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A spin liquid concept for the Heisenberg Hamiltonigpin s=1/2) with antiferromagnetic

exchange interactions between nearest neighbors is developed. The spin liquid is described by the
Green'’s function method in the framework of a second-order theory. Equations are presented

for the self-consistent calculation of the parameters of the system and its thermodynamic
properties at all temperatures. A description of the spin system in the sc and bcc lattices is proposed
wherein it is treated as a spatially homogeneous spin liquid with a condensate and with a

singlet ground state. It is shown that the modulus of the “staggered” magnetization is expressed
uniquely in terms of a condensate at a boundary point of the Brillouin zone and is the long-

range order parameter. The existence region in temprature of the ordered state of the spin liquid
with a condensateT(<T,) is wider than the existence region of the two-sublattice
antiferromagnetismT,<T,, whereTy, is the Nel temperaturg while the energy is lower. For

T>T, the system passes into an ordinary spin liquid state20©3 American Institute of

Physics. [DOI: 10.1063/1.1596582

1. MARSHALL EQUATION AND ANTIFERROMAGNETISM £0=0.25-In 2=—0.4431 (in units of the exchangeIn a

The rigorous theoretical description of antiferromagnetic:Square latticeq=2) it is only for T=0 that a two-sublattice

(AF) ordering still remains an open problem after more tharfo": state can be constru'cted and its enesgy calcu]ated I%T
half a century of history. The intensive discussion of thel® framework of the spin-wave theory. In a previous paper

necessary and sufficient conditions for the onset of longPy the author it was shown on the basis of the spin liquid

range AF order in a crystal has been going on for almost 56°NCept that the ground state of a Hamiltonian spin system

years since a description was given in the framework oPn @ square lattice is a singlet state with an energy

mean (moleculay field theory and a quantum spin-wave £0<&af, ViZ., go=—0.352.

theory of antiferromagnetism was developed. The ground-  Discussion of the problem of long-range AF order cen-

work for this problem was laid in Ref. 1. ters mainly on three-dimensional systems and consists in the
The fundamental questions of the theory of antiferro-following.

magnetism are discussed, as a rule, on the basis of the iso- On the one hand, there is the traditional approach to the

tropic Heisenberg modebk( 1/2) with antiferromagnetic ex- description of antiferromagnetism. In alternant lattitdsc

change interactions between nearest neighbors. Thand bcc and also the square lattice and the linear ghaain

Hamiltonian of the system “checkerboard” arrangement of spins is possible which can
1 be described by the Te¢ wave vector|AF) (an antiferro-
H=2-JD SSia, S=0 & (1)  magnet with two mirror sublatticed and B). It is known
2% f that such a function is an eigenfunction only for the operator

is specified on an ideal lattice of dimensionaldy=1,2,3 S° With a total spin projectiors*= S+ Sg=0, but it is not
with periodic boundary conditions is the number of sites, an eigenfunction for the Hamiltonian nor for the operegér
f are the coordinates of the site3>0 are the exchange This means that the antiferromagnetic state is a state with an
integrals between nearest neighbarss the number of near- indeterminate degeneratyiowever, the use of the approxi-
est neighborsA are vectors connecting nearest neighborsmate Nel function|AF), in which the sublattices are fixed
S=(s".s .<) is the spin operator at sifeandSis the total ~ and long-range AF order is postulated, has its indisputable
spin operator. One of the main problems is to describe th@dvantages, since it permits calculation of the excitation
long-range antiferromagnetic order. The properties of thépectrum, the energy of the AF state with allowance for
system depend substantially on its dimensionality and geontransverse quantum sgin fluctuations, the sublattice magneti-
etry. zation's(T), and the Nel temperatureTy,. The theory is
According to the Merman—Wegner theorésee Ref. 2, approximate and is valid only in the magnetically ordered
long-range magnetic order in one- and two-dimensional sysphase forT<Ty.
tems (in the case of short-range exchange interacjiass On the other hand, Marshal(see Ref. 1 has stated a
absent at any finite temperatufe: 0. For a linear chaind ~ theoremic assertion that the ground state of Hamiltoian
=1) there is an exact solution due to Hultifethe ground  with AF exchange interactiond between nearest neighbors
state is a nondegenerate singl8&0) with energy per bond on alternant lattices is a nondegenerate singlet ®i#0. It

1063-777X/2003/29(7)/8/$24.00 571 © 2003 American Institute of Physics



572 Low Temp. Phys. 29 (7), July 2003 E. V. Kuz’'min

TABLE I. Main characteristics of a spin system with an antiferromagnetic (sublattice B, sites 8); for nearest neighbora+A=p4, B
gxchange bond between nearest neighbors. +A’=a’. It is convenient to go over to a dimensionless

Lattice Singlet (SL and SLC) AF Hamiltonian_h= H/_zJ; then a_II the energy parameters will be
type — measured in units ofzJ, including the temperaturer
leo|zecs| o] | Imol | w0 |leaF|| S® | 1N =T/zJ.
The spin-wave theory is based on linearized first-order
Square | 0.328 | 0.352 0 - 0335] 0.3 0

equationgthe Tyablikov decoupling

1 1
cot + + cot + +
is)=8[st+=> st .|, is,=—3[s;+=> siisl.
bec  |0.2892| 0.297 [ 0.452 | 0.224 | 0.287 | 0.448 | 0.181 “ ﬂ( « Z% ““) i <<B Z% B“)

Note ¢=(H)/(zNJ2) is the energy of the system at zero temperafire (2
units of the exchange per bonid the singlet(0) and antiferromagneti@A\F) where <SZ> __ <Sf3> =3 After Fourier transformation with

statesjmg| is the modulus of the “staggered” magnetizationTat O; §(0) . . .
is the AF order parametésublattice magnetizatiorat T=0; 7,=T,/zJis respect to the sublattices in the standard way, we find the

the temperature at whidm| vanishes;r, =Ty, /zJ is the Neel temperature. ~ Green’s functions

sC 0.3007 | 0.312 | 0.434 | 0.213 | 0.296 | 0.432 | 0.163

N B 2s(w+s)
: : . {(Sa(DISa(—DNo="T7a
has beenrigorously proven only for the one-dimensional D(q,w)
chain, while ford=2 and 3 dimensions there are enormous 252y
mathematical difficulties in constructing an exact singlet  ((Sx(q)|Sg(—Q))),= 1 (3)
function, since the number of partial singlet functions con- D(q,0)
tained in it and comprising the total set of states is factoriallywhere
large inN. The absence of an exact singlet state makes it 2 2 _ L
impossible to directly verify Marshall’s assertion, which has D(q,0)=0"= 0y, Qq=syl-yg=seq,
a natural quantum mechanical basis. Indeed, Hamiltoflign 1 A
commutes with any component of the total spin oper&or yq=—2 gas, (4)

o : : : z4
and its eigenfunctions are therefore eigenfunctions of the op- A

eratorsS* and S?, while the eigenvalueE(S) are classified We calculate the Fourier transforms of the correlation func-
according to the value of the total sgB(0<S<N/2). Ac-  tions (S, (q)Sx(—0)) and (Sx(q)Sz(—q)) according to
cording to Marshall, mifE(S}=E(0) corresponds to a sin- the spectral theorem and then, using the sum (gJes; )
glet ground state witft5=0. Marshall constructed an ap- =(1/2)+5s, we obtain an equation for calculating the order
proximate singlet wave function and used a variationalparameter:
method to calculate the energy, in alternant latticegsee

Table ). A comparison of the energies, (according to Mar- S(r)= E I(7)= EE icotl—(a T)SQ) _ (5)

shal) and e 5r shows that these energies are very close, but I(7) N“q eq 27

in the context of the approximations ma@ehich are, gen- It follows from (5) that for 7=0

erally speaking, differemt it is impossible to conclusively

decide the type of ground state. 50)= 172 | =£E 1 ®
The question arises: Can these two approaches be recon- l,” N T &q

ciled theoretically? Below, on the basis of the spin liquid qf <.0. wh —T./23is the Nel t
concept developed by the author, a theoretical version of th&" tor T_’TNh’ S—U, Wherery=In/zJ1s Ihe el tem-
description of the properties of the spin system in sc and pcperature, we have

lattices is proposed which is valid at all temperatures. It 1/4 1 1
should be noted that the spin liquiSL) concept has a rather TN:tv IZZN% 22 (7)
q

wide domain of applicability. In addition to two-dimensional _ _ _ _
systems, in the fcc lattice, because of frustration of the exThe energy of the antiferromagn@t units ofJ per bond is
changel bonds and the presence of transverse quantum spidual to
fluctuations, the AF state is absent at all temperatures, and

; e : ; (H)
the system is a spin liquid with a singlet ground sfaltethis eap(7)= 122N
paper it is shown that in the sc and bcc lattices the ground (1/2)zN-

state is a singletin accordance with Marshajlbut for T 1 V2 S(r)e

<T, the system nevertheless has long-range order, which is ~—|8%(7)+s(7) NE 8—qco h2—7_q . (8
described by the modulus of the “staggered magnetization.” 4 ~a

For T>T, the system is found in an ordinary SL state. For three-dimensional alternant lattices we obtain the follow-

The results of the spin-wave theory and the main equaing numerical resultsthe sums over the first Brillouin zone
tions of the spin liquid theory are briefly set forth below in are replaced by integrals with the densities of states given in
the framework of a unified Green’s function method. the Appendix:

sc (z=6):e5p(0)=—0.297,5(0)=0.432.
2. SPIN-WAVE THEORY OF ANTIFERROMAGNETISM

=0.163;
On alternant lattices a “checkerboard” distribution is N

possible, with spins “up’(sublatticeA, sitesa) and “down” bce (z=8):epr(0)=—0.287,5(0) =0.448. (9
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y=0.181. Second-order equations and their linearization

The spin liquid theory is based on equations not lower
3. QUANTUM SPIN LIQUID than second order, sings’)=0 and the first-order equa-
tions cannot be linearize@s is done in spin-wave thegry

Let us consider a spin system with the Hamilton{an The exact equations of motion have the forin~1)

in a lattice of arbitrary dimensionality and geometry. We de-
fine aspin liquidas a system which is, on average, spatially 1
uniform, with no breaking of the spin symmetry, and in i$f+=EE (SFS{-a—Sf+aSt ),
which the spin correlation functions are isotropic, :

1 1 1 1 o, 1 P
N2 (S8 = g 2 (H5en) = g 2 (Sist)= 7K, = % (S SraTSias =M, (19
(10
. _ . 9%
and depend only on the modulus of the distanegr|, with iMf:W: ﬁ%“ (S?—s%, )+ Ry, (16)

Ko=1 (the sum rulg the average values for any component
of a site spin and for any component of the total spin operag e
tor are equal to zero:

ay _ ay _ - 1 - -
(si)=0, (§9=0, a=xyzor+,—,z (11) Ri=22 Z, [SS(s St ar  (Sfra—ar ~Sea/)St Siia
and the average value of a product of spin operators on an aza
odd number ofifferentsites is zero: _SfZ+ASf+Sf_+A—A’]' (17)

a B _
(si'smsp)=0, f#m#n, ... (12) Performing the linearization of the operat®y according to

Here and below the symbdl..) denotes a thermodynamic the scheme

average at a temperature=T/zJ and over the ground state 1

wave function forr=0. Zot o~ o2 tomy— 2

S:Sh Sm™~St & n-ml{Sp Sm) = 5 ¥n-mKjn- ,

The whole set of properties of the spin liquid—the 7Sn Sm ™ S{tjn-m(Sn Sm) 2 “n=miBin i

ground state, excitation spectrum, and thermodynamics—

must be described on the basis of Hamiltonfanand pos-

tulates (10)—(12). It should be noted that postula{é?) is Wherea‘n_ml are parameters which correct the decoupling,

newly introduced by the author; its consequences will b&gor Fourier transformation we obtain the Green's function
demonstrated below. Later it will be shown that the groundy¢ e jinear second-order theory in the form

state is the singlet state with total si8s 0, which is equiva-
lent to (S?),_,=0. Aq 1

The properties of the SL state are determined mainly by ~ G(d.@)=—5—53, Aq=5 (1= 7g),
the spatial and temperature dependence of the spin correla- a

f#£n#m, (18)

tion functionsK, (7). The energy of the SL state per bond in 1 _
units of J is given by mf;% gas, (19
= (H) = 3 K 13
e=2,NI . aky (13)  Here
whereK|, = —K; (K;>0) is the correlator between nearest 2_\201_ ' 2_ aiKy
neighbors. For description of the SL state we go over to the Q=N A= yg)[eminl + vg* ). X 2 (20

Fourier transforms of the spin operators and introduce the . ] .
Fourier transform of the correlation function where a4 is a correction factor for the nearest neighbors,

£min IS the lower boundary of the spectruyy, and the pa-
rameters is a complicated construction of correlators in the
first, second, etc. coordination zones, multiplied by the cor-
responding correction factors. The paramefeahereby re-
—2(s*(q)s (- q)), Krziz 9K (q) (14) er_cts the effective correlatiqns in the “gxpande_d_” cluste_r and

N “g will be calculated self-consistently lat@ts explicit form is
unimportant. The spectral intensity of the Green’s function
,S(19) is equal to

K<q>=2 e 1K, = 4(sH(q)s*(—q))

with the obvious properti(q) =K(—q). To calculate(q)
we use the method of two-time temperature Green
functions! Because of the isotropicity of the correlators it is go!T

sufficient to calculate the retarded commutator Green's func-  J(q,;7)= Gr—7 Z—(Sq[ﬁ(w—ﬂq)— d(w+Q4)],
tion

(sH@)s*(—a))),=G(q, w). 2=0. (21)

where o is a dimensionless spectral variable in terms ofAccording to the spectral theorem we obtain for the single-
which K(q) is found according to the spectral theorem. time average
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., B (" _ correlatorsK; andK,y; [Eq. (23)], and the requirement of an
(s{a)s’(—q)= K@= f,mJ(q’w'T)dw exact value of the second moment, which leads to(E@).
This equation plays a fundamental role in the SL theory and
=A—cotr< Qq) its further generalizations.
20, 27 The sums over the Brillouin zone fdy, and P are re-

placed by integrals with a density of stat®ée) correspond-
ing to a dispersion relatio,=&. An approximation for the
density of state® (&) is given in the Appendix. Combining
Egs.(25 and(27), we obtain a system of three equations for
the self-consistent calculation of the parameters of the SL:

or

K(q)=— Ka17 7qcot!—<)\Eq(§)

N E4(6) 27
Expression(22) attests to the fact that the proposed version

of the SL theory contains three unknown parameters which =1, (a),
are functions of temperaturé<,(7)—the modulus of the

), Q=M\Eq(). (22

correlator between nearest neighboré;)—the “stiffness” Ki=li/lo (b), (29)
parameter of the excitation spectrum, ang(7)—the B l,+14/z
“pseudogap” in the spectrum. They must all be calculated 213 ©).
self-consistently in accordance with three equati@ee be-
low); here 6=46(7)=0, as is necessary for the condition Here
04=0 or E4(6)=0.
B . 1-e E(e,0)

Self-consistency equations In(é’t)_f D(e)(~e) E(e,0) COtr( 2t )ds'

Three parameters must be calculated self-consistently: E(e,d)
K1, \, andé. Using the definition(14) of the spatial correla- p(g,t):f D(S)(l—s)E(8,5)COtI'< ’ )dg_
torsK,, we obtain the system of equations 2t

1 K = — .
Kozlzﬁg K(Q):Tﬂo(&ﬁ)a E(e,8)=V(1—&)(|emnl +&+ ).
emn=e<1, t=7/\. (29

2( YK(a)=~11(3,7),

We now show that theground state is a singletotal
(23)  spinS=0). We introduce the functiotthe average per spin

Ktot:NE (79)?K(q) of the square of the total spin of the system
(= (= S =2 g S
AEA, K\A+A'|— 12(6,7), S(T)=N<S>—me (SiSm) = =N 4 StSt, r
here 3 3
" =2 K=2K(0), (30
44 4

Z1- NEq(S
(8,7)= Z( Al otr( Z‘ﬁ)),

Eq(9) which is expressed in terms of the Fourier transform of the
n=0,12. (24) correlation function22) for g=0. For 7=0 it follows from
(22) that K(0)=0 and S*(0)=0, which proves that the
From EQs.(23) we obtain the formal solutiofwe omit the ground state is a singlet. On the other hand, expreg&ion

arguments of the functions can be considered as the limit
)\le, Klzllllo, KtOIZIZIIO’ a1=2|0|1. (25) — )\E (5)
The equation for the parametéarises from the require- K(0)=limK(q)=~~ —lim (5; COI”( qu )
ment of an exact value of the second momén? and has 4—0 a—0Fq
the form 47

- (3D

1 K AK (& minl + Yo+ )

M2:§(Kt0t+ 71): 41P(5), 1 | m|n| Yo
Hence forr—0 we obtainK(0)=0 (single} as before, but

1 Qg for 7=0 triplet excitations arise in the system, and because
P(d)= N% (1= 79)Eq Coth( ;)- (26)  of them S2(7) #0.
In Refs. 3 and 6 the thermodynamic properties of the SL
Using solution(25), we obtain in the square and fcc lattices were described at all tempera-
1,(8)+1,(8)/z tures on the basis of the theory set forth above and the self-
P(8)= T a%s) =6(7). (27)  consistency equation®8). It was shown there that the spa-

tial correlation functions are sign-varying, with a magnitude
Thus the self-consistent second-order linear theory is basetiat falls off with increasing distance, so that the SL contains
on satisfaction of the sum rulé,= 1, the definitions of the short-range order of the antiferromagnetic type.
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4. SPIN LIQUID WITH A “CONDENSATE” IN THE sc AND 1.0
bcc LATTICES

Alternant lattices can be regarded as two interposed sub-  0.8F
lattices A (sites @) and B (sites B), independently of the
existence of real magnetic sublattices. The Brillouin zone of 0.6k
these lattices contains a boundary po@itat which yo= ©
—1=em, and the spectrurq(s) = /28. These points are o

=(m ), Q=(m,m ), and Q=(2m,2m, 2m) for the o

square, sc, and bcc lattices, respectively. It follows from this
that 0.2+ Ty

expiQ-a)=1, exgiQ-B8)=—1. (32) 7

The functionS?(7) was considered aboyeee Eq(30)] 0 01' 042 o :,3 0'4 05
and it was shown tha$?(0)=0 (the ground state is a sin- : L =T/£J : :

glet) at 7=0; this is equivalent to the equation
FIG. 1. Temperature behavior of the condenglg and the gap parameter

K(0)= Er K,=0 (7=0). (33) (@) in the spin liquid in the sc lattice.
Taking relationg32) into account, we can writk(Q) in the
form case the spectru(e,0)= \/1— &2 becomes symmetric with
respect to inversion«+ — ¢, and the density of states has the
K(Q)= 2 e UK, = 2 IK,|. (34) same propertyD(¢)=D(—¢). When these symmetry prop-
r r

erties are taken into account, the integrals become

SinceK, is sign-varying, in Eq(33) there is complete com- 1 N
pensation of all the terms in the sum, while the value of |O(t)=J D(e) > cot 3 de.
K(Q) in (34) can be macroscopically large and proportional Vi t
to the volume of the systen(). o2 N
“Condensate” in the spin liquid |1(t):|2(t):f D(e) \/—COt 2t ) de,
Under this assumption we writ€, in the form
Pt—le = oot 22 g 3
- z 97K (q) + 82T (Q) ()= N (&) g“co n & (37)
(q#Q) (the functionP(t) does not contain a “condensate” term
K(Q) _ ﬁc a5 Now relations(36) are written in the form
N N K1 K1
) _ ) 1:T(|0+C), K1:Kt0t:T(ll+C)i (39
whereC is a “condensate(a function of temperatujavhich
is unknowna priori. Then and the self-consistency equati¢27) assumes the simple
1 K, form
Ko=1=1 2 K(@)++-C, i1
q
@*Q) P(11+C)=—_. (39
Klzi > (- Yo K(Q)+ ﬁc, (36 From the numerical solution of the system of equations
N 3o A (39—(39) at 7=0 we obtain
A=0.645, K;=0.416, ¢y=—0.312, C=0.389 (s0).
Kom s > Y2K(g)+ Kig
ey & YetlAT ATt \=0.607, K,=0.396, £,= —0.297,
(9#Q)

In relations(36) we go from summation to integration with a C=0.4185 (bcg. (40
density of state® (e). We take into account the following It follows from the result€40) that the energy of the singlet
circumstances. First, the lower limit of integratifibecause state in the presence of the condensate is lower than the
of the restrictiong# Q) is equal to— 1+, where{ is an  energy of the AF statésee Table)l This proves Marshall's
infinitesimal quantity {— +0). In the sc and bcc lattices the assertion that the ground state of the spin system on alternant
density of state® (&) goes to zero in a square-root manner lattices is a singlet.

at the boundaries of the spectrum. For this reason the value Figure 1 shows the result of a calculation of the tempera-
of £ can be simply set equal to zefthis is the same situation ture behavior of the condensate in the sc lattice. This func-
as in the description of Bose condensation in a threetion goes to zero at a temperatutg=0.213, which is higher
dimensional gas Second, in the presence of the “conden-than the Nel temperaturery=0.163 of the sc lattice. Thus
sate”C we assumeS=0 in the expression foK(q). In that  the temperature region in which the spin liquid with the con-
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“Staggered” magnetization, the “condensate,” and long-
range order

o

To explain the physical meaning of the “condensate,” let
us consider the square of the “staggered” magnetization

-0.05]
£ -0.10 . .. a.
€ (SM), which by definitioff is equal to
g-0.15 1 . 2\ 1 1
é m2:<(ﬁ2 e'Q'fSr) >:NE e'Q'rNE (S +1)
®-0.20 f r f
w 1 3 3K(Q) 3K,
- [ QIr_K —— < =
0.25 NZé K=7 8 —2xC (41)
-0.30 where we have used the relatio®Z =1 and definition(35).
0 Ty 0'.2 014 0.l6 0.l8 7.0 It follows from (41) that the modulus of the SM is equal to

t=T/zd V3 [Ky(7)
Im(7)[= NG

FIG. 2. Energy of the antiferromagnetic st4®) calculated according to
spin-wave theory forr<ry, and the energy of the spin liquid in the sc

lattice (M), or, when relationg38) are taken into account,

| |—§ LT) 42)
M= 5 N (h+ci (

his function is compared with the order paramesgr) in

densate exists is wider than the existence region of the A he AF state in Fig. 3: we note that

state, and the energy in this statg <epag. For =19 a
pseudogap begins to be “seeded” in the spectrum. To cal- |m(0)|=0.434,5(0)=0.432 in sc,
culate it we use the same universal self-consistency equation _ _ .

(280). The result is presented in Fig. 1. There is actually a Im(0)]=0.452,'5(0)=0.448 in bec.

phase transition Thus the modulus of the “staggered” magnetization
is the order parameter in the quantum spin liquid for the sc
SLC(6=0, C#0)=SL(5+0, C=0), and bcc lattice$.

and the properties of the system can be described at all tem-
peratures. Figures 2 and 3 show the temperature behavior of
the main parameters of the system. For comparison, the eh?"9-range order

ergy of the AF state(according to spin-wgve theoryis The presence of long-range order is detected from the
shown in Fig. 2; it has a finite value at the &lepoint, but  behavior of the spatial correlation functions rat>o (the
above it the spin-wave theory is inapplicable. thermodynamic limitN—o0, V—oo, N/V=const is under-

stood; actually it is necessary to setN equal to the
maximum linear dimension of the system and then take the
limit N—x). For sign-varying correlation functions the
long-range order is defined as a nonzero limit

05

3 3

COO:”m|<sfsf+r>|:Z“m|Kr|:Z|Km|- (43
r—o0 r—o

Thus it is necessary to calculaéte according to formul&35)

for large values of . In the sum(integra) overq, as before,

the main contribution comes from the vicinity of the point

g=Q (although the pointQ itself is excludedl We setq

=Q+p and perform the expansiony, o=—7y,~—-1

+ p?/z; in addition, we formally drop the parameté&in the

spectrum. Then

K[ 1 2z
: K ~dQr—t _gf d3pelp'rL
T N | (2m) Vp2+K?
1 1 1 > 1 5
0 005 010 0.5 1y 0.20 T XCO&(\E_W ‘e 4
t=T/2J 2 2t !

2: = 1
FIG. 3. Order parameters( 7) is the relative magnetization of the sublattice where «“=z5 and t=7/) (We r_10te that the qurelatlon
in the AF state(®), and|m(7)| is the modulus of the “staggered” magne- length§=1/k). In the approximation cotk~1/x the integral

tization in the spin liquid with the condensa#) in the sc lattice. in (44) reduces to the form
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1 . gapr 1 exp(—«r) ground state in alternant lattices is a singlet, while preserving
2t2(2w)3 f d°p 02+ K2 ~nzg (45 the presence of long-range magnetic order of the AF type.
The main results of this paper are as follows:
which is well known in the Ornstein—Zernike theory. It fol- 1. A definition of a spin liquid was given in the form of

lows from (45) that this integral goes to zero at large dis- expressiong10)—(12) for an isotropic Heisenberg Hamil-
tances(even in the casé=«=0), so that the long-range tonian. Postulaté12) was introduced here for the first time;

order is due to the “condensate” term, i.e., it plays an important role in the construction of the self-
K,y 3 consistent and internally closed theory of the SL.
|K.|= TC or COO:Z|Kw|=m2. (46) 2. The SL is described in the framework of a second-

order theory by the Green’s function method. In comparison
with spin-wave theory(which contains only one order pa-
rameter §(T)) which is unknownra priori), in the SL theory

In the general theory of inelastic neutron scatteisge, there are three parameteks—the “stiffness” of the excita-
e.g., Ref. 7 the expression for the differential cross sectiontion spectrumK;—the modulus of the spin correlator in the

Neutron scattering

for scattering contains the function first coordination zone(between nearest neighbirsand
5—the pseudogap in the spectrythey are all functions of
AN D=2 (8up—e.ea)(S{(0)SF, (1), (47)  temperaturk
ap 3. A system of equation@7) was proposed for the self-

where e=g/qg, with g the neutron scattering vector. In a consistent calculation of these parameters. As a result of the
magnetically ordered stat& or AP), using the principle of Solution of this systeninumerical and partly analyticabne
decay of correlations at large distances, one performs a déa&n describe the thermodynamics of the SL at all

,6,10
coupling of the correlation function: temperatures .
4. It was proved that the ground state of the SL is a
a B @ B Z\2_"g2
(1St )~ (Sf (St ) (sf) =57, singlet state.

which reduces to the square of the order parameter. In the ©- A theoretical version of the description of a spin sys-
spin liquid (s®)=0, and because of the isotropicity of the tem in sc and bcc lattices as a spin liquid with a condensate

correlation functiong10), expressior(47) assumes the form (SIF[C) was proposed. The theory leads to the following re-
sults:

—the ground state is a singléibtal spinS=0, which
corresponds to the rigorous quantum mechanical classifica-
It_ion of stateg the energy of the singlet state is lower than the
energy of the AF state calculated according to spin-wave

1
Asi(r,)=5K(), (48

i.e., it is expressed in terms of a time-dependent spatial co
relation function.

k ) . . gweory;

Thus inelastic neutron scattering experiments measur the t i q d ¢ th d ¢

the correlation function. The interpretation of the experimen-,_ € temperature dependence of the condensate was

: . found; it vanishes at a critical temperaturg
tal data requires a separate and careful analysis. N
q P y —it was shown that the modulus of the “staggered”

magnetizatiodm(7)| is expressed in terms of the condensate
C(7) and is the order parameter in the SLC; the existence
5. SUMMARY region of the ordered state of the SL of the condensate

. , . . is wider than that of the two-sublattice AF state, since
In this paper a theoretical version of the description of a

. . . . . . . To> TN -
spin system with an isotropic Heisenberg Hamiltonfapin Thus the spin system has been described at all tempera-

s=1/2, and an antiferromagnetic exchange only betwee?ures in the framework of the proposed theory

nearest neighborss a spin liquid with a singlet ground state This study was supported by the Russian Foundation for
was proposed. It was shown that in three-dimensional altetfy i Research. Grant 00-02-16110

nant lattices(sc and bcg at the boundary of the Brillouin

zone there exists a “condensate” of excitations which deter-

mines the presence of a long-range order close to antiferrgppenpix
magnetic in the system. The two statesglet and AF are

very similar (as was noted previously by Anderspn Approximation of the density of states for the dispersion
First, the excitation spectra are identical: relationy,=1/z% A€94, whereA are the vectors connecting
_ the nearest neighbofthe isoenergy surface= vy, ; the lat-
— 2 _ 2 _ q
(Qg)ar=sV1=7g (Qg)si=AV1-y, at 6=0, tice parametea=1).
wheres is the order parametdthe relative sublattice mag- Linear chain (=1, z=2):

netization in the AF state, and = \a;K;/2, andK; is the 1 1
modulus of the spin correlator between nearest neighbors in - p(x)= — ——,
the SL. 7 1-x2
Second, the spatial correlation functions of the spins are 110 square latticed=2, z=4):
sign-varying.
Thus in the framework of the proposed version of the
theory one is able to confirm Marshall’s assertion that the

Ix|<1.

1
Ya=3 (cosqy+cosqy),
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2
The sc lattice =3, z=6):

1 (1 1
D(x)= ;—(—— ;)In|x|, Ix|<1.

1
Ya=3 (cosqy+ cosqy,+cosq,),

0.876, |x|<0.329,

J1-x?

(x*—0.09°3+10%"
The bcc lattice =3, z=8):

-

—In|x
D(x)= 0.431% +0.186y1—x?, |x|<1.

The fcc lattice (=3, z=12):

D(x)=

0.279 0.329<|x|<1.

1 o]
yq=§(cxcy+ CxC,;1+CyCy), C; Ecos( ?J) ,

1
A(X), if—=<x=<0,
D(x)= 3
B(x), if 0s=x=1,

—0.456693,

1
A(x)=—0.366664 IVG 0.067118%X+ 3

0.202745
B(x)=0.226573/1—x+ Xr0151142 0.174703.

E. V. Kuz'min

The density of states for the dispersion relatigcon-
sidered must satisfy the relations

f D(x)dx=1, fD(x)xdx=O, fD(x)xzdx=;

*E-mail: evk@iph.krasn.ru; kuzmin@cshi.crimea.edu

DAlternant lattices are those that can be represented in the form of two
equivalent sublatticed andB interposed with each other in such a way
that the nearest neighbors of sublatticare sites of sublatticB andvice
versa

JIn the antiferromagnetic state the “staggered” magnetization itself is the
order parametemug=(1/N =915y =el/N 3, ()= &5 (eis the unit
vector along the quantization axidn the spin liquidmg, =0, but méL
#0, and\/m2,=|m| is the order parameter in the SLC.
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