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Effects of the dimensionality of inhomogeneities on the wave spectrum of superlattices
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Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on the
dimensionality of inhomogeneities modulating the period of the superlattice are studied. The cases of one- and
three-dimensional modulations, as well as modulation by a mixture of inhomogeneities of both of these
dimensionalities, are considered. The correlation function of the superlgitigenas the form of a product of
the same periodic function and a decreasing function that is significantly different for these different cases. For
r—o, the decreasing function goes to zero for the one-dimensional inhomogeneities and to a nonzero asymp-
tote for the three-dimensional ones. Consequently, the transition from the disordered to ordered states is
accompanied in the three-dimensional case not only by an increase of the correlation radius as in the one-
dimensional case, but also by a change in the relationship between the volumes of the superlattices with finite
and infinite correlation radii. The decreasing part of the correlation function for the mixture of inhomogeneities
of different dimensionalities has the form of a product of the decreasing parts of the correlation functions of the
components of the mixture. This leads to the nonadditivity of the contributions of the components of different
dimensionalities to the resulting modification of the parameters of the wave spectrum that are due to the
inhomogeneitiesthe damping of waves for the mixture of these components is smaller than the sum of the
dampings of the components, the maximum gap in the spectrum corresponds to the simultaneous presence of
both components, and so)on
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[. INTRODUCTION fluctuations and correlation radii. Knowledge of the CF cor-
responding to a particular type and dimensionality of the
Investigations of the spectrum of waves in partially ran-inhomogeneities permitted us to apply methods of investiga-
domized superlattice§SL's) have been carried out very in- tion of averaged Green functions to find the energy spectrum
tensively in recent years. This is due to the wide use of thesand other characteristics of the wavé$®2!In carrying out
materials in various high technology devices as well as du¢hese investigations, we also used another advantage of the
to the fact that they are convenient models for developindiRSM method. This method permitted us to study the wave
new methods of theoretical physics for studying media with-spectrum for two models of SL's in the framework of the
out translation symmetry. Several methods exist now for desame approach: SL's with an initially sinusoidal dependence
veloping a theory of such SL's: the modeling of the random-of material parameters on a coordin&té®?'and SL's with a
ization by altering the order of successive layers of twodependence in the form of rectangular spatial put$é$.
different material$:’ the numerical modeling of the random These models, which are widely used in the literature, corre-
deviations of the interfaces between layers from their initialspond to the two limiting cases of the relation between the
periodic arrangemerit;1% the postulation of the form of the thickness of the interfacebsand the period of the multilayer
correlation function of a SL with inhomogeneitit’st? the  structure. To describe the general situation, we introdtfeed
application of the geometrical optics approximatidrand  model of a SL with an arbitrary relation betweenand I;
the development of the dynamic composite elastic mediunapplying the RSM method to this model, we studied for the
theory* first time the effects of inhomogeneities on the wave spec-
One more method for the investigation of the influence oftrum of multilayers with finite interface thicknesseésThe
inhomogeneities on the wave spectrum of a SL was sugRSM method also permitted us to consider inhomogeneities
gested in Ref. 15, the method of the random spatial modulasf different dimensionalities in the framework of the same
tion (RSM) of the period of the SL. This method is an ex- model. Effects of one-dimensional(lD) and three-
tension of the well-known theory of the random frequencydimensional (3D) inhomogeneities on the wave spectrum
(phasé modulation of a radio sign#t'”to the case of spatial were studied for sinusoidal SL's, SL’s with sharp interfaces,
inhomogeneities in the SL. The advantage of this method iand SL's with arbitrary thicknesses of interfaces.
that the form of the correlation functidi€F) of the SL is not However, one of the most significant aspects of this prob-
postulated but is developed from the most general assumpem was not considered clearly enough, namely, the interre-
tions about the nature of a random spatial modulation of théation between the form of the CF of the SL corresponding to
SL period. It appeared that in the general case, this functiomhomogeneities of a given dimensionality and the nature of
had a quite complicated form that depended on the dimerthe modifications in the wave spectrum that are due to these
sionality of the inhomogeneities and the values of their rmsnhomogeneities. In addition, the influence of inhomogene-
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ities of each dimensionality was studied separately. So, thaniform distribution in the interval{ 7, 7). After averaging
other significant aspect of the problem that was not considthe product of the functions(x) andp(x+r) over the phase
ered up to now is the situation when inhomogeneities ofy;, we obtain

different dimensionalities are present simultaneously in a su-

perlattice. The study of both of these aspects is the objective (P(X)p(X+T1)),=cogqr,— x1= X3), 3

of the present work. where

Il. MODEL AND CORRELATION FUNCTION X1=q[us(z+r,) —ui(2)], XSZQ[“S(X“)_“&?(X)]-M)
%e assume that the random functignsand x5 are mutually
uncorrelated and that each of them is a Gaussian random
rocess.
After averaging Eq(3) over y; and x5, we obtain a gen-
eral expression for the CF of the SL in the form

A SL is characterized by the dependence of some materi
parametei on the coordinates={x,y,z}. The physical na-
ture of the parametei(x) can be different. This parameter
can be a density of matter or a force constant for the elasti
system of a medium, the magnetization, anisotropy, or ex
change for a magnetic system, and so on. We reprégent

in the form K(r)=cogqr,) K,(r,)Ks(r), (5)

AX)=A[1+ yp(%)], (1 Where

1

whereA is the average value of the parametgiis its rela- Kl(rz):exr{ - EQl(rz)}i (6)
tive rms variation,p(x) is a centered{jp(x))=0) and nor-
malized (p2(x))=1) function. The functiorp(x) describes 1
the periodic dependence of the parameter along the Slzaxis Ks(r)= ex;{ —=Q4(r)
as well as the random spatial modulation of this parameter 2
which, in the general case, can be a function of all thregynd the structure function®;(r) are defined by the equa-
coordinatesx={x,y,z}. tions

We will consider in this paper a SL that has a sinusoidal
dependence of the material parameter on the coordiniaite Qu(ry)=(xD, Qa(nN={(x3. 8
the initial state where inhomogeneities are absent. Accordin

to the RSM method, we represent the functjgfx) in the Bne can see from Eq5)—(8) thatK,(r,) andKs(r) are the
form decreasing parts of the CF’s of the SL's with 1D or 3D in-

homogeneitiegrecall that the complete CFs for these cases
have the form of the product of cagf) and K,(r,) or
p(X) =12 codalz—uy(2) — us(x) ]+ ¢}, (2)  K4(r), respectively?]. So, the decreasing part of the CF of a
_ ) SL with a mixture of mutually uncorrelated phase inhomo-
whereq=27/l is the SL wave number. We assume in thegeneities of different dimensionalities has the form of the
RSM method that the function;(z) models 1D displace- product of the decreasing parts of the CF’s of the compo-
ments of the interfaces from their initial periodic arrange-nents of this mixture.

ment. The functiorus(x) is introduced in Eq(2) to model @ For finding the structure functior®,(r,) andQs(r), we
random deformation of the surfaces of the interfaces. At firsinyst model the correlation properties of the modulating
glance, it would seem that this function must depend only ofynctionsu,(z) andus(x) or, more precisely, the correlation
the two coordinatesc andy. But the functionu(x,y) de-  properties of their gradients. Bo,(r,) and Q(r) were
scribes in the RSM method a 2D deformation that is uniformgoyng in Ref. 15(see also some refinements of the coeffi-
for all interfaces of the SL, that is, which has an infinite cients in these expressions in Ref) 2y the use of different
value of the correlation radius along tzecoordinate. The forms of the model CF's for the random modulation. It was
directly opposed cases are of interest in reality, namely, thghown that the forms of the functior®, do not depend
cases where the deformations of two nearest interfaces aggymptotically(for both small and large values of on the
uncorrelatedthe correlation radius alongis much smaller  form of the model CF, but strictly depend on the dimension-
than1/2) or only several interfaces are correlated. That isyjities of the inhomogeneities. For the exponential model

why, ug(x) must be a random function of all three coordi- cps for u,(z) andus(x), the structure functions were ob-
natesx, y, andz In the general case, this function has antgined in the forms

anisotropy of correlation properties because the values of the

correlation radii in thexy plane and along the axis are Ql(rz)z27§[exg—kurz)+kurz— 1], 9)
determined by different physical reasons. But we restrict our-

selves here to the simplest case and assumeutfia) is a

3D random function with isotropic correlation properties. A Qa(r)=693
coordinate-independent random phageés introduced into

Eq. (2) to ensure the fulfillment of the condition of ergodicity where k| and k, are the correlation wave numbers of the
for the functionp(x) (see Ref. 1§ it is characterized by a random modulationsu;(z) and ug(x), respectively. The
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functionsu,(z) andus(x) are inhomogeneous random func-
tions and their rms fluctuations depend on the coordinates.
The coordinate-independent quantitigsand y5 in Egs.(9)

and (10) are the coefficients of the relative rms fluctuations
of the functions ui(z) and us(x), respectively. More
precisely?! y, and y; are determined from the relationships
y1=0109/k| and y3=o3q/\/§ko, whereo; and o3 are the
rms fluctuations of the gradients of(z) andu;(x).

After the substitution of Eqs(9) and (10) into Egs.(6)
and (7), the latter become quite complicated. That is why,
approximate expressions fdt,(r,) and Ks(r) were sug-
gested for the 1D and 3D inhomogeneitisge Refs. 15 and
23, respectively

Ky(r,)=exp(— yikjr,), (11) 0.1 1 g, 10 100

Ka(r)=(1—L)exp — y3kor)+L, (12)

WhereL=exp(—3y§) is the asymptotic form oK(r) when
r—oo,

According to these equations, effective correlation radii of
the SL can be introduced for the 1D and 3D cases, respec-
tively,

ri=(y2k) Y, ra=(v3ko) L. (13

One can see that the effective correlation radii of the SL
depend not only on the correlation raéji* or ky* of the
corresponding modulating functiows or u; but also on the 0 . .
rms fluctuations of these functiong; or ys. 0.1 I, 10 100
The approximate forms oK,(r,) and Ks(r) given by (b 0
Eqs.(ll) and(12) are shown in Flgg.(h) and 1b), respec- . FIG. 1. Decreasing parts of the correlation functions corre-
tively, by dashed curves. A comparison of these curves Wlt@p -
the exaC’_[ dependen_ces described by Ek.(7), (9), and values ofy3 and y3 that are shown at the curves. The solid curves
(10) (depicted by,SOI'q CUVY9$h°WS .that E‘?S(-ll) and(12) correspond to exact expressions Foy(r,) andKs(r), the dashed
are good approximations in the entire regryﬁ’Kl. curves correspond to the approximate expressions for these func-
In Figs. 2a,b), the functionsK(r) andK;(r) are shown tions given by Egs(11) and(12), respectively. Note that the scales
as functions of the two coordinates, andr, =(r;+r;)¥2  along the abscissa axes are logarithmic.
It is seen from these figures that there is a cardinal difference
between the asymptotic behaviorskf(r) andKs(r). The [ll. DISPERSION LAW AND DAMPING OF WAVES
function K,(r) goes to zero whem=(r2+r?)%? goes to
infinity in all directions, characterized by the angk
=arccos(,/r), excluding the poind= 7r/2, while the func-
tion K3(r) goes to the nonzero asymptotic va}u@y@ When- . V2u+[v—ep(x)]u=0, (14)
r—o, Consequently, in the 1D case the inhomogeneities
have a finite correlation radius in the entire volume of the where the expressions for the parameterand v and the
SL. In contrast to this, in the 3D case volumes with an infi-variable x are different for waves of different natures. For
nite correlation radius exist side by side with volumes withspin waves, when the parameter of the superla#ite) in
the finite correlation radiuss. Eq. (1) is the value of the magnetic anisotrop(x), we
In Fig. 3, the decreasing part of the CF of the SL contain-have®
ing a mixture of 1D and 3D inhomogeneitie(r)
=K4(r,)K;(r) is depicted. One can see that this function w—wg vB
goes to zero whem—« for all values of 6, except 6 V:ag—M’ E= T, (15
= /2. This property make&5(r) approach the function
K4(r). But in the directiond= =/2, the functionK5(r) be-  wherew is the frequencywo=g(H+ B8M), g is the gyro-
comes similar to the functioK(r). magnetic ratio,a is the exchange parameted is the

We consider the equation for waves in the superlattice in
the form
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FIG. 3. Decreasing part of the correlation function of the mix-
ture of the 1D and 3D inhomogeneities in theandr , coordinates.
It is assumed thalt=ko, yi=y5=0.3.

Substituting Eg.(5) into Eq. (18) and approximating
Ki(r,) andKs(r) by Egs.(11) and(12), we obtain an ex-
actly integrable expression. Upon integrating this expression
with respect ta, we obtain an explicit form of the equation

for v:
: 2
J € Pi3 1 1
2_
‘ 0 v—k=—1 (1-L)—= +
o 2 [ Ps [PZ-(k-a)?  PL-(k+q)?
P 1 1 ] 9
() k1 0L +L— + ,
o'z 20 20 V[ Pi-(k=a)?  Pi-(k+g)?
FIG. 2. Decreasing parts of the correlation functions for the 1Dy here
(a) and 3D(b) inhomogeneities in the, andr, = (rZ+r2)*? coor-
H 2__ 2__
dinates fory{=y5=0.3. P,= ﬁ—ik”yf, Py= \ﬁ—ikoyg,
magnetic-field strengthl is the value of the magnetization, = 2 9
[ is the average value of the anisotropy, ani its relative P13= \/V_'(k\\71+ Kova)- (20)
rms variation. For elastic waves in the scalar approximation

We consider this equation at the Brillouin-zone boundary

=k,=@g/2. Under the conditions that, (kuyi)z, and

(16) (koy3)? are much smaller than. = k?, we obtain Eq(19) in
the form of a cubic equation in:

wherey is the rms fluctuation of the density of the material

we have

v=(wlv)?, &=y,

andv is the wave velocity. For electromagnetic waves in the 2 g2 1-L
same approximation, we have Pk =% .
PP "2 [ =2k (ki ko) — K
v=gqo(wlC)? &=y, 17 L
whereg, is the average value of the dielectric permeability, v—2ik,kyyi—k

v is its rms deviation, and is the speed of light in vacuum.
Laws of the dispersion and damping of the averageddoth limiting cases of this equation corresponding to 1D

waves are determined by the equation for the complex frety;# 0,y3=0) and 3D (/;=0,y;#0) inhomogeneities have

quencyv=v'+ié¢, which follows from the vanishing of the been considered in our previous works. For the 1D case, Eq.

denominator of the Green function of Ed.4). In the Bour-  (21) reduces to a quadratic equatidmnd has the following

ret approximatiorf? this equation has the forth solutions for the eigenfrequencie$ and dampings . :

2 d A
V—kzz—%f K(r)exq—i(kH—\/;r)]Tr. (18) V'izkrziERe[l_(m?’i)z]llza (22)
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FIG. 4. The width of the gajia) and the dampingb) as func-
tions of the sumy3+ 43 for different situationsys+ 0, y5=0 (dot-
ted curvey y?=0, y3#0 (dashed curves y2=0.2, y3#0 (solid
curves. The explanation of the dotted-dashed curvéhnis given
in the text.

A
£-=5{myi*Im{1-(my)*"3, @3

whereA = \/2¢ is the width of the gap at the first Brillouin-

zone boundaryforbidden bandwidthfor the ideal SL in the
absence of any inhomogeneities, ang=kg/A is the nor-

malized correlation wave number of the 1D inhomogeneities
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FIG. 5. The width of the gajga) and the dampingb) as func-
tions of the sumy2+ 2 for different situationsy2+0, y3=0 (dot-
ted curveg y>=0, y5#0 (dashed curvgs y2=0.1, y3+0 (solid
curves. The explanation of the dotted-dashed curvebnis given
in the text.

Figure 4a) shows the decrease of the gAp=v' —v"
with the increase ofy? or y3. If y;=0, the increase of?
leads to the closing of the gap g€=0.25 (dotted curvé

Simultaneously, the damping of both eigenfrequencies in-

creases linearly till the poinyf=0.25 [dotted curve in Fig.
4(b)]. For yi>0.25, two degenerate eigenfrequenci€s

For the 3D case, Eq21) remains a cubic equation and was ~ vl exist Wz'th different dampings, #£_ . If ¥7=0, the
investigated by numerical methotfs. increase ofy; also leads to the decrease of the gdashed
General equatiori21) for the mixture of 1D and 3D in- Curve in Fig. 4a)] but significantly more slowly than under
homogeneities has been investigated also by numerical metke action of the 1D inhomogeneities. For example, a large
ods. The results of this investigation are shown in Figs. 4—@ap exists fory3=0.25, while the gap closes wheyf has
by solid curves. Dotted and dashed curves in these figurd§e same value. In line with this, the damping increases very
correspond to the limiting cases of the presence of only 1m5lightly with the increase of/3 [dashed curve in Fig.(8)].
or 3D inhomogeneities, respectively. All figures correspond To show the effects of the mixture of inhomogeneities of
to the same correlation wave numbers for 1 €£kjg/A  different dimensionalities, the following situation is depicted
=4) and 3D (y3=Kk,0/A=4) inhomogeneities. Different in Figs. 4a,b. Let us have only 1D inhomogeneities with
situations are shown in these figures. y§=0.2 and, correspondingly, the spectrum gapAis/A
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Y2 width of the gap for the mixture of inhomogeneities can be
103 02 1 01 0 larger than the widths corresponding to the components of
the mixture.

Quite another situation is shown in Figdaf) by solid
curves. We assume here that the syf- 5 remains con-
stant(and equal to 0.3 in these graphehen 2 and y3 are
varied. In other words, we consider a gradual replacement of
the 1D inhomogeneities by 3D inhomogeneities with the
same values of rms fluctuations. For comparison, the func-
tions Av and ¢ are shown in Figs. @,b separately for the
1D and 3D inhomogeneities. The origin of the coordinates
corresponds t0/§=0 (the scale is under the figyrand yi
=0.3(the scale is above the figyr& he widthA v of the gap
is equal to zero for the 1D inhomogeneities and\tdor the
3D inhomogeneities. The dashed curve in Fig) 8hows the
decrease of\» when y3 increases fory?=0. The dotted
curve in this figure shows the opening and increase of
when y# decreases foy3=0. The solid curve shows the
dependence oA v on y3 under the conditionys+ y5=0.3.

One can see that the maximum &% corresponds to some
point corresponding to the presence of both components of
the mixture ¢/5#0,y3+0) but not to the absence of the 1D
inhomogeneities 42=0,y53=0.3), as might be expected
from the general point of view.

0.8}

0.6f

Av/A

0.4}

027

@

0.3 02 % ou 0

IV. CONCLUSION

The method of the random spatial modulation of the su-
perlattice periotf permits developing the CF of a SL with a
1D random modulation(which models random displace-
ments of the interfaces from their initial periodic arrange-
mend, 3D modulation(which models random deformations
of the interfaces and the simultaneous presence of both
kinds of these modulationsvhich models the mixture of the
1D and 3D inhomogeneities of the SL structure

For the initially sinusoidal SL, the CF in all these cases is

FIG. 6. The width of the gaga) and the dampingb) under the  a product of the same harmonic function eps( and a de-
conditiony;+ y3=0.3(solid curveg and for the situations whep§  creasing function that has different forms for the different
increases for/{=0 (dashed curves, the scale is under the figure cases. The main difference between the CF’s for 1D and 3D
and yvhenyf decreases fop3=0 (dotted curves, the scale is above inhomogeneities is that the decreasing function goes to zero
the figure. whenr,— in the 1D case, while the decreasing function in

the 3D case goes to the nonzero asymptotic valeeexp
=0.6. Then we add 3D inhomogeneities increasi@gand (—375) whenr—o. Because of this, the 1D inhomogene-
keepingy;=0.2. One can see that the gap decreases slowliies have a finite correlation radius=(2k) ~* in the en-
and closes ay?+ y5=0.45[solid curve in Fig. 4a)]. Simul-  tire volume of the superlattice, while for the 3D case vol-
taneously, the increase of the damping slows ddealid  umes with a finite correlation radiurgz(y%ko)*l exist side
curve in Fig. 4b)]. The dashed-dotted curve in Fig(b} by side with volumes with an infinite correlation radius. If
corresponds to the unreal situation that would have been reve set the total volume equal to unity, the contribution of the
alized if the damping of the mixture of 1D inhomogeneities volumes with the infinite correlation radius is proportional to
with ¥{=0.2 and 3D inhomogeneities witj§ were equal to L, while the contribution of the volumes with the finite cor-
the simple sum of the damping of the components of theelation radius is +L. In the 1D case, the transition to the
mixture. One can see that in reality, the additional contribuideal periodic structure with the decrease of the rms fluctua-
tion to the damping due to 3D inhomogeneities in the prestion y; is achieved by increasing the correlation radiysit
ence of the 1D inhomogeneities is approximately two timess the usual transition from a random to a periodic system. In
smaller than in the absence of the latter. the 3D case, we have another kind of transition. The corre-

In Figs. 5a,b the same situations as in Figgad) are lation radiusr; increases with the decrease of as in the
depicted, but the valug?=0.1 instead ofy?=0.2 is chosen 1D case. But in parallel with this, the changing of the rela-
for the 1D component of the mixture. One can see that théionship between the volumes with finite and infinite corre-
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lation radii goes on with the decrease or increase of the disweeny; and y3 but not toy2=0 as one could expect from
order. This leads to the essential differences between thgeneral considerations. This phenomenon as well as the phe-
effects on the wave spectrum that are due to the 1D or 3Ihomenon of the reduction of the damping induced by the 3D
inhomogeneitiesthe much smaller damping of waves in the inhomogeneities in the presence of 1D inhomogeneities are
3D case, and so on due to the fact that the decreasing parts of the CF's of the
The decreasing part of the CF of the SL in the presence oafomponents of the mixtur&,(r,) and K5(r), as for the
the mixture of the 1D and 3D inhomogeneities has the formmixture of any phase inhomogeneities, enter into the CF of
of the product of the decreasing parts of the CF's of thethe SL in the form of a product, not a sum.
components of the mixturk ,(r,) andKs(r). This leads to For the experimental observations of the effects predicted
the conclusion that the general form of the CF of the mixturein this paper, it is desirable to create model SL’s in which the
is determined mainly by the 1D inhomogeneities. The changdimensionalities and all parameters of the inhomogeneities
ing of the relationship between the volumes of the mediunof the structure are known. Not only the sinusoidal SL’s that
with and without the 3D correlations is going on with the have been considered in this paper but also SL's with a rect-
changing ofy; in this case as well. However, the 1D corre- angular initial profile could be used for this purpose, because
lations are present in both of these volumes. As a consehe effects in the spectrum at the boundary of the first Bril-
quence of this, the CF of the mixture goes to zero when louin zone for both of these models of SlL's differ
—oo for all directions except= /2 as in the 1D case; the insignificantly?® All the effects considered in this paper
presence of the 3D inhomogeneities leads only to a decreaseuld be observed on the three types of the model samples:
of the effective correlation radii of the mixture along all co- samples with controlled random deviations of the plane in-
ordinate axes. terfaces from their initial periodic arrangement; samples with
The dependence of the widths of the gap in the spectrurgontrolled deformations of the surfaces of the interfaces pre-
and the damping of waves on the relationship between rmserving their periodic arrangement; and samples with the si-
fluctuationsy, and y; of the 1D and 3D inhomogeneities multaneous presence of both of these types of inhomogene-
have been studied at the boundary of the first Brillouin zoneities. The results of such model experiments could be used
On addition of the 3D inhomogeneities to the SL containingfor the determination by spectral methods of the dimension-
only 1D inhomogeneities, the damping of waves increasesalities, rms fluctuationsy; and y;, and correlation radik|
But this additional damping is approximately half as large asand k, in real SL’s for which these characteristics are un-
the damping that is due to the inhomogeneities with the samknown.
value of yi in the absence of the 1D inhomogeneities. The
situation has also been considered when a gradual changing
of inhomogeneities of one dimensionality by inhomogene-
ities of the other dimensionality subject to the conditigh This work was supported by the NATO Science Program
+ y3=const is occurring. It has been shown that the maxi-and Collaborative Linkage Grant No. 978090 and the Rus-
mum value of the gap corresponds to some relationship besian Foundation for Basic Research, Grant No. 00-02-16105.
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