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Scenario for the 0.7-conductance anomaly in quantum point contacts
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Effects of spontaneous spin polarization in quantum point con{@®C’y are investigated for a realistic
semiconductor device structure using the Kohn-Sham local spin-density formalism. At maximal polarization in
the contact area, there is a bifurcation into ground-state and metastable solutions. The conduction associated
with the metastability is lower than for the normal state. With increasing temperature, the conductance should
therefore show an anomalous behavior as observed. For the present device we do not recover resonance or
quasibound states.
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. INTRODUCTION density functional methodLSDA).** In previous work] we
simulated a realistic heterostructure device with a QPC con-

The ability to confine electrons spatially in a controlled necting two relatively large dots. We also made rough esti-
way in layered semiconductor structures has led to the obhates of the conductance using an approximate separable
servation of remarkable properties of such structures. A celparabolic saddle potential. Artificial kinks in the conductance
ebrated example is the quantized conductaBee2e’n/h, ~ were, however, introduced in this way.
n=1,2,3.... in quantum point contactQPC'9.1? These Here we will extend the simulations to a QPC in between
“normal” conductance steps are now well understood intwo semi-infinite reservoiréin practice, broad wirgsin par-
terms of noninteracting ballistic electrons. However, there idicular, we will study the nature of the QPC potential, local
also an anomalous narrow plateau at noninteger values of magnetization, and the conductance scattering states for a
the so-called “0.7 anomaly,” first studied in detail in Ref. 3. typical GaAs/AlGaAs device structure. For the present de-
Since then this phenomenon has attracted increasing attevice, we do not recover resonance or quasibound states. On
tion with many attempts to explain its origin, its peculiar the other hand, we find that solutions to the LSDA equations
temperature dependence, and response to magnetic field abidurcate at a gate voltage at which the conductance anomaly
source and drain bias, collectively referred to as the “zerds found. We suggest that these solutions, for ground state as
bias anomaly.” Recent summaries and highlights are foundwell as for metastable states, have physical significance. The
for example, in Refs. 4—7 and references therein. conductance of the metastable states is lower than for the

A|ready’ Thomaset a.|'3 have pointed out the importance normal state. As a consequence, one foresees an anomalous
of spin. Consequently, spontaneous local spin polarizatiotemperature dependence in the conductance as temperature is
induced by electron interactions is thought to be an importantaised. This is evidently a different scenario for the QPC
mechanism underpinning the anomafyThere are general conductance anomaly.
difficulties, however, in explaining the observed anomalous Section Il presents our model for the QPC, choice of
temperature dependence in short wires using a simple statf®xchange/correlation potentials, and selected computational
spin polarization model. Measurements suggest a Kondo-likéspects. Computational results for potentials, conduction,
mechanisf’® and models have been formulated in this magnetization, and wave functions are discussed in Sec. IIl.
spirit.1*2 Of course, also a Kondo-related mechanism reFinally, Sec. IV contains a summary and concluding re-
quires that there are localized moments related to the QP@narks.
In the traditional Kondo picture these moments are, however,

associated with bound states. It is not immediately clear how Il. THEORETICAL MODEL AND METHOD
an open system such as a QPC may acquire bound states. OF CALCULATIONS
Meir et al* have circumvented this problem by assuming

that there is a subset of scattering states that are resonant orQuantum point contacts may be fabricated in modulation-
quasibound states and therefore effectively act as the bouriiPpped heterostructure with patterned metallic top gate, see
states. On this basis, an Anderson-Hamiltonian may be forFig. 1. A negative voltage applied to the gate relative to the
mulated and a Kondo-like conductance is obtained. Othegubstrate depletes the two-dimensional electron(3B£G)
recent propositions rely on a strictly one-dimensional Lut-under the gated regions and leaves a conducting wire in the
tinger model:? In this case one finds a singlet ground state as$plit-gate region.
T—0 and a spin-polarized state above a characteristic tem- The actual size of the quantum point contact and sur-
peratureT,,;, . Although suggestive, it is not straightforward rounding semi-infinite sections can be varied lithographically
how to extend the model to a real semiconductor devicd®y changing the geometry of the gate as well as changing the
structure. applied voltage. The associated electrostatic confinement en-
In this paper, we will return to the model based on spon-ergy eT/g that derives from the gate is obtained from the
taneous spin-polarization using the Kohn-Sham local spinwell-known expression®
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" ! comprises contributions from gatd), surface stategV,

: i Ve Ve and the donor layé?

undoped GaAs ;, split split : e?
1 gate Eaie 4 eVy=— —pqd(c+d/2), (4)
{ I ] ] €€p

undoped AlGads | Vg ! where py=6x10' cm 3 is the density of donors, and
! ) =24 nm andd=36 nm are the thicknesses of the cap and

G a b the donor layer, respectively, ardis the dielectric constant

which we assume to be equal to 12.9 in this work. The self-
FIG. 1. (8 Schematic view of a modulation-doped GaAs/ consistent potential depends on electron densities and may

AlGaAs heterostructure with a patterned metallic gébeTop view be subdivided as
of the gate showing a narrow split-gate area that induces a QPC at
the GaAs/AlGaAs interface. Upper and lower ungated areas indi- UZ(r)=Ug(r)+UZ(r)+UZ(r), (5)
cate 2DEG reservoirs that serve as source and drain. To operate the
device, two voltage¥, andV4 are applied separately to the gated whereU, is the Hartree potential energy,, is the correla-
regions;Vy and Vg, regulate the effective width and electron den- tion potential (for details see Ref. 36 and U, is the 2D
sity of the reservoirs and the QPC, respectively. An electric currenglectron exchange potential, which in the LSDA has the form
flows through the QPC when a voltage differentg between the
source and drain is set up. 2

e
. Ugdr=— 660#3,2[p"(r)]1’2, (6)
z

(ZZ+|r_rr|2)3/2’

eT/g(r,z)=%J dr’eVy(r’,0) 1)

wheren“(r) is total density of electrons with spiar. Ug,
_ ) may be corrected for mirror charges but the effect turns out
whereVg(r’,0) represents the potential on the different gatedo pe numerically small and may be neglected.

areas in Fig. (b), zis the perpendicular distance between the  The Hartree potential energy.(r) in Eqg. (6) has the
gate and the 2DEG at the GaAs/AlGaAs interface, and form

=(x,y) is the in-plane position. As indicated in the figure,

we assume that there are four gated areas. The two semi- 1 1 1

infinite gatesiwith constantVy(r’,0)=V,] give rise to two Ud(r)= 4—f dr'p(r") —— - ,
very wide straight channel areas that serve as electron reser- TE€o Ir=r'[ Vr=r'[*+4z

voirs and source and drain when a current is passed through ()
the system. The QPC itself is introduced by means of the tWeyhere p(r)=p'(r) + p!(r) is the total density of electrons.
smaller gates and is controlled My(r’,0)= V. The right-hand side of Eq7) contains the contribution from

To find the electronic configuration and related propertiesyirror charges related to the 2DEG.
of the system we assume that the electron gas is strictly two Because we are interested in conduction, we construct the
dimensional and that the donor layer is fully ionized. Thesolutions as scattering states consisting of initial, reflected,
chemical potentiak is constant throughout the system andand transmitted waves. Assume that the initial states enter
may be set equal to zero. We also assume the followingrom either the lef(L) or from the right sidgR) of the QPC.
boundary conditions(j) 'ghe heterostructgrg i_s" eIectrichIy We write the first set of states als? (r,k;), wherek; is the
neutral and the electric field vanishes at infiniy) there is  \yaye number of an electron injected into the left reservoir in

a Schottky barrier for electrons at the interface with the meyqith spin subband. The total density for this kind of states
tallic gate €Vs=0.9 eV); (iii) the wide source and drain ;ih spin o is therefore

regions are semi-infinitgjv) at long distance from the QPC
area the potential energy takes a constant value inside the 1 7
two reservoirs. pl(r)= > E f W (r k) |2dk. (8)

Let us now consider the Kohn-Sham LSDA for our sys- morJo
tem. At zero temperature, the system is described by thghdex i in the summation runs over all occupied subbands
effective one-electron equations for the two directions ofand the integration is over the corresponding wave numbers
spino=T,]: ki with the associated Fermi wave numbkfs . In the same

2 way, the density for states entering from the right is
T V2o (r)+[U(r)+UZ(n ¥ (r)=E¥(r), ) )
@ pin=5= 3 [Frwgeopae @
where U, is the confinement potential energy abd. the

self-consistent potential energy related to electron-electroithe total 2D density ofr electrons in the active area of the
interactions. The term device is then
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p(r)=p[(r)+pg(r). (10

The decomposition into left- and right-going waves means?ﬁg
that also the total curreitis decomposed in the same way as > ’
| =1x+1_. By formulating the problem in this way it is clear
how one may incorporate self-consistently the effects of a
finite biasVgq and nonlinearity in the LSDA procedure. For
our system, however, such computations easily become nu
merically exceedingly cumbersome.
To solve Eq.(2) numerically, a self-consistent iterative  FIG. 2. (a) Typical total confinement potential = U+ U, for
process was implemented in a rather standard fashion. As Wep-spin electrons at different grid points, afi electron density
will see, the numerics turns out to be delicate in many casei the region of the quantum point contact\af;= —0.723 V.
and for this reason we describe our procedure in more detail.
For given values ofVy and V¢4, we thus proceed in the channel in Fig. tb) and 500 nm for the width of the sur-
following way. rounding reservoirs. The size of the central numerical grid
(i) For a given potentialg., Eq. (2) is mapped onto a was typically 100< 200.
finite rectangular lattice located symmetrically around the Calculations were performed witfi) only the exchange
QPC. Transparent boundary conditibhare used to match term retained in the interaction potential, and with both
the corresponding solutions to the continuum scatteringxchange and correlation potentials included. The first case
states in the two open semi-infinite reservoirs. may be regarded as more exploratory. The iteration process
(i) Assume that the bias voltagé.q is infinitesimally — appears more stable than in ca$ and convergence is
small. Hence numerical solutions are generated for all rightreadily achieved because spin splitting gets exaggerated.
and left-going scattering states with enerByless than a About 300 iterations are needed for this case. We have there-
common Fermi energl; (in our caseE;=0). States for 60 fore been able to follow the conductance behavior all the
equidistant values oE were considered. Since the sourceway into the third plateau. When also the correlation term
and drain areas are wide, the number of subbands involved{, is included about 500-600 iterations are required, which
becomes large. Typically, 64 subband states have been ifakes the computations quite tedious. Numericall§, is
cluded. At the Fermi energy, up to about 20 are propagatingyych smaller thatZ,. In spite of this it gives rise to deli-
waves while the rest are evanescent states. At lowest energigsie features that takes much care to uncover. Details are
just a few of them are propagating states. shown in the following section.
(ii ) The density of electrons with spin is obtained from Finally, the conductanc& has been computed from the
Eq. (10) and used to calculate a new potentifl;"*" from | anduaer-Bttiker formulaG=(2e%/h) Tr(TT"), whereT is

» P [cmAZ]

a)

00

Ea. (5). _ _ o _ a transmission matrix for the scattering solutions of &gjat
(iv) The potential for the next iteration is obtained by thethe Fermi level. The expression f@& applies to the linear
usual mixing procedure regime wherVy4—0, i.e.,Ig=—1, as assumed here.

o new. a o
(1-a)UZ "+ U —UZ,, lIl. COMPUTATIONAL RESULTS
which is inserted into Eq2). The mixing parametew was
used in the common way to increase the stability of the it
eration process and was varied in a rangg @001;0.02
depending on the convergence properties.

(v) As a criterion for convergence, we have used

An overview of the total self-consistent confinement po-
ntial with exchange and correlation terms is shown in Fig.
2(a). In this resolution, the potential looks the same for the
two spin directions. Figure (B) displays the total electron
densityp. As it should,p is strongly reduced in the constric-

N 112 tion. The behavior in the two reservoirs, wherebecomes
Tnew iy _ 110 /i\12 = practically constant as for a 2DEG, is also satisfactory. Nu-
a;,¢ 121 [Use™ N =UsdDI 1(2N)=, merical values are typical for real QPC devices.

The calculated conductance as a function of the applied
where j denotes all theN lattice points; typically ¥ gate voltageVy, is shown in Fig. 3. Casés) represents the
=10""eV. simplified model with exchange only, whil®) accounts for

(vi) To initiate the spin-relaxed iterative procedure, wepoth exchange and correlation. Due to the numerical com-
have either let the first choice faf¢, be arandompotential  plexity of the problem, the conductance for modb) is
or, when available, we have also chosen it from a previousimited to the first plateau. Anomalies are evidently present
calculation for a nearby value of the split-gate voltagg. in both curves, but at different values @&f The two lowest
The above iteration process was used to find electroniplateaus are well developed in case
configurations, scattering states, potentials, and the conduc- Model with exchange only et us first look at caséa) in
tance for different values of the split-gate voltagg;. For ~ more detail. The 0.5 plateau reconfirms previous re¥llts
the cases reported here the voltagewas set equal to 0.73 although the present device modeling is much more realistic.
V. Lithographic dimensions of the patterned gate have beefihe value of 0.5 tells that the QPC is locally fully spin po-
chosen as 100200 nnt (width and length for the middle larized and that only one spin channel transmits. Compared
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FIG. 4. Total number of spinsl'—N! in the QPC with corre-
i lation included. Numbers refer to the ground-state solutions in pre-
vious figure.
08¢
delicate. Whereas the self-consistent iteration scheme for
< case(a) shows good convergence and stability, césere-
@ 061 veals slower convergence and yieldwre than one spin-
oL polarized solution in a conspicuous range of voltageg. V
(o 04} Some of the solutions are stable against small perturbations,
while others turn out to be metastable. This was found out by
0ol a “numerical shaking” of the self-consistent solutions by
momentarily adding a small random potential. If metastable,
b) a solution then relaxes to a stable one as the perturbed sys-
74 073 o072 071 07 069 tem is brought to self-consistency by further iterations. The

conductance obtained from the different kind of solutions is
shown in Fig. 8b). The solid line refers to the stable ground
state. Metastable solutions, which are shown by the dotted

Veg V]

FIG. 3. Conductance versus gate voltagg: (a) model with
exchange potential onlyb) model with exchange and correlation
potentials, ground-state solutions of Eg) (solid line), and meta-

line and by asterisks, are also important as discussed below.
The solutions with asterisks are, however, much harder to
find numerically and for this reason we are able to show only

stable statesdashed line and asterigks a limited set of points. These states are also more sensitive to

the shake up procedure mentioned. A likely reason is that the

with experiments the anomalies are, however, too procorresponding energy minima are very shallow. It is remark-
nounced. Bare exchange thus appears to overdo spin splable that multisolutions appear at the apparent conduction
ting. In spite of this, the results support the idea that ex-anomaly at~0.6 and persist in the region in which one ob-
change interactions and local magnetization must b&erves an anomalous temperature behavior, i.e., there is a
involved in a crucial way. Further support comes from thesuppression of the measured conductance as the temperature
additional anomalies obtained for the second and third subis raised.
bands in Fig. 8a). These are in good qualitative agreement Having said that, there is an obvious scenario for the
with experimental resulfg®?°which show that the anomaly “0.7-conduction” anomaly. At zero temperature the conduc-
resurfaces in steps o&2/h in higher subbands. As in obser- tance is determined by the ground-state solufniid curve
vations, the anomaly gets much weaker in the second sulia Fig. 3(b)] With increasing temperature also the metastable
band and is barely visible in the third. As to be expectedstates become populated with increasing statistical weights.
from the discussion above, the conductance anomalies a@onsequently the conductance is gradually reduced with
pear, however, at half valuéactually 2.4 for the third sub- temperature, which would explain the observed anomalous
band due to increasing numerical inaccuracy at higher enebehavior, at this stage in a qualitative way.
gies. At any rate, the results for the conductance anomalies Polarization characteristics Irrespective of the two
in the higher subbands give further support to an exchangehoices(a) and (b) for exchange and correlation potentials,
driven mechanism and spontaneous local spin polarizationthe Kohn-Sham equation readily yields spin split solutions in

Model with exchange and correlatioif we now turn to  relevant voltage regimes. An interesting question is how
case(b), there are obvious striking differences fra@ in many spins are to be associated with the QPC. Figure 4
spite of the relative smallness of the additional correlationshows the totalintegra) number of spins as a function of
term UZ,. The reason is that the system is now just moresplit-gate voltage,
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NT—Nl:f drApspin, (12)

whereApg,in=p'—p' is the local spin density. A maximum
value~0.6 spins is obtained fors,=0.717 V, which is just
the voltage at which one finds the first conduction anomaly
in Fig. 3(b). The spin content is in good agreement with
previous estimatés?also based on the spin-polarized Kohn-
Sham equations. Similar results are obtained for the half pla-
teau in Fig. 8a) and for the conductance structures in the
higher subbands, although magnitudes become smaller with
increasing subband index.

The spin polarization is mainly localized within the litho-

graphic QPC region. It is accompanied by Friedel-like oscil- %00 450 500 =50 500
lations in the outer regions. There is a qualitative change in
the local magnetization as one proceeds from pinch-off at X [nm]

—0.74 V in Fig. 3b) towards the conductance anomaly at
—0.717 V. At lowest voltages, there is a strong minimum
right at the middle of the QPC. As the gate voltage is in-
creased this dip gets more shallow and gradually disappears.
Figures %a)—5(c) show the progression of the local spin den-
sity as the gate voltag¥g is varied in the very regime at
which multisolutions appear and the magnetization maxi-
mizes. Just below the critical voltage0.717 V there is thus

a slight minimum inA pg,;, [Fig. 5@], which evolves into a
flat peak at the bifurcation poiriFig. 5b)]. On further in-
crease ofVy, the maximum is smoothly rounded. The re-
sults in Fig. 5 refer to the Kohn-Sham ground-state solutions
with the full exchange-correlation potential. Qualitatively,

the same results are also found for the exchange model in ) . . .
Fig. 3(@). The pattern is repeated for the two higher subbands 400 450 500 550 600
although the magnitudes are smaller.
Local spin densities and the presence of a deep minimum X [nm]
at certain voltages are also discussed in Refs. 7,12 for the

ground-state subband. However, in the present case the mini- 35
mum appears only at lowest electron concentrations. This
difference might depend on different device geometries.
Potential characteristics Figure 6 shows typical spin- 2571
polarized potentials along the middle transport direction. In
the two cases shown, there is a clear difference in the height
of the transmission barriers for the two spin directions,
~1 meV and~1.5 meV for the ground-state and metastable
solutions, respectively. There are also notable differences in 05l
the shape of potentials. For example, a flattened region ap-

pears for the metastable solutions. The minima in the outer or

regions are located at different distances from the center of -05}

the QPC. In both cases one finds, as to be expected, Friedel- 1 .

like oscillation. 400 450 500 550 600
Transmission and wave-function characteristid® ex-

plain the zero-bias anomaly in the conductance, Mel* X [nm]

havg rectehmltyﬂ?mposed an Arll(qedrsoplmo?el'dsgm 3 rT:o;jeI FIG. 5. Local spin polarization along the transport axis in the
requires that there are some kind of localized bound Slal&x;qqie of wire for different split-gate voltageg,,=—0.720 (a),
associated with the QPC. For a wide and tall barrier thes¢, __ 717(b), Vo= — 0.714(c)

. - sg . + Vg . .
authors have argued that there are, in addition to the expo-
nentially increasing transparency, narrow transmission resasharp rectangular barrier. In the present case, however, our
nances above the barrier. This would result from multiplesimulations show that the barriers have soft features. In gen-
reflections from the edges of the barrier, and are related teral, they are more like a gentle parabolic saddle-point po-
quasibound states, which can play the role of localized stategntial, which does not display resonances from quasibound
in an Anderson model. This would be true for, let us say, aesonances.
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200 400 600 800 -1 - - - :
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4} ' SN ' FIG. 7. Transmission through a QPC for electrons injected via
I b) different transfer modes and energy. The QPC potential is obtained

| from the self-consistent calculations for the split-gate voltsgg

=—0.715 V. The results refer to the ground-state solution in Fig.
3(b). The labeling defines the different injection channels. For odd
numbers the channel transmission vanishes because of symmetry.

iy

7t

-8}

U [meV]

accumulation of the individual transmitting states inside the
QPC in spite of the overall reduction of total density. This
feature is generic, it applies to all scattering states and must
not be taken as an indication of quasibound states. Figure 9
shows a number of the scattering states in more detail for
different spins and at two different voltages.

It is easy to understand why the accumulation within the
QPC takes place. Each scattering state carries a current
which must be same for all cross sections. In the wide res-
ervoirs the local longitudinal wave number is high while the
local amplitude may be low. In the QPC, on the other hand,
the situation must be the reverse one if the total current is to
dashed curves in Fig.(B)]. (Although oversimplified, we may say be preserved. Thus the accumulation is €asy to L!nderst_and as
that an incoming electron at the Fermi les&{=0 is essentially a necessary Consequence fpr current .conservanon. Itis also
divided into “transverse” and “longitudinal motions.” Thus the found, however, for equ'l'b”um situations suc.h as a QPC
longitudinal motion is the one that determines the transmissionCONnecting two quantum dots in which there is no current
Therefore we have full transmission for up-spin in the graphsflow.
shown here, while it is strongly reduced for the opposite spin direc-
tion.

9}

-10}

—11F

260 460 660 860
X [nm]
FIG. 6. Spin-polarized self-consistant total potentials dor 7
(solid line) and o= (dashed ling along transport axis in the

middle of the device aW,q,=—0.715V; (a) and (b) refer to the
ground-state and the unstable solutions, respectijsdfid and

IV. SUMMARY

We have simulated the zero-temperature conductance in a

To clarify this issue we have calculated transmission as ea|istic GaAs/AlGaAs split-gate QPC device using the spin-
function of energy for different open transmission channels.

In order not to miss some potentially very narrow resonance 09

peaks, we have varied the energy in minute steps. Results for 0.8

the transmissions, which are shown in Fig. 7, refer to the 07

self-consistent ground-state solution in Fi¢h)3 Irrespective 06

of the energy resolution chosen we find that all the transmis- < os

sions increase monotonously with energy. Hence, there are Eal

no traces of transmission peaks and oscillations. The same 04

qualitative picture is found also for the self-consitent poten- 03

tials corresponding to different split-gate voltagés,. We 0.2

have also investigated the higher states in Fidp) & the 0.1

same way. Also in this case the results are negatheethus 0 . . . .
conclude that there are no quasibound states or resonances, 0 200 400 600 800 1000

at least for the present realistic device parameters. X [nm]

Although the self-consistent calculations also do not show
quasibound states, the individual scattering states show in- FIG. 8. Absolute values of two typical scattering states along the
triguing features in the QPC region. The self-consistensymmetry axis of the device. Electrons wih=E; are injected in
states displayed in Fig. 8 are typical. Evidently, there is arthe first(thick line) and third modesthin line) at V 4= —0.715.
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FIG. 9. (Color) Absolute value
of scattering states with enerdy
=E;. (@ Vg=—0.715, o=1,
first mode. (b) Vgq=—0.715, o
=17, second mode.(c) Vg4=
—0.715, o=1, third mode. (d)
Vgq=—0.715, o=, first mode.
(6) Vgqg=—0.715, 0=, second
mode. (f) Vgq=—0.715, o=,
third mode. (g) Vgq=—0.699,
o=71, first mode. (h) Vg,
=-0.699, 0=1, second mode.
(i) Vsg=—0.699, o=T1, third
mode. (j) V¢q=-0.699, o=,
first mode. (k) Vgq=—0.699,
o=, second mode.(l) Vg4
=—-0.699, 0= |, third mode.

relaxed Kohn-Sham equations. As in previous studies, wenents may be analyzed in these terms. As the temperature is
recover conduction anomalies associated with local magneaised the metastable states become thermally activated, and
tization that modifies the transmission barrier for the twoas a consequence the conductance decreases for a given volt-
spin directions in different ways. We have used two modelsage. We have also suggested that a similar mechanism may
(& with exchange only, an¢b) with exchange and correla- take place with increasing source-drain voltagg. Further
tion potentials included. Both cases give rise to two anomawork should be performed along these lines including the
lies although(a) overestimates the magnetization. It is, how- effects of magnetic field. Unfortunately, the Kohn-Sham
ever, computationally relatively stable and we have thereforequations for finite temperatures are not readily available for
also been able to study higher subbands for the first time, tthe 2D systems discussed here.
the best of our knowledge. In accordance with experiments, We have also studied the nature of the scattering states
we recover smaller replicas in the second and third subbandbecause of the proposition of resonant or quasibound
In case(b) the introduction of correlation weakens the states*? For the realistic split-gate device studied we do
polarization, and as a consequence the conductance is inet recover this kind of states. This negative result might be
creased towards normal conduction. The simulations wereelated to device geometry. In our case there are as much as
carried out with a variation of initial conditions for the itera- 20 subbands in the source and drain regions, i.e., the regions
tion procedure. Making random choices of the initial poten-are effectively two dimensional, while in Refs. 11 and 12
tial, we have found that there are multisolutions in a range othere are just two channels in the leads. Therefore, in the
voltages where an anomalous temperature dependence in tlagter case the system is more like a long two-channel para-
conductance is observed. We have suggested that measubslic wire with a local constriction. The difference between

235319-7



STARIKOV, YAKIMENKO, AND BERGGREN PHYSICAL REVIEW B67, 235319 (2003

the two devices should make an interesting case for the ex- Note added in proofRecently P. S. Cornaglia and C. A.
perimentation of the role of geometry, electron densities, etcBalseiro have studied the magnetic nature of quantum point
Finally, one should add a few words of caution about thecontacts and quasibound stafésG. Seelig and K. A.
Kohn-Sham equations. Here we make use of excited stateglatveev have drawn attention to electron-phonon
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