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Scenario for the 0.7-conductance anomaly in quantum point contacts
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Effects of spontaneous spin polarization in quantum point contacts~QPC’s! are investigated for a realistic
semiconductor device structure using the Kohn-Sham local spin-density formalism. At maximal polarization in
the contact area, there is a bifurcation into ground-state and metastable solutions. The conduction associated
with the metastability is lower than for the normal state. With increasing temperature, the conductance should
therefore show an anomalous behavior as observed. For the present device we do not recover resonance or
quasibound states.
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I. INTRODUCTION

The ability to confine electrons spatially in a controlle
way in layered semiconductor structures has led to the
servation of remarkable properties of such structures. A
ebrated example is the quantized conductanceG52e2n/h,
n51,2,3, . . . . in quantum point contacts~QPC’s!.1,2 These
‘‘normal’’ conductance steps are now well understood
terms of noninteracting ballistic electrons. However, there
also an anomalous narrow plateau at noninteger valuesn,
the so-called ‘‘0.7 anomaly,’’ first studied in detail in Ref.
Since then this phenomenon has attracted increasing a
tion with many attempts to explain its origin, its peculi
temperature dependence, and response to magnetic field
source and drain bias, collectively referred to as the ‘‘z
bias anomaly.’’ Recent summaries and highlights are fou
for example, in Refs. 4–7 and references therein.

Already, Thomaset al.3 have pointed out the importanc
of spin. Consequently, spontaneous local spin polariza
induced by electron interactions is thought to be an impor
mechanism underpinning the anomaly.7,8 There are genera
difficulties, however, in explaining the observed anomalo
temperature dependence in short wires using a simple s
spin polarization model. Measurements suggest a Kondo-
mechanism9,10 and models have been formulated in th
spirit.11,12 Of course, also a Kondo-related mechanism
quires that there are localized moments related to the Q
In the traditional Kondo picture these moments are, howe
associated with bound states. It is not immediately clear h
an open system such as a QPC may acquire bound st
Meir et al.11 have circumvented this problem by assumi
that there is a subset of scattering states that are resona
quasibound states and therefore effectively act as the bo
states. On this basis, an Anderson-Hamiltonian may be
mulated and a Kondo-like conductance is obtained. Ot
recent propositions rely on a strictly one-dimensional L
tinger model.13 In this case one finds a singlet ground state
T→0 and a spin-polarized state above a characteristic t
peratureTwire . Although suggestive, it is not straightforwar
how to extend the model to a real semiconductor dev
structure.

In this paper, we will return to the model based on spo
taneous spin-polarization using the Kohn-Sham local sp
0163-1829/2003/67~23!/235319~8!/$20.00 67 2353
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density functional method~LSDA!.14 In previous work,7 we
simulated a realistic heterostructure device with a QPC c
necting two relatively large dots. We also made rough e
mates of the conductance using an approximate separ
parabolic saddle potential. Artificial kinks in the conductan
were, however, introduced in this way.

Here we will extend the simulations to a QPC in betwe
two semi-infinite reservoirs~in practice, broad wires!. In par-
ticular, we will study the nature of the QPC potential, loc
magnetization, and the conductance scattering states f
typical GaAs/AlGaAs device structure. For the present
vice, we do not recover resonance or quasibound states
the other hand, we find that solutions to the LSDA equatio
bifurcate at a gate voltage at which the conductance anom
is found. We suggest that these solutions, for ground stat
well as for metastable states, have physical significance.
conductance of the metastable states is lower than for
normal state. As a consequence, one foresees an anom
temperature dependence in the conductance as temperat
raised. This is evidently a different scenario for the QP
conductance anomaly.

Section II presents our model for the QPC, choice
exchange/correlation potentials, and selected computati
aspects. Computational results for potentials, conduct
magnetization, and wave functions are discussed in Sec
Finally, Sec. IV contains a summary and concluding
marks.

II. THEORETICAL MODEL AND METHOD
OF CALCULATIONS

Quantum point contacts may be fabricated in modulati
doped heterostructure with patterned metallic top gate,
Fig. 1. A negative voltage applied to the gate relative to
substrate depletes the two-dimensional electron gas~2DEG!
under the gated regions and leaves a conducting wire in
split-gate region.

The actual size of the quantum point contact and s
rounding semi-infinite sections can be varied lithographica
by changing the geometry of the gate as well as changing
applied voltage. The associated electrostatic confinemen
ergy eṼg that derives from the gate is obtained from t
well-known expression:15
©2003 The American Physical Society19-1
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eṼg~r ,z!5
1

2pE dr 8eVg~r 8,0!
uzu

~z21ur2r 8u2!3/2
, ~1!

whereVg(r 8,0) represents the potential on the different ga
areas in Fig. 1~b!, z is the perpendicular distance between t
gate and the 2DEG at the GaAs/AlGaAs interface, anr
5(x,y) is the in-plane position. As indicated in the figur
we assume that there are four gated areas. The two s
infinite gates@with constantVg(r 8,0)5Vg] give rise to two
very wide straight channel areas that serve as electron re
voirs and source and drain when a current is passed thro
the system. The QPC itself is introduced by means of the
smaller gates and is controlled byVg(r 8,0)5Vsg .

To find the electronic configuration and related propert
of the system we assume that the electron gas is strictly
dimensional and that the donor layer is fully ionized. T
chemical potentialm is constant throughout the system a
may be set equal to zero. We also assume the follow
boundary conditions:~i! the heterostructure is electricall
neutral and the electric field vanishes at infinity;~ii ! there is
a Schottky barrier for electrons at the interface with the m
tallic gate (eVs50.9 eV); ~iii ! the wide source and drai
regions are semi-infinite;~iv! at long distance from the QPC
area the potential energy takes a constant value inside
two reservoirs.

Let us now consider the Kohn-Sham LSDA for our sy
tem. At zero temperature, the system is described by
effective one-electron equations for the two directions
spin s5↑,↓:

2
h2

2m*
¹2Cs~r !1@Uc~r !1Usc

s ~r !#Cs~r !5ECs~r !,

~2!

where Uc is the confinement potential energy andUsc the
self-consistent potential energy related to electron-elec
interactions. The term

FIG. 1. ~a! Schematic view of a modulation-doped GaA
AlGaAs heterostructure with a patterned metallic gate;~b! Top view
of the gate showing a narrow split-gate area that induces a QP
the GaAs/AlGaAs interface. Upper and lower ungated areas i
cate 2DEG reservoirs that serve as source and drain. To opera
device, two voltagesVg andVsg are applied separately to the gate
regions;Vg andVsg regulate the effective width and electron de
sity of the reservoirs and the QPC, respectively. An electric cur
flows through the QPC when a voltage differenceVsd between the
source and drain is set up.
23531
d

i-

er-
gh
o

s
o

g

-

he

-
e
f

n

Uc~r !5eVd1eVs1eṼg~r ! ~3!

comprises contributions from gate~1!, surface stateseVs ,
and the donor layer15

eVd52
e2

ee0
rdd~c1d/2!, ~4!

where rd5631017 cm23 is the density of donors, andc
524 nm andd536 nm are the thicknesses of the cap a
the donor layer, respectively, ande is the dielectric constan
which we assume to be equal to 12.9 in this work. The s
consistent potential depends on electron densities and
be subdivided as

Usc
s ~r !5Ue~r !1Uex

s ~r !1Ucr
s ~r !, ~5!

whereUe is the Hartree potential energy,Ucr
s is the correla-

tion potential~for details see Ref. 16!, and Uex
s is the 2D

electron exchange potential, which in the LSDA has the fo

Uex
s ~r !52

e2

ee0p3/2
@rs~r !#1/2, ~6!

wherens(r ) is total density of electrons with spins. Uex
s

may be corrected for mirror charges but the effect turns
to be numerically small and may be neglected.

The Hartree potential energyUe(r ) in Eq. ~6! has the
form

Ue~r !5
1

4pee0
E dr 8r~r 8!F 1

ur2r 8u
2

1

Aur2r 8u214z2G ,

~7!

wherer(r )5r↑(r )1r↓(r ) is the total density of electrons
The right-hand side of Eq.~7! contains the contribution from
mirror charges related to the 2DEG.

Because we are interested in conduction, we construct
solutions as scattering states consisting of initial, reflec
and transmitted waves. Assume that the initial states e
from either the left~L! or from the right side~R! of the QPC.
We write the first set of states asCLi

s (r ,ki), whereki is the
wave number of an electron injected into the left reservoir
the i th spin subband. The total density for this kind of sta
with spin s is therefore

rL
s~r !5

1

2p (
i
E

0

kf iL
s

uCLi
s ~r ,k!u2dk. ~8!

Index i in the summation runs over all occupied subban
and the integration is over the corresponding wave numb
ki with the associated Fermi wave numberskf iL

s . In the same

way, the density for states entering from the right is

rR
s~r !5

1

2p (
i
E

0

kf iR
s

uCRi
s ~r ,2k!u2dk. ~9!

The total 2D density ofs electrons in the active area of th
device is then
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SCENARIO FOR THE 0.7-CONDUCTANCE ANOMALY IN . . . PHYSICAL REVIEW B67, 235319 ~2003!
rs~r !5rL
s~r !1rR

s~r !. ~10!

The decomposition into left- and right-going waves mea
that also the total currentI is decomposed in the same way
I5IR1IL . By formulating the problem in this way it is clea
how one may incorporate self-consistently the effects o
finite biasVsd and nonlinearity in the LSDA procedure. Fo
our system, however, such computations easily become
merically exceedingly cumbersome.

To solve Eq.~2! numerically, a self-consistent iterativ
process was implemented in a rather standard fashion. A
will see, the numerics turns out to be delicate in many ca
and for this reason we describe our procedure in more de
For given values ofVg and Vsg , we thus proceed in the
following way.

~i! For a given potentialUsc , Eq. ~2! is mapped onto a
finite rectangular lattice located symmetrically around
QPC. Transparent boundary conditions17 are used to match
the corresponding solutions to the continuum scatter
states in the two open semi-infinite reservoirs.

~ii ! Assume that the bias voltageVsd is infinitesimally
small. Hence numerical solutions are generated for all rig
and left-going scattering states with energyE less than a
common Fermi energyEf ~in our caseEf50). States for 60
equidistant values ofE were considered. Since the sour
and drain areas are wide, the number of subbands invo
becomes large. Typically, 64 subband states have been
cluded. At the Fermi energy, up to about 20 are propaga
waves while the rest are evanescent states. At lowest ene
just a few of them are propagating states.

~iii ! The density of electrons with spins is obtained from
Eq. ~10! and used to calculate a new potentialUsc

s new from
Eq. ~5!.

~iv! The potential for the next iteration is obtained by t
usual mixing procedure

~12a!Usc
s new1aUsc

s →Usc
s ,

which is inserted into Eq.~2!. The mixing parametera was
used in the common way to increase the stability of the
eration process and was varied in a range of@0.001;0.02#
depending on the convergence properties.

~v! As a criterion for convergence, we have used

H (
s5↑,↓ (

j 51

N

@Usc
s new~ j !2Usc

s ~ j !#2J 1/2

/~2N!<g,

where j denotes all theN lattice points; typically g
51027 eV.

~vi! To initiate the spin-relaxed iterative procedure, w
have either let the first choice forUsc

s be arandompotential
or, when available, we have also chosen it from a previ
calculation for a nearby value of the split-gate voltageVsg .

The above iteration process was used to find electro
configurations, scattering states, potentials, and the con
tance for different values of the split-gate voltageVsg . For
the cases reported here the voltageVg was set equal to 0.73
V. Lithographic dimensions of the patterned gate have b
chosen as 1003200 nm2 ~width and length! for the middle
23531
s

a

u-

we
es
il.

e

g

t-

ed
in-
g
ies

-

s

ic
c-

n

channel in Fig. 1~b! and 500 nm for the width of the sur
rounding reservoirs. The size of the central numerical g
was typically 1003200.

Calculations were performed with~i! only the exchange
term retained in the interaction potential, and with~ii ! both
exchange and correlation potentials included. The first c
may be regarded as more exploratory. The iteration proc
appears more stable than in case~ii ! and convergence is
readily achieved because spin splitting gets exaggera
About 300 iterations are needed for this case. We have th
fore been able to follow the conductance behavior all
way into the third plateau. When also the correlation te
Ucr

s is included about 500–600 iterations are required, wh
makes the computations quite tedious. Numerically,Ucr

s is
much smaller thanUex

s . In spite of this it gives rise to deli-
cate features that takes much care to uncover. Details
shown in the following section.

Finally, the conductanceG has been computed from th
Landuaer-Bu¨ttiker formulaG5(2e2/h)Tr(TT1), whereT is
a transmission matrix for the scattering solutions of Eq.~2! at
the Fermi level. The expression forG applies to the linear
regime whenVsd→0, i.e., IR.2IL as assumed here.

III. COMPUTATIONAL RESULTS

An overview of the total self-consistent confinement p
tential with exchange and correlation terms is shown in F
2~a!. In this resolution, the potential looks the same for t
two spin directions. Figure 2~b! displays the total electron
densityr. As it should,r is strongly reduced in the constric
tion. The behavior in the two reservoirs, wherer becomes
practically constant as for a 2DEG, is also satisfactory. N
merical values are typical for real QPC devices.

The calculated conductance as a function of the app
gate voltageVsg is shown in Fig. 3. Case~a! represents the
simplified model with exchange only, while~b! accounts for
both exchange and correlation. Due to the numerical co
plexity of the problem, the conductance for model~b! is
limited to the first plateau. Anomalies are evidently pres
in both curves, but at different values ofG. The two lowest
plateaus are well developed in case~a!.

Model with exchange only. Let us first look at case~a! in
more detail. The 0.5 plateau reconfirms previous resul18

although the present device modeling is much more realis
The value of 0.5 tells that the QPC is locally fully spin p
larized and that only one spin channel transmits. Compa

FIG. 2. ~a! Typical total confinement potentialU5Uc1Usc
s for

up-spin electrons at different grid points, and~b! electron densityr
in the region of the quantum point contact atVsg520.723 V.
9-3
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STARIKOV, YAKIMENKO, AND BERGGREN PHYSICAL REVIEW B67, 235319 ~2003!
with experiments the anomalies are, however, too p
nounced. Bare exchange thus appears to overdo spin s
ting. In spite of this, the results support the idea that
change interactions and local magnetization must
involved in a crucial way. Further support comes from t
additional anomalies obtained for the second and third s
bands in Fig. 3~a!. These are in good qualitative agreeme
with experimental results8,19,20which show that the anomal
resurfaces in steps of 2e2/h in higher subbands. As in obse
vations, the anomaly gets much weaker in the second
band and is barely visible in the third. As to be expec
from the discussion above, the conductance anomalies
pear, however, at half values~actually 2.4 for the third sub-
band due to increasing numerical inaccuracy at higher e
gies!. At any rate, the results for the conductance anoma
in the higher subbands give further support to an excha
driven mechanism and spontaneous local spin polarizati

Model with exchange and correlation. If we now turn to
case~b!, there are obvious striking differences from~a! in
spite of the relative smallness of the additional correlat
term Ucr

s . The reason is that the system is now just mo

FIG. 3. Conductance versus gate voltageVsg : ~a! model with
exchange potential only;~b! model with exchange and correlatio
potentials, ground-state solutions of Eq.~2! ~solid line!, and meta-
stable states~dashed line and asterisks!.
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delicate. Whereas the self-consistent iteration scheme
case~a! shows good convergence and stability, case~b! re-
veals slower convergence and yieldsmore than one spin-
polarized solution in a conspicuous range of voltages Vsg.
Some of the solutions are stable against small perturbati
while others turn out to be metastable. This was found ou
a ‘‘numerical shaking’’ of the self-consistent solutions b
momentarily adding a small random potential. If metastab
a solution then relaxes to a stable one as the perturbed
tem is brought to self-consistency by further iterations. T
conductance obtained from the different kind of solutions
shown in Fig. 3~b!. The solid line refers to the stable groun
state. Metastable solutions, which are shown by the do
line and by asterisks, are also important as discussed be
The solutions with asterisks are, however, much harde
find numerically and for this reason we are able to show o
a limited set of points. These states are also more sensitiv
the shake up procedure mentioned. A likely reason is that
corresponding energy minima are very shallow. It is rema
able that multisolutions appear at the apparent conduc
anomaly at;0.6 and persist in the region in which one o
serves an anomalous temperature behavior, i.e., there
suppression of the measured conductance as the temper
is raised.

Having said that, there is an obvious scenario for
‘‘0.7-conduction’’ anomaly. At zero temperature the condu
tance is determined by the ground-state solution@solid curve
in Fig. 3~b!# With increasing temperature also the metastab
states become populated with increasing statistical weig
Consequently the conductance is gradually reduced w
temperature, which would explain the observed anomal
behavior, at this stage in a qualitative way.

Polarization characteristics. Irrespective of the two
choices~a! and ~b! for exchange and correlation potential
the Kohn-Sham equation readily yields spin split solutions
relevant voltage regimes. An interesting question is h
many spins are to be associated with the QPC. Figur
shows the total~integral! number of spins as a function o
split-gate voltage,

FIG. 4. Total number of spinsN↑2N↓ in the QPC with corre-
lation included. Numbers refer to the ground-state solutions in p
vious figure.
9-4
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N↑2N↓5E drDrspin , ~11!

whereDrspin5r↑2r↓ is the local spin density. A maximum
value;0.6 spins is obtained forVsg50.717 V, which is just
the voltage at which one finds the first conduction anom
in Fig. 3~b!. The spin content is in good agreement w
previous estimates7,12 also based on the spin-polarized Koh
Sham equations. Similar results are obtained for the half
teau in Fig. 3~a! and for the conductance structures in t
higher subbands, although magnitudes become smaller
increasing subband index.

The spin polarization is mainly localized within the litho
graphic QPC region. It is accompanied by Friedel-like os
lations in the outer regions. There is a qualitative change
the local magnetization as one proceeds from pinch-off
20.74 V in Fig. 3~b! towards the conductance anomaly a
20.717 V. At lowest voltages, there is a strong minimu
right at the middle of the QPC. As the gate voltage is
creased this dip gets more shallow and gradually disappe
Figures 5~a!–5~c! show the progression of the local spin de
sity as the gate voltageVsg is varied in the very regime a
which multisolutions appear and the magnetization ma
mizes. Just below the critical voltage20.717 V there is thus
a slight minimum inDrspin @Fig. 5~a!#, which evolves into a
flat peak at the bifurcation point@Fig. 5~b!#. On further in-
crease ofVsg , the maximum is smoothly rounded. The r
sults in Fig. 5 refer to the Kohn-Sham ground-state soluti
with the full exchange-correlation potential. Qualitative
the same results are also found for the exchange mode
Fig. 3~a!. The pattern is repeated for the two higher subba
although the magnitudes are smaller.

Local spin densities and the presence of a deep minim
at certain voltages are also discussed in Refs. 7,12 for
ground-state subband. However, in the present case the m
mum appears only at lowest electron concentrations. T
difference might depend on different device geometries.

Potential characteristics. Figure 6 shows typical spin
polarized potentials along the middle transport direction.
the two cases shown, there is a clear difference in the he
of the transmission barriers for the two spin direction
;1 meV and;1.5 meV for the ground-state and metasta
solutions, respectively. There are also notable difference
the shape of potentials. For example, a flattened region
pears for the metastable solutions. The minima in the o
regions are located at different distances from the cente
the QPC. In both cases one finds, as to be expected, Frie
like oscillation.

Transmission and wave-function characteristics. To ex-
plain the zero-bias anomaly in the conductance, Meiret al.11

have recently proposed an Anderson model. Such a m
requires that there are some kind of localized bound st
associated with the QPC. For a wide and tall barrier th
authors have argued that there are, in addition to the ex
nentially increasing transparency, narrow transmission re
nances above the barrier. This would result from multi
reflections from the edges of the barrier, and are relate
quasibound states, which can play the role of localized st
in an Anderson model. This would be true for, let us say
23531
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sharp rectangular barrier. In the present case, however,
simulations show that the barriers have soft features. In g
eral, they are more like a gentle parabolic saddle-point
tential, which does not display resonances from quasibo
resonances.

FIG. 5. Local spin polarization along the transport axis in t
middle of wire for different split-gate voltagesVsg520.720 ~a!,
Vsg520.717~b!, Vsg520.714~c!.
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To clarify this issue we have calculated transmission a
function of energy for different open transmission channe
In order not to miss some potentially very narrow resona
peaks, we have varied the energy in minute steps. Result
the transmissions, which are shown in Fig. 7, refer to
self-consistent ground-state solution in Fig. 3~b!. Irrespective
of the energy resolution chosen we find that all the transm
sions increase monotonously with energy. Hence, there
no traces of transmission peaks and oscillations. The s
qualitative picture is found also for the self-consitent pote
tials corresponding to different split-gate voltagesVsg . We
have also investigated the higher states in Fig. 3~b! in the
same way. Also in this case the results are negative.We thus
conclude that there are no quasibound states or resonan
at least for the present realistic device parameters.

Although the self-consistent calculations also do not sh
quasibound states, the individual scattering states show
triguing features in the QPC region. The self-consist
states displayed in Fig. 8 are typical. Evidently, there is

FIG. 6. Spin-polarized self-consistant total potentials fors5↑
~solid line! and s5↓ ~dashed line! along transport axis in the
middle of the device atVsg520.715 V; ~a! and ~b! refer to the
ground-state and the unstable solutions, respectively@solid and
dashed curves in Fig. 3~b!#. ~Although oversimplified, we may say
that an incoming electron at the Fermi levelEf50 is essentially
divided into ‘‘transverse’’ and ‘‘longitudinal motions.’’ Thus the
longitudinal motion is the one that determines the transmiss
Therefore we have full transmission for up-spin in the grap
shown here, while it is strongly reduced for the opposite spin dir
tion.
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accumulation of the individual transmitting states inside
QPC in spite of the overall reduction of total density. Th
feature is generic, it applies to all scattering states and m
not be taken as an indication of quasibound states. Figu
shows a number of the scattering states in more detail
different spins and at two different voltages.

It is easy to understand why the accumulation within t
QPC takes place. Each scattering state carries a cu
which must be same for all cross sections. In the wide r
ervoirs the local longitudinal wave number is high while t
local amplitude may be low. In the QPC, on the other ha
the situation must be the reverse one if the total current i
be preserved. Thus the accumulation is easy to understan
a necessary consequence for current conservation. It is
found, however, for equilibrium situations such as a Q
connecting two quantum dots in which there is no curr
flow.7

IV. SUMMARY

We have simulated the zero-temperature conductance
realistic GaAs/AlGaAs split-gate QPC device using the sp

n.
s
-

FIG. 7. Transmission through a QPC for electrons injected
different transfer modes and energy. The QPC potential is obta
from the self-consistent calculations for the split-gate voltageVsg

520.715 V. The results refer to the ground-state solution in F
3~b!. The labeling defines the different injection channels. For o
numbers the channel transmission vanishes because of symme

FIG. 8. Absolute values of two typical scattering states along
symmetry axis of the device. Electrons withE5Ef are injected in
the first ~thick line! and third modes~thin line! at Vsg520.715.
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FIG. 9. ~Color! Absolute value
of scattering states with energyE
5Ef . ~a! Vsg520.715, s5↑,
first mode. ~b! Vsg520.715, s
5↑, second mode.~c! Vsg5
20.715, s5↑, third mode. ~d!
Vsg520.715, s5↓, first mode.
~e! Vsg520.715, s5↓, second
mode. ~f! Vsg520.715, s5↓,
third mode. ~g! Vsg520.699,
s5↑, first mode. ~h! Vsg

520.699, s5↑, second mode.
~i! Vsg520.699, s5↑, third
mode. ~j! Vsg520.699, s5↓,
first mode. ~k! Vsg520.699,
s5↓, second mode. ~l! Vsg

520.699,s5↓, third mode.
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relaxed Kohn-Sham equations. As in previous studies,
recover conduction anomalies associated with local mag
tization that modifies the transmission barrier for the t
spin directions in different ways. We have used two mode
~a! with exchange only, and~b! with exchange and correla
tion potentials included. Both cases give rise to two anom
lies although~a! overestimates the magnetization. It is, ho
ever, computationally relatively stable and we have theref
also been able to study higher subbands for the first time
the best of our knowledge. In accordance with experime
we recover smaller replicas in the second and third subba

In case~b! the introduction of correlation weakens th
polarization, and as a consequence the conductance i
creased towards normal conduction. The simulations w
carried out with a variation of initial conditions for the itera
tion procedure. Making random choices of the initial pote
tial, we have found that there are multisolutions in a range
voltages where an anomalous temperature dependence
conductance is observed. We have suggested that mea
23531
e
e-

:

-

re
to
s,
s.

in-
re

-
f
the
re-

ments may be analyzed in these terms. As the temperatu
raised the metastable states become thermally activated
as a consequence the conductance decreases for a given
age. We have also suggested that a similar mechanism
take place with increasing source-drain voltageVsd . Further
work should be performed along these lines including
effects of magnetic field. Unfortunately, the Kohn-Sha
equations for finite temperatures are not readily available
the 2D systems discussed here.

We have also studied the nature of the scattering st
because of the proposition of resonant or quasibo
states.11,12 For the realistic split-gate device studied we
not recover this kind of states. This negative result might
related to device geometry. In our case there are as muc
20 subbands in the source and drain regions, i.e., the reg
are effectively two dimensional, while in Refs. 11 and
there are just two channels in the leads. Therefore, in
latter case the system is more like a long two-channel p
bolic wire with a local constriction. The difference betwee
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the two devices should make an interesting case for the
perimentation of the role of geometry, electron densities,

Finally, one should add a few words of caution about
Kohn-Sham equations. Here we make use of excited sta
but to be strict, the LSDA is designed for ground-state pr
erties. The form of correlation potential also raises questio
Although numerically small, we have noticed that the resu
are sensitive to this term. Different approximate algebr
expressions forUcr

s (r ) may therefore give different number
but supposedly not a qualitatively different scenario. T
point should, of course, be tested in future work. In the sim
lations, we have allowed a collinear magnetism only. T
was done for computational convenience but there is no p
cipal reason for not extending the modeling to noncollin
situations as well. Such work is in progress.
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Note added in proof.Recently P. S. Cornaglia and C. A
Balseiro have studied the magnetic nature of quantum p
contacts and quasibound states.21 G. Seelig and K. A.
Matveev have drawn attention to electron-phon
scattering.22
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