ground-
work for this problem was laid in Ref. 1.

The fundamental questions of the theory of antiferro-
magnetism are discussed, as a rule, on the basis of the iso-
tropic Heisenberg model (s51/2) with antiferromagnetic ex-
change interactions between nearest neighbors. The
Hamiltonian of the system

H5
1

2
J(

fD
sf"sf1D , S5(

f
sf ~1!

is specified on an ideal lattice of dimensionalityd51,2,3
with periodic boundary conditions:N is the number of sites,
f are the coordinates of the sites,J.0 are the exchange
integrals between nearest neighbors,z is the number of near-
est neighbors,D are vectors connecting nearest neighbors,
Sf5(sf

1 ,sf
2 ,sf

z) is the spin operator at sitef, andS is the total
spin operator. One of the main problems is to describe the
long-range antiferromagnetic order. The properties of the
system depend substantially on its dimensionality and geom-
etry.

According to the Merman–Wegner theorem~see Ref. 2!,
long-range magnetic order in one- and two-dimensional sys-
tems ~in the case of short-range exchange interactions! is
absent at any finite temperatureTÞ0. For a linear chain (d
51) there is an exact solution due to Hulthe´n:2 the ground
state is a nondegenerate singlet (S50) with energy per bond

«050.252 ln 2520.4431 ~in units of the exchange!. In a
square lattice (d52) it is only for T50 that a two-sublattice
AF state can be constructed and its energy«AF calculated in
the framework of the spin-wave theory. In a previous paper3

by the author it was shown on the basis of the spin liquid
concept that the ground state of a Hamiltonian spin system
on a square lattice is a singlet state with an energy
«0,«AF , viz., «0520.352.

Discussion of the problem of long-range AF order cen-
ters mainly on three-dimensional systems and consists in the
following.

On the one hand, there is the traditional approach to the
description of antiferromagnetism. In alternant lattices1! ~sc
and bcc and also the square lattice and the linear chain! a
‘‘checkerboard’’ arrangement of spins is possible which can
be described by the Ne´el wave vectoruAF& ~an antiferro-
magnet with two mirror sublatticesA and B). It is known
that such a function is an eigenfunction only for the operator
Sz with a total spin projectionSz5SA

z 1SB
z 50, but it is not

an eigenfunction for the Hamiltonian nor for the operatorS2.
This means that the antiferromagnetic state is a state with an
indeterminate degeneracy.4 However, the use of the approxi-
mate Néel function uAF&, in which the sublattices are fixed
and long-range AF order is postulated, has its indisputable
advantages, since it permits calculation of the excitation
spectrum, the energy of the AF state with allowance for
transverse quantum spin fluctuations, the sublattice magneti-
zation s̄(T), and the Ne´el temperatureTN . The theory is
approximate and is valid only in the magnetically ordered
phase forT<TN .

On the other hand, Marshall5 ~see Ref. 1! has stated a
theoremic assertion that the ground state of Hamiltonian~1!
with AF exchange interactionsJ between nearest neighbors
on alternant lattices is a nondegenerate singlet withS50. It
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has beenrigorously proven only for the one-dimensional
chain, while ford52 and 3 dimensions there are enormous
mathematical difficulties in constructing an exact singlet
function, since the number of partial singlet functions con-
tained in it and comprising the total set of states is factorially
large in N. The absence of an exact singlet state makes it
impossible to directly verify Marshall’s assertion, which has
a natural quantum mechanical basis. Indeed, Hamiltonian~1!
commutes with any component of the total spin operatorS,
and its eigenfunctions are therefore eigenfunctions of the op-
eratorsSz andS2, while the eigenvaluesE(S) are classified
according to the value of the total spinS (0<S<N/2). Ac-
cording to Marshall, min$E(S)%5E(0) corresponds to a sin-
glet ground state withS50. Marshall constructed an ap-
proximate singlet wave function and used a variational
method to calculate the energy«0 in alternant lattices~see
Table I!. A comparison of the energies«0 ~according to Mar-
shall! and«AF shows that these energies are very close, but
in the context of the approximations made~which are, gen-
erally speaking, different!, it is impossible to conclusively
decide the type of ground state.

The question arises: Can these two approaches be recon-
ciled theoretically? Below, on the basis of the spin liquid
concept developed by the author, a theoretical version of the
description of the properties of the spin system in sc and bcc
lattices is proposed which is valid at all temperatures. It
should be noted that the spin liquid~SL! concept has a rather
wide domain of applicability. In addition to two-dimensional
systems, in the fcc lattice, because of frustration of the ex-
changeJ bonds and the presence of transverse quantum spin
fluctuations, the AF state is absent at all temperatures, and
the system is a spin liquid with a singlet ground state.6 In this
paper it is shown that in the sc and bcc lattices the ground
state is a singlet~in accordance with Marshall!, but for T
<T0 the system nevertheless has long-range order, which is
described by the modulus of the ‘‘staggered magnetization.’’
For T.T0 the system is found in an ordinary SL state.

The results of the spin-wave theory and the main equa-
tions of the spin liquid theory are briefly set forth below in
the framework of a unified Green’s function method.7

2. SPIN-WAVE THEORY OF ANTIFERROMAGNETISM

On alternant lattices a ‘‘checkerboard’’ distribution is
possible, with spins ‘‘up’’~sublatticeA, sitesa! and ‘‘down’’

~sublatticeB, sitesb!; for nearest neighborsa1D5b, b
1D85a8. It is convenient to go over to a dimensionless
Hamiltonianh5H/zJ; then all the energy parameters will be
measured in units ofzJ, including the temperaturet
5T/zJ.

The spin-wave theory is based on linearized first-order
equations~the Tyablikov decoupling!

i ṡa
15 s̄S sa

11
1

z (
D

sa1D
1 D , i ṡb

152 s̄S sb
11

1

z (
D

sb1D
1 D ,

~2!

where ^sa
z &52^sb

z &[ s̄. After Fourier transformation with
respect to the sublattices in the standard way, we find the
Green’s functions

^^SA
1~q!uSA

2~2q!&&v5
2s̄~v1 s̄!

D~q,v!
,

^^SA
1~q!uSB

2~2q!&&v5
2s̄2gq

D~q,v!
, ~3!

where

D~q,v!5v22Vq
2, Vq5 s̄A12gq

2[ s̄«q ,

gq5
1

z (
D

eiq•D. ~4!

We calculate the Fourier transforms of the correlation func-
tions ^SA

1(q)SA
2(2q)& and ^SA

1(q)SB
2(2q)& according to

the spectral theorem and then, using the sum rule^sa
1sa

2&
5(1/2)1 s̄, we obtain an equation for calculating the order
parameter:

s̄~t!5
1/2

l ~t!
, I ~t!5

1

N (
q

1

«q
cothS s̄~t!«q

2t D . ~5!

It follows from ~5! that for t50

s̄~0!5
1/2

I 1
, I 15

1

N (
q

1

«q
, ~6!

and for t→tN , s̄→0, wheretN5TN /zJ is the Néel tem-
perature, we have

tN5
1/4

I 2
, I 25

1

N (
q

1

«q
2 . ~7!

The energy of the antiferromagnet~in units ofJ per bond! is
equal to

«AF~t!5
^H&

~1/2!zN•J

'2S s̄2~t!1 s̄~t!
1

N (
q

gq
2

«q
coth

s̄~t!«q

2t D . ~8!

For three-dimensional alternant lattices we obtain the follow-
ing numerical results~the sums over the first Brillouin zone
are replaced by integrals with the densities of states given in
the Appendix!:

sc ~z56!:«AF~0!520.297,s̄~0!50.432.

tN50.163;

bcc ~z58!:«AF~0!520.287,s̄~0!50.448. ~9!

TABLE I. Main characteristics of a spin system with an antiferromagnetic
exchange bond between nearest neighbors.

Note: «5^H&/^zNJ/2& is the energy of the system at zero temperature~in
units of the exchange per bond! in the singlet~0! and antiferromagnetic~AF!

states;um0u is the modulus of the ‘‘staggered’’ magnetization atT50; S̄(0)
is the AF order parameter~sublattice magnetization! at T50; t05T0 /zJ is
the temperature at whichumu vanishes;tN5TN /zJ is the Néel temperature.
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tN50.181.

3. QUANTUM SPIN LIQUID

Let us consider a spin system with the Hamiltonian~1!
in a lattice of arbitrary dimensionality and geometry. We de-
fine aspin liquid as a system which is, on average, spatially
uniform, with no breaking of the spin symmetry, and in
which the spin correlation functions are isotropic,

1

N (
f

^sf
xsf1r

x &5
1

N (
f

^sf
ysf1r

y &5
1

N (
f

^sf
zsf1r

z &[
1

4
Kr

~10!

and depend only on the modulus of the distancer 5ur u, with
K051 ~the sum rule!; the average values for any component
of a site spin and for any component of the total spin opera-
tor are equal to zero:

^sf
a&50, ^Sa&50, a5x,y,z or 1,2, z; ~11!

and the average value of a product of spin operators on an
odd number ofdifferentsites is zero:

^sf
asm

b sn
g&50, fÞmÞn, ... . ~12!

Here and below the symbol^...& denotes a thermodynamic
average at a temperaturet5T/zJ and over the ground state
wave function fort50.

The whole set of properties of the spin liquid—the
ground state, excitation spectrum, and thermodynamics—
must be described on the basis of Hamiltonian~1! and pos-
tulates~10!–~12!. It should be noted that postulate~12! is
newly introduced by the author; its consequences will be
demonstrated below. Later it will be shown that the ground
state is the singlet state with total spinS50, which is equiva-
lent to ^S2&t5050.

The properties of the SL state are determined mainly by
the spatial and temperature dependence of the spin correla-
tion functionsKr(t). The energy of the SL state per bond in
units of J is given by

«5
^H&

~1/2!ZNJ
52

3

4
K1 , ~13!

whereK uDu52K1 (K1.0) is the correlator between nearest
neighbors. For description of the SL state we go over to the
Fourier transforms of the spin operators and introduce the
Fourier transform of the correlation function

K~q!5(
r

e2 iqrKr54^sz~q!sz~2q!&

52^s1~q!s2~2q!&, Kr5
1

N (
q

eiq"rK~q! ~14!

with the obvious propertyK(q)5K(2q). To calculateK(q)
we use the method of two-time temperature Green’s
functions.7 Because of the isotropicity of the correlators it is
sufficient to calculate the retarded commutator Green’s func-
tion

^^sz~q!us2~2q!&&v5G~q, v!.

where v is a dimensionless spectral variable in terms of
which K(q) is found according to the spectral theorem.

Second-order equations and their linearization

The spin liquid theory is based on equations not lower
than second order, sincêsr

a&50 and the first-order equa-
tions cannot be linearized~as is done in spin-wave theory!.
The exact equations of motion have the form (\51)

i ṡf
15

1

z (
D

~sf
zsf1D

t 2sf1D
z sf

1!,

i ṡf
z5

1

2z(
D

~sf
1sf1D

2 2sf1D
1 sf

2![M f , ~15!

iṀ f5
]2sf

z

]t2 5
1

2z2 (
D

~sf
z2sf1D

z !1Rf , ~16!

where

Rf5
1

z2 (
DÞD8

@sf
zsf1D

1 sf1D8
2

1~sf1D2D8
z

2sf1D8
z

!sf
1sf1D

2

2sf1D
z sf

1sf1D2D8
2

#. ~17!

Performing the linearization of the operatorRf according to
the scheme

sf
zsn

1sm
2'sf

za un2mu^sn
1sm

2&5
1

2
a un2muK un2musf

z ,

fÞnÞm, ~18!

wherea un2mu are parameters which correct the decoupling,
after Fourier transformation we obtain the Green’s function
of the linear second-order theory in the form

G~q,v!5
Aq

v22Vq
2 , Aq5

K1

2
~12gq!,

gq5
1

z (
D

eiq•D. ~19!

Here

Vq
25l2~12gq!~ u«minu1gq1d!, l25

a1K1

2
, ~20!

where a1 is a correction factor for the nearest neighbors,
«min is the lower boundary of the spectrumgq , and the pa-
rameterd is a complicated construction of correlators in the
first, second, etc. coordination zones, multiplied by the cor-
responding correction factors. The parameterd thereby re-
flects the effective correlations in the ‘‘expanded’’ cluster and
will be calculated self-consistently later~its explicit form is
unimportant!. The spectral intensity of the Green’s function
~19! is equal to

J~q,v;t!5
ev/t

ev/t21

Aq

2Vq
@d~v2Vq!2d~v1Vq!#,

Vq>0. ~21!

According to the spectral theorem we obtain for the single-
time average
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^sz~q!sz~2q!&[
1

4
K~q!5E

2`

`

J~q,v;t!dv

5
Aq

2Vq
cothS Vq

2t D
or

K~q!5
K1

l

12gq

Eq~d!
cothS lEq~d!

2t D , Vq[lEq~d!. ~22!

Expression~22! attests to the fact that the proposed version
of the SL theory contains three unknown parameters which
are functions of temperature:K1(t)—the modulus of the
correlator between nearest neighbors,l~t!—the ‘‘stiffness’’
parameter of the excitation spectrum, andd~t!—the
‘‘pseudogap’’ in the spectrum. They must all be calculated
self-consistently in accordance with three equations~see be-
low!; here d5d(t)>0, as is necessary for the condition
Vq>0 or Eq(d)>0.

Self-consistency equations

Three parameters must be calculated self-consistently:
K1 , l, andd. Using the definition~14! of the spatial correla-
tors Kr , we obtain the system of equations

¦

K0515
1

N (
q

K~q!5
K1

l
I 0~d,t!,

K15
1

N (
q

~2gq!K~q!5
K1

l
I 1~d,t!,

K tot5
1

N (
q

~gq!2K~q!

5
1

z2 (
D,D8

K uD1D8u5
K1

l
I 2~d,t!,

~23!

where

I n~d,t!5
1

N (
q

~2gq!n
12gq

Eq~d!
cothS lEq~d!

2t D ,

n50,1,2. ~24!

From Eqs.~23! we obtain the formal solution~we omit the
arguments of the functions!

l5I 1 , K15I 1 /I 0 , K tot5I 2 /I 0 , a152I 0I 1 . ~25!

The equation for the parameterd arises from the require-
ment of an exact value of the second moment3,6,10 and has
the form

M25
1

8 S K tot1
K1

z D5
lK1

4
P~d!,

P~d![
1

N (
q

~12gq!Eq cothS Vq

2t D . ~26!

Using solution~25!, we obtain

P~d!5
I 2~d!1I 1~d!/z

2I 1
2~d!

, d5d~t!. ~27!

Thus the self-consistent second-order linear theory is based
on satisfaction of the sum ruleK051, the definitions of the

correlatorsK1 andK tot @Eq. ~23!#, and the requirement of an
exact value of the second moment, which leads to Eq.~27!.
This equation plays a fundamental role in the SL theory and
its further generalizations.

The sums over the Brillouin zone forI n and P are re-
placed by integrals with a density of statesD(«) correspond-
ing to a dispersion relationgq5«. An approximation for the
density of statesD(«) is given in the Appendix. Combining
Eqs.~25! and~27!, we obtain a system of three equations for
the self-consistent calculation of the parameters of the SL:

5
l5I 1 ~a!,

K15I 1 / l 0 ~b!,

P5
I 21 l 1 /z

2I 1
2 ~c!.

~28!

Here

l n~d,t !5E D~«!~2«!n
12«

E~«,d!
cothS E~«,d!

2t Dd«,

P~d,t !5E D~«!~12«!E~«,d!cothS E~«,d!

2t Dd«.

E~«,d!5A~12«!~ u«minu1«1d!.

«min<«<1, t5t/l. ~29!

We now show that theground state is a singlet~total
spin S50). We introduce the function~the average per spin
of the square of the total spin of the system!

S2~t![
1

N
^S2&5

1

N (
fm

^sfsm&5(
r

1

N (
f

sfsf1r

5
3

4 (
r

K r5
3

4
K~0!, ~30!

which is expressed in terms of the Fourier transform of the
correlation function~22! for q50. For t[0 it follows from
~22! that K(0)50 and S2(0)50, which proves that the
ground state is a singlet. On the other hand, expression~30!
can be considered as the limit

K~0!5 lim
q→0

K~q!5
K1

l
lim

q→0

12gq

Eq~d!
cothS lEq~d!

2t D
5

4t

a1~ u«minu1g01d!
. ~31!

Hence fort→0 we obtainK(0)50 ~singlet! as before, but
for t[0 triplet excitations arise in the system, and because
of themS2(t)Þ0.

In Refs. 3 and 6 the thermodynamic properties of the SL
in the square and fcc lattices were described at all tempera-
tures on the basis of the theory set forth above and the self-
consistency equations~28!. It was shown there that the spa-
tial correlation functions are sign-varying, with a magnitude
that falls off with increasing distance, so that the SL contains
short-range order of the antiferromagnetic type.
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4. SPIN LIQUID WITH A ‘‘CONDENSATE’’ IN THE sc AND
bcc LATTICES

Alternant lattices can be regarded as two interposed sub-
lattices A ~sites a! and B ~sites b!, independently of the
existence of real magnetic sublattices. The Brillouin zone of
these lattices contains a boundary pointQ at which gQ5
215«min and the spectrumEQ(d)5A2d. These points are
Q5(p,p), Q5(p,p,p), and Q5(2p, 2p, 2p) for the
square, sc, and bcc lattices, respectively. It follows from this
that

exp~ iQ•a!51, exp~ iQ•b!521. ~32!

The functionS2(t) was considered above@see Eq.~30!#
and it was shown thatS2(0)50 ~the ground state is a sin-
glet! at t50; this is equivalent to the equation

K~0!5(
r

K r50 ~t50!. ~33!

Taking relations~32! into account, we can writeK(Q) in the
form

K~Q!5(
r

e2 iQrK r5(
r

uK ru. ~34!

SinceK r is sign-varying, in Eq.~33! there is complete com-
pensation of all the terms in the sum, while the value of
K(Q) in ~34! can be macroscopically large and proportional
to the volume of the system (}N).

‘‘Condensate’’ in the spin liquid

Under this assumption we writeK r in the form

K r5
1

N (
q

~qÞQ!

eiq"rK~q!1eiQ"r
K~Q!

N
,

K~Q!

N
[

K1

l
C. ~35!

whereC is a ‘‘condensate’’~a function of temperature! which
is unknowna priori. Then

K0515
1

N (
q

~qÞQ!

K~q!1
K1

l
C,

K15
1

N (
q

~qÞQ!

~2gq!K~q!1
K1

l
C, ~36!

K tot5
1

N (
q

~qÞQ!

gq
2K~q!1

K1

l
C.

In relations~36! we go from summation to integration with a
density of statesD(«). We take into account the following
circumstances. First, the lower limit of integration~because
of the restrictionqÞQ) is equal to211z, wherez is an
infinitesimal quantity (z→10). In the sc and bcc lattices the
density of statesD(«) goes to zero in a square-root manner
at the boundaries of the spectrum. For this reason the value
of z can be simply set equal to zero~this is the same situation
as in the description of Bose condensation in a three-
dimensional gas!. Second, in the presence of the ‘‘conden-
sate’’C we assumed50 in the expression forK(q). In that

case the spectrumE(«,0)5A12«2 becomes symmetric with
respect to inversion«↔2«, and the density of states has the
same property:D(«)5D(2«). When these symmetry prop-
erties are taken into account, the integrals become

I 0~ t !5E
21

1

D~«!
1

A12«2
cothSA12«2

2t D d«.

I 1~ t !5I 2~ t !5E
21

1

D~«!
«2

A12«2
cothSA12«2

2t D d«,

P~ t !5E
21

1

D~«!A12«2 cothSA12«2

2t D d« ~37!

~the functionP(t) does not contain a ‘‘condensate’’ term!.
Now relations~36! are written in the form

15
K1

l
~ I 01C!, K15K tot5

K1

l
~ I 11C!, ~38!

and the self-consistency equation~27! assumes the simple
form

P~ I 11C!5
z11

2z
. ~39!

From the numerical solution of the system of equations
~38!–~39! at t50 we obtain

l50.645, K150.416, «0520.312, C50.389 ~sc!.

l50.607, K150.396, «0520.297,

C50.4185 ~bcc!. ~40!

It follows from the results~40! that the energy of the singlet
state in the presence of the condensate is lower than the
energy of the AF state~see Table I!. This proves Marshall’s
assertion that the ground state of the spin system on alternant
lattices is a singlet.

Figure 1 shows the result of a calculation of the tempera-
ture behavior of the condensate in the sc lattice. This func-
tion goes to zero at a temperaturet0'0.213, which is higher
than the Ne´el temperaturetN50.163 of the sc lattice. Thus
the temperature region in which the spin liquid with the con-

FIG. 1. Temperature behavior of the condensate~j! and the gap parameter
~d! in the spin liquid in the sc lattice.
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densate exists is wider than the existence region of the AF
state, and the energy in this state«SLC,«AF . For t.t0 a
pseudogapd begins to be ‘‘seeded’’ in the spectrum. To cal-
culate it we use the same universal self-consistency equation
~28c!. The result is presented in Fig. 1. There is actually a
phase transition

SLC~d50, CÞ0!⇒SL~dÞ0, C50!,

and the properties of the system can be described at all tem-
peratures. Figures 2 and 3 show the temperature behavior of
the main parameters of the system. For comparison, the en-
ergy of the AF state~according to spin-wave theory! is
shown in Fig. 2; it has a finite value at the Ne´el point, but
above it the spin-wave theory is inapplicable.

‘‘Staggered’’ magnetization, the ‘‘condensate,’’ and long-
range order

To explain the physical meaning of the ‘‘condensate,’’ let
us consider the square of the ‘‘staggered’’ magnetization
~SM!, which by definition8 is equal to

m25K S 1

N (
f

eiQ"fsfD 2L 5
1

N (
r

eiQ"r
1

N (
f

^sfsf1r&

5
1

N (
r

eiQ"r
3

4
K r5

3

4

K~Q!

N
5

3

4

K1

l
C, ~41!

where we have used the relation 2Q"f51 and definition~35!.
It follows from ~41! that the modulus of the SM is equal to

um~t!u5
)

2
AK1~t!

l~t!
C~t!,

or, when relations~38! are taken into account,

um~t!u5
)

2
A C~t!

I 0~t!1C~t!
. ~42!

This function is compared with the order parameters̄(t) in
the AF state in Fig. 3; we note that

um~0!u50.434, s̄~0!50.432 in sc,

um~0!u50.452, s̄~0!50.448 in bcc.

Thus the modulus of the ‘‘staggered’’ magnetizationumu
is the order parameter in the quantum spin liquid for the sc
and bcc lattices.2!

Long-range order

The presence of long-range order is detected from the
behavior of the spatial correlation functions atr→` ~the
thermodynamic limitN→`, V→`, N/V5const is under-
stood; actually it is necessary to setr'N1/d equal to the
maximum linear dimension of the system and then take the
limit N→`). For sign-varying correlation functions the
long-range order is defined as a nonzero limit

C`5 lim
r→`

u^sfsf1r&u5
3

4
lim

r→`

uKr u5
3

4
uK`u. ~43!

Thus it is necessary to calculateKr according to formula~35!
for large values ofr . In the sum~integral! overq, as before,
the main contribution comes from the vicinity of the point
q5Q ~although the pointQ itself is excluded!. We setq
5Q1p and perform the expansiongp1Q52gp'21
1p2/z; in addition, we formally drop the parameterd in the
spectrum. Then

Kt'eiQ"r
K1

l F 1

~2p!3 E d3peip"r
A2z

Ap21k2

3cothSA2

z

Ap21k2

2t D 1CG , ~44!

where k25zd and t5t/l ~we note that the correlation
lengthj51/k). In the approximation cothx'1/x the integral
in ~44! reduces to the form

FIG. 2. Energy of the antiferromagnetic state~d! calculated according to
spin-wave theory fort<tN , and the energy of the spin liquid in the sc
lattice ~j!.

FIG. 3. Order parameters:s̄(t) is the relative magnetization of the sublattice
in the AF state~d!, and um(t)u is the modulus of the ‘‘staggered’’ magne-
tization in the spin liquid with the condensate~j! in the sc lattice.
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2tz
1

~2p!3 E d3p
eip"r

p21k2 '2tz
1

4p

exp~2kr !

r
, ~45!

which is well known in the Ornstein–Zernike theory. It fol-
lows from ~45! that this integral goes to zero at large dis-
tances~even in the cased5k50), so that the long-range
order is due to the ‘‘condensate’’ term, i.e.,

uK`u5
K1

l
C or C`5

3

4
uK`u5m2. ~46!

Neutron scattering

In the general theory of inelastic neutron scattering~see,
e.g., Ref. 7! the expression for the differential cross section
for scattering contains the function

L~r ,t !5(
ab

~dab2eaeb!^sf
a~0!sf1r

b ~ t !&, ~47!

where e5q/q, with q the neutron scattering vector. In a
magnetically ordered state~F or AF!, using the principle of
decay of correlations at large distances, one performs a de-
coupling of the correlation function:

^sf
asf1r

b &'^sf
a&^sf1r

b &}^sf
z&25 s̄2,

which reduces to the square of the order parameter. In the
spin liquid ^sr

a&50, and because of the isotropicity of the
correlation functions~10!, expression~47! assumes the form

LSL~r ,t !5
1

2
K r~ t !, ~48!

i.e., it is expressed in terms of a time-dependent spatial cor-
relation function.

Thus inelastic neutron scattering experiments measure
the correlation function. The interpretation of the experimen-
tal data requires a separate and careful analysis.

5. SUMMARY

In this paper a theoretical version of the description of a
spin system with an isotropic Heisenberg Hamiltonian~spin
s51/2, and an antiferromagnetic exchange only between
nearest neighbors! as a spin liquid with a singlet ground state
was proposed. It was shown that in three-dimensional alter-
nant lattices~sc and bcc! at the boundary of the Brillouin
zone there exists a ‘‘condensate’’ of excitations which deter-
mines the presence of a long-range order close to antiferro-
magnetic in the system. The two states~singlet and AF! are
very similar ~as was noted previously by Anderson9!.

First, the excitation spectra are identical:

~Vq!AF5 s̄A12gq
2, ~Vq!SL5lA12gq

2 at d50,

where s̄ is the order parameter~the relative sublattice mag-
netization! in the AF state, andl5Aa1K1/2, andK1 is the
modulus of the spin correlator between nearest neighbors in
the SL.

Second, the spatial correlation functions of the spins are
sign-varying.

Thus in the framework of the proposed version of the
theory one is able to confirm Marshall’s assertion that the

ground state in alternant lattices is a singlet, while preserving
the presence of long-range magnetic order of the AF type.

The main results of this paper are as follows:
1. A definition of a spin liquid was given in the form of

expressions~10!–~12! for an isotropic Heisenberg Hamil-
tonian. Postulate~12! was introduced here for the first time;
it plays an important role in the construction of the self-
consistent and internally closed theory of the SL.

2. The SL is described in the framework of a second-
order theory by the Green’s function method. In comparison
with spin-wave theory~which contains only one order pa-
rameter (s̄(T)) which is unknowna priori!, in the SL theory
there are three parameters:l—the ‘‘stiffness’’ of the excita-
tion spectrum,K1—the modulus of the spin correlator in the
first coordination zone~between nearest neighbors!, and
d—the pseudogap in the spectrum~they are all functions of
temperature!.

3. A system of equations~37! was proposed for the self-
consistent calculation of these parameters. As a result of the
solution of this system~numerical and partly analytical! one
can describe the thermodynamics of the SL at all
temperatures.3,6,10

4. It was proved that the ground state of the SL is a
singlet state.

5. A theoretical version of the description of a spin sys-
tem in sc and bcc lattices as a spin liquid with a condensate
~SLC! was proposed. The theory leads to the following re-
sults:

— the ground state is a singlet~total spinS50, which
corresponds to the rigorous quantum mechanical classifica-
tion of states!, the energy of the singlet state is lower than the
energy of the AF state calculated according to spin-wave
theory;

— the temperature dependence of the condensate was
found; it vanishes at a critical temperaturet0 ;

— it was shown that the modulus of the ‘‘staggered’’
magnetizationum(t)u is expressed in terms of the condensate
C(t) and is the order parameter in the SLC; the existence
region of the ordered state of the SL of the condensate
is wider than that of the two-sublattice AF state, since
t0.tN .

Thus the spin system has been described at all tempera-
tures in the framework of the proposed theory.

This study was supported by the Russian Foundation for
Basic Research, Grant 00-02-16110.

APPENDIX

Approximation of the density of states for the dispersion
relationgq51/z (Deiq•D, whereD are the vectors connecting
the nearest neighbors~the isoenergy surfacex5gq ; the lat-
tice parametera51).

Linear chain (d51, z52):

D~x!5
1

p

1

A12x2
, uxu<1.

The square lattice (d52, z54):

gq5
1

2
~cosqx1cosqy!,
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D~x!5
1

p
2S 1

2
2

1

p D lnuxu, uxu<1.

The sc lattice (d53, z56):

gq5
1

3
~cosqx1cosqy1cosqz!,

D~x!5H 0.876, uxu<0.329,

0.279
A12x2

~x220.09!0.31108 , 0.329<uxu<1.

The bcc lattice (d53, z58):

gq5cosS qx

2 D cosS qy

2 D cosS qz

2 D ,

D~x!50.431
~2 lnuxu!
113x2 10.186A12x2, uxu<1.

The fcc lattice (d53, z512):

gq5
1

3
~cxcy1cxcz1cycz!, cj[cosS qj

2 D ,

D~x!5H A~x!, if2
1

3
<x<0,

B~x!, if 0<x<1,

A~x!520.366664 lnS 0.0671182S x1
1

3D D20.456693x,

B~x!50.226573A12x1
0.202745

x10.151142
20.174703.

The density of states for the dispersion relationgq con-
sidered must satisfy the relations

E D~x!dx51, E D~x!xdx50, E D~x!x2dx5
1

z
.

*E-mail: evk@iph.krasn.ru; kuzmin@cshi.crimea.edu

1!Alternant lattices are those that can be represented in the form of two
equivalent sublatticesA and B interposed with each other in such a way
that the nearest neighbors of sublatticeA are sites of sublatticeB andvice
versa.

2!In the antiferromagnetic state the ‘‘staggered’’ magnetization itself is the
order parameter,mAF5^1/N ( fe

iQ"fSf&5e1/N ( fe
iQ"f^Sf

z&5es̄ ~e is the unit
vector along the quantization axis!. In the spin liquidmSL50, but mSL

2

Þ0, andAmSL
2 [umu is the order parameter in the SLC.
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@Sov. Phys. JETP30, 141 ~1970!#.

5W. Marshall, Philos. Trans. R. Soc. London, Ser. A232, 48 ~1955!.
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