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Effects of the dimensionality of inhomogeneities on the wave spectrum of superlattices
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Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on the
dimensionality of inhomogeneities modulating the period of the superlattice are studied. The cases of one- and
three-dimensional modulations, as well as modulation by a mixture of inhomogeneities of both of these
dimensionalities, are considered. The correlation function of the superlatticeK(r ) has the form of a product of
the same periodic function and a decreasing function that is significantly different for these different cases. For
r→`, the decreasing function goes to zero for the one-dimensional inhomogeneities and to a nonzero asymp-
tote for the three-dimensional ones. Consequently, the transition from the disordered to ordered states is
accompanied in the three-dimensional case not only by an increase of the correlation radius as in the one-
dimensional case, but also by a change in the relationship between the volumes of the superlattices with finite
and infinite correlation radii. The decreasing part of the correlation function for the mixture of inhomogeneities
of different dimensionalities has the form of a product of the decreasing parts of the correlation functions of the
components of the mixture. This leads to the nonadditivity of the contributions of the components of different
dimensionalities to the resulting modification of the parameters of the wave spectrum that are due to the
inhomogeneities~the damping of waves for the mixture of these components is smaller than the sum of the
dampings of the components, the maximum gap in the spectrum corresponds to the simultaneous presence of
both components, and so on!.

DOI: 10.1103/PhysRevB.68.024209 PACS number~s!: 68.65.2k, 75.30.Ds
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I. INTRODUCTION

Investigations of the spectrum of waves in partially ra
domized superlattices~SL’s! have been carried out very in
tensively in recent years. This is due to the wide use of th
materials in various high technology devices as well as
to the fact that they are convenient models for develop
new methods of theoretical physics for studying media w
out translation symmetry. Several methods exist now for
veloping a theory of such SL’s: the modeling of the rando
ization by altering the order of successive layers of t
different materials;1–7 the numerical modeling of the random
deviations of the interfaces between layers from their ini
periodic arrangement;8–10 the postulation of the form of the
correlation function of a SL with inhomogeneities;11,12 the
application of the geometrical optics approximation;13 and
the development of the dynamic composite elastic med
theory.14

One more method for the investigation of the influence
inhomogeneities on the wave spectrum of a SL was s
gested in Ref. 15, the method of the random spatial mod
tion ~RSM! of the period of the SL. This method is an e
tension of the well-known theory of the random frequen
~phase! modulation of a radio signal16,17to the case of spatia
inhomogeneities in the SL. The advantage of this metho
that the form of the correlation function~CF! of the SL is not
postulated but is developed from the most general assu
tions about the nature of a random spatial modulation of
SL period. It appeared that in the general case, this func
had a quite complicated form that depended on the dim
sionality of the inhomogeneities and the values of their r
0163-1829/2003/68~2!/024209~7!/$20.00 68 0242
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fluctuations and correlation radii. Knowledge of the CF c
responding to a particular type and dimensionality of t
inhomogeneities permitted us to apply methods of investi
tion of averaged Green functions to find the energy spect
and other characteristics of the waves.15,18,21In carrying out
these investigations, we also used another advantage o
RSM method. This method permitted us to study the wa
spectrum for two models of SL’s in the framework of th
same approach: SL’s with an initially sinusoidal depende
of material parameters on a coordinate,15,18,21and SL’s with a
dependence in the form of rectangular spatial pulses.19,20

These models, which are widely used in the literature, co
spond to the two limiting cases of the relation between
thickness of the interfacesd and the periodl of the multilayer
structure. To describe the general situation, we introduced22 a
model of a SL with an arbitrary relation betweend and l;
applying the RSM method to this model, we studied for t
first time the effects of inhomogeneities on the wave sp
trum of multilayers with finite interface thicknesses.23 The
RSM method also permitted us to consider inhomogenei
of different dimensionalities in the framework of the sam
model. Effects of one-dimensional~1D! and three-
dimensional~3D! inhomogeneities on the wave spectru
were studied for sinusoidal SL’s, SL’s with sharp interfac
and SL’s with arbitrary thicknesses of interfaces.

However, one of the most significant aspects of this pr
lem was not considered clearly enough, namely, the inte
lation between the form of the CF of the SL corresponding
inhomogeneities of a given dimensionality and the nature
the modifications in the wave spectrum that are due to th
inhomogeneities. In addition, the influence of inhomoge
©2003 The American Physical Society09-1
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ities of each dimensionality was studied separately. So,
other significant aspect of the problem that was not con
ered up to now is the situation when inhomogeneities
different dimensionalities are present simultaneously in a
perlattice. The study of both of these aspects is the objec
of the present work.

II. MODEL AND CORRELATION FUNCTION

A SL is characterized by the dependence of some mate
parameterA on the coordinatesx5$x,y,z%. The physical na-
ture of the parameterA(x) can be different. This paramete
can be a density of matter or a force constant for the ela
system of a medium, the magnetization, anisotropy, or
change for a magnetic system, and so on. We representA(x)
in the form

A~x!5A@11gr~x!#, ~1!

whereA is the average value of the parameter,g is its rela-
tive rms variation,r(x) is a centered (̂r(x)&50) and nor-
malized (̂ r2(x)&51) function. The functionr(x) describes
the periodic dependence of the parameter along the SL axz,
as well as the random spatial modulation of this param
which, in the general case, can be a function of all th
coordinatesx5$x,y,z%.

We will consider in this paper a SL that has a sinusoi
dependence of the material parameter on the coordinatez in
the initial state where inhomogeneities are absent. Accord
to the RSM method, we represent the functionr(x) in the
form

r~x!5A2 cos$q@z2u1~z!2u3~x!#1c%, ~2!

whereq52p/ l is the SL wave number. We assume in t
RSM method that the functionu1(z) models 1D displace-
ments of the interfaces from their initial periodic arrang
ment. The functionu3(x) is introduced in Eq.~2! to model a
random deformation of the surfaces of the interfaces. At fi
glance, it would seem that this function must depend only
the two coordinatesx and y. But the functionu(x,y) de-
scribes in the RSM method a 2D deformation that is unifo
for all interfaces of the SL, that is, which has an infin
value of the correlation radius along thez coordinate. The
directly opposed cases are of interest in reality, namely,
cases where the deformations of two nearest interfaces
uncorrelated~the correlation radius alongz is much smaller
than l /2) or only several interfaces are correlated. That
why, u3(x) must be a random function of all three coord
natesx, y, and z. In the general case, this function has
anisotropy of correlation properties because the values o
correlation radii in thexy plane and along thez axis are
determined by different physical reasons. But we restrict o
selves here to the simplest case and assume thatu3(x) is a
3D random function with isotropic correlation properties.
coordinate-independent random phasec is introduced into
Eq. ~2! to ensure the fulfillment of the condition of ergodici
for the functionr(x) ~see Ref. 15!; it is characterized by a
02420
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uniform distribution in the interval (2p,p). After averaging
the product of the functionsr(x) andr(x1r ) over the phase
c, we obtain

^r~x!r~x1r !&c5cos~qrz2x12x3!, ~3!

where

x15q@u1~z1r z!2u1~z!#, x35q@u3~x1r !2u3~x!#.
~4!

We assume that the random functionsx1 andx3 are mutually
uncorrelated and that each of them is a Gaussian ran
process.

After averaging Eq.~3! overx1 andx3, we obtain a gen-
eral expression for the CF of the SL in the form

K~r !5cos~qrz!K1~r z!K3~r !, ~5!

where

K1~r z!5expF2
1

2
Q1~r z!G , ~6!

K3~r !5expF2
1

2
Q3~r !G , ~7!

and the structure functionsQi(r ) are defined by the equa
tions

Q1~r z!5^x1
2&, Q3~r !5^x3

2&. ~8!

One can see from Eqs.~6!–~8! thatK1(r z) andK3(r ) are the
decreasing parts of the CF’s of the SL’s with 1D or 3D i
homogeneities@recall that the complete CFs for these cas
have the form of the product of cos(qrz) and K1(r z) or
K3(r ), respectively15#. So, the decreasing part of the CF of
SL with a mixture of mutually uncorrelated phase inhom
geneities of different dimensionalities has the form of t
product of the decreasing parts of the CF’s of the com
nents of this mixture.

For finding the structure functionsQ1(r z) andQ3(r ), we
must model the correlation properties of the modulat
functionsu1(z) andu3(x) or, more precisely, the correlatio
properties of their gradients. BothQ1(r z) and Q3(r ) were
found in Ref. 15~see also some refinements of the coe
cients in these expressions in Ref. 21! by the use of different
forms of the model CF’s for the random modulation. It w
shown that the forms of the functionsQi do not depend
asymptotically~for both small and large values ofr ) on the
form of the model CF, but strictly depend on the dimensio
alities of the inhomogeneities. For the exponential mo
CF’s for u1(z) and u3(x), the structure functions were ob
tained in the forms

Q1~r z!52g1
2@exp~2kir z!1kir z21#, ~9!

Q3~r !56g3
2F12

2

k0r
1S 11

2

k0r Dexp~2k0r !G , ~10!

where ki and k0 are the correlation wave numbers of th
random modulationsu1(z) and u3(x), respectively. The
9-2
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EFFECTS OF THE DIMENSIONALITY OF . . . PHYSICAL REVIEW B 68, 024209 ~2003!
functionsu1(z) andu3(x) are inhomogeneous random fun
tions and their rms fluctuations depend on the coordina
The coordinate-independent quantitiesg1 andg3 in Eqs.~9!
and ~10! are the coefficients of the relative rms fluctuatio
of the functions u1(z) and u3(x), respectively. More
precisely,21 g1 andg3 are determined from the relationship
g15s1q/ki and g35s3q/A3k0, wheres1 and s3 are the
rms fluctuations of the gradients ofu1(z) andu3(x).

After the substitution of Eqs.~9! and ~10! into Eqs.~6!
and ~7!, the latter become quite complicated. That is wh
approximate expressions forK1(r z) and K3(r ) were sug-
gested for the 1D and 3D inhomogeneities~see Refs. 15 and
23, respectively!:

K1~r z!5exp~2g1
2kir z!, ~11!

K3~r !5~12L !exp~2g3
2k0r !1L, ~12!

whereL5exp(23g3
2) is the asymptotic form ofK3(r ) when

r→`.
According to these equations, effective correlation radi

the SL can be introduced for the 1D and 3D cases, res
tively,

r 15~g1
2ki!

21, r 35~g3
2k0!21. ~13!

One can see that the effective correlation radii of the
depend not only on the correlation radiiki

21 or k0
21 of the

corresponding modulating functionsu1 or u3 but also on the
rms fluctuations of these functions,g1 or g3.

The approximate forms ofK1(r z) and K3(r ) given by
Eqs.~11! and ~12! are shown in Figs. 1~a! and 1~b!, respec-
tively, by dashed curves. A comparison of these curves w
the exact dependences described by Eqs.~6!, ~7!, ~9!, and
~10! ~depicted by solid curves! shows that Eqs.~11! and~12!
are good approximations in the entire regiong i

2,1.
In Figs. 2~a,b!, the functionsK1(r ) andK3(r ) are shown

as functions of the two coordinates,r z and r'5(r x
21r y

2)1/2.
It is seen from these figures that there is a cardinal differe
between the asymptotic behaviors ofK1(r ) andK3(r ). The
function K1(r ) goes to zero whenr[(r z

21r'
2 )1/2 goes to

infinity in all directions, characterized by the angleu
5arccos(r z /r ), excluding the pointu5p/2, while the func-
tion K3(r ) goes to the nonzero asymptotic valueL(g3) when
r→`. Consequently, in the 1D case the inhomogenei
have a finite correlation radiusr 1 in the entire volume of the
SL. In contrast to this, in the 3D case volumes with an in
nite correlation radius exist side by side with volumes w
the finite correlation radiusr 3.

In Fig. 3, the decreasing part of the CF of the SL conta
ing a mixture of 1D and 3D inhomogeneitiesK13(r )
5K1(r z)K3(r ) is depicted. One can see that this functi
goes to zero whenr→` for all values of u, except u
5p/2. This property makesK13(r ) approach the function
K1(r ). But in the directionu5p/2, the functionK13(r ) be-
comes similar to the functionK3(r ).
02420
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III. DISPERSION LAW AND DAMPING OF WAVES

We consider the equation for waves in the superlattice
the form

¹2m1@n2«r~x!#m50, ~14!

where the expressions for the parameters« and n and the
variablem are different for waves of different natures. F
spin waves, when the parameter of the superlatticeA(x) in
Eq. ~1! is the value of the magnetic anisotropyb(x), we
have15

n5
v2v0

agM
, «5

gb

a
, ~15!

wherev is the frequency,v05g(H1bM ), g is the gyro-
magnetic ratio,a is the exchange parameter,H is the

FIG. 1. Decreasing parts of the correlation functions cor
sponding to the 1D~a! and 3D~b! inhomogeneities for the differen
values ofg1

2 andg3
2 that are shown at the curves. The solid curv

correspond to exact expressions forK1(r z) andK3(r ), the dashed
curves correspond to the approximate expressions for these f
tions given by Eqs.~11! and~12!, respectively. Note that the scale
along the abscissa axes are logarithmic.
9-3
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magnetic-field strength,M is the value of the magnetization
b is the average value of the anisotropy, andg is its relative
rms variation. For elastic waves in the scalar approximat
we have

n5~v/v !2, «5gn, ~16!

whereg is the rms fluctuation of the density of the mater
andv is the wave velocity. For electromagnetic waves in t
same approximation, we have

n5«e~v/c!2, «5gn, ~17!

where«e is the average value of the dielectric permeabili
g is its rms deviation, andc is the speed of light in vacuum

Laws of the dispersion and damping of the averag
waves are determined by the equation for the complex
quencyn5n81 i j, which follows from the vanishing of the
denominator of the Green function of Eq.~14!. In the Bour-
ret approximation,24 this equation has the form21

n2k252
«2

4pE K~r !exp@2 i ~kr 1Anr !#
dr

r
. ~18!

FIG. 2. Decreasing parts of the correlation functions for the
~a! and 3D~b! inhomogeneities in ther z andr'5(r x

21r y
2)1/2 coor-

dinates forg1
25g3

250.3.
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Substituting Eq.~5! into Eq. ~18! and approximating
K1(r z) and K3(r ) by Eqs.~11! and ~12!, we obtain an ex-
actly integrable expression. Upon integrating this express
with respect tor , we obtain an explicit form of the equatio
for n:

n2k25
«2

2 H ~12L !
P13

P3
F 1

P13
2 2~k2q!2

1
1

P13
2 2~k1q!2G

1L
P1

An
F 1

P1
22~k2q!2

1
1

P1
22~k1q!2G J , ~19!

where

P15An2 ik ig1
2 , P35An2 ik0g3

2 ,

P135An2 i ~kig1
21k0g3

2!. ~20!

We consider this equation at the Brillouin-zone boundaryk
5kr[q/2. Under the conditions that«, (kig1

2)2, and
(k0g3

2)2 are much smaller thann r5kr
2 , we obtain Eq.~19! in

the form of a cubic equation inn:

n2kr
25

«2

2 F 12L

n22ikr~kig1
21k0g3

2!2kr
2

1
L

n22ikrkig1
22kr

2G . ~21!

Both limiting cases of this equation corresponding to 1
(g1Þ0,g350) and 3D (g150,g3Þ0) inhomogeneities have
been considered in our previous works. For the 1D case,
~21! reduces to a quadratic equation15 and has the following
solutions for the eigenfrequenciesn68 and dampingsj6 :

n68 5kr
26

L

2
Re@12~h1g1

2!2#1/2, ~22!

FIG. 3. Decreasing part of the correlation function of the m
ture of the 1D and 3D inhomogeneities in ther z andr' coordinates.
It is assumed thatki5k0 , g1

25g3
250.3.
9-4
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j65
L

2
$h1g1

26Im@12~h1g1
2!2#1/2%, ~23!

whereL5A2« is the width of the gap at the first Brillouin
zone boundary~forbidden bandwidth! for the ideal SL in the
absence of any inhomogeneities, andh15kiq/L is the nor-
malized correlation wave number of the 1D inhomogeneit
For the 3D case, Eq.~21! remains a cubic equation and wa
investigated by numerical methods.23

General equation~21! for the mixture of 1D and 3D in-
homogeneities has been investigated also by numerical m
ods. The results of this investigation are shown in Figs. 4
by solid curves. Dotted and dashed curves in these fig
correspond to the limiting cases of the presence of only
or 3D inhomogeneities, respectively. All figures correspo
to the same correlation wave numbers for 1D (h1[kiq/L
54) and 3D (h3[k0q/L54) inhomogeneities. Differen
situations are shown in these figures.

FIG. 4. The width of the gap~a! and the damping~b! as func-
tions of the sumg1

21g3
2 for different situations:g1

2Þ0, g3
250 ~dot-

ted curves!; g1
250, g3

2Þ0 ~dashed curves!; g1
250.2, g3

2Þ0 ~solid
curves!. The explanation of the dotted-dashed curve in~b! is given
in the text.
02420
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Figure 4~a! shows the decrease of the gapDn5n18 2n28
with the increase ofg1

2 or g3
2. If g350, the increase ofg1

2

leads to the closing of the gap atg1
250.25 ~dotted curve!.

Simultaneously, the damping of both eigenfrequencies
creases linearly till the pointg1

250.25 @dotted curve in Fig.
4~b!#. For g1

2.0.25, two degenerate eigenfrequenciesn18
5n28 exist with different dampings,j1Þj2 . If g1

250, the
increase ofg3

2 also leads to the decrease of the gap@dashed
curve in Fig. 4~a!# but significantly more slowly than unde
the action of the 1D inhomogeneities. For example, a la
gap exists forg3

250.25, while the gap closes wheng1
2 has

the same value. In line with this, the damping increases v
slightly with the increase ofg3

2 @dashed curve in Fig. 4~b!#.
To show the effects of the mixture of inhomogeneities

different dimensionalities, the following situation is depicte
in Figs. 4~a,b!. Let us have only 1D inhomogeneities wit
g1

250.2 and, correspondingly, the spectrum gap isDn/L

FIG. 5. The width of the gap~a! and the damping~b! as func-
tions of the sumg1

21g3
2 for different situations:g1

2Þ0, g3
250 ~dot-

ted curves!; g1
250, g3

2Þ0 ~dashed curves!; g1
250.1, g3

2Þ0 ~solid
curves!. The explanation of the dotted-dashed curve in~b! is given
in the text.
9-5
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V. A. IGNATCHENKO, YU. I. MANKOV, AND A. A. MARADUDIN PHYSICAL REVIEW B 68, 024209 ~2003!
50.6. Then we add 3D inhomogeneities increasingg3
2 and

keepingg1
250.2. One can see that the gap decreases slo

and closes atg1
21g3

250.45@solid curve in Fig. 4~a!#. Simul-
taneously, the increase of the damping slows down@solid
curve in Fig. 4~b!#. The dashed-dotted curve in Fig. 4~b!
corresponds to the unreal situation that would have been
alized if the damping of the mixture of 1D inhomogeneiti
with g1

250.2 and 3D inhomogeneities withg3
2 were equal to

the simple sum of the damping of the components of
mixture. One can see that in reality, the additional contri
tion to the damping due to 3D inhomogeneities in the pr
ence of the 1D inhomogeneities is approximately two tim
smaller than in the absence of the latter.

In Figs. 5~a,b! the same situations as in Figs. 4~a,b! are
depicted, but the valueg1

250.1 instead ofg1
250.2 is chosen

for the 1D component of the mixture. One can see that

FIG. 6. The width of the gap~a! and the damping~b! under the
conditiong1

21g3
250.3 ~solid curves! and for the situations wheng3

2

increases forg1
250 ~dashed curves, the scale is under the figu!,

and wheng1
2 decreases forg3

250 ~dotted curves, the scale is abov
the figure!.
02420
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width of the gap for the mixture of inhomogeneities can
larger than the widths corresponding to the components
the mixture.

Quite another situation is shown in Figs. 6~a,b! by solid
curves. We assume here that the sumg1

21g3
2 remains con-

stant~and equal to 0.3 in these graphs! wheng1
2 andg3

2 are
varied. In other words, we consider a gradual replacemen
the 1D inhomogeneities by 3D inhomogeneities with t
same values of rms fluctuations. For comparison, the fu
tions Dn and j are shown in Figs. 6~a,b! separately for the
1D and 3D inhomogeneities. The origin of the coordina
corresponds tog3

250 ~the scale is under the figure! andg1
2

50.3 ~the scale is above the figure!. The widthDn of the gap
is equal to zero for the 1D inhomogeneities and toL for the
3D inhomogeneities. The dashed curve in Fig. 6~a! shows the
decrease ofDn when g3

2 increases forg1
250. The dotted

curve in this figure shows the opening and increase ofDn
when g1

2 decreases forg3
250. The solid curve shows the

dependence ofDn on g3
2 under the conditiong1

21g3
250.3.

One can see that the maximum ofDn corresponds to some
point corresponding to the presence of both component
the mixture (g1

2Þ0,g3
2Þ0) but not to the absence of the 1

inhomogeneities (g1
250,g3

250.3), as might be expecte
from the general point of view.

IV. CONCLUSION

The method of the random spatial modulation of the
perlattice period15 permits developing the CF of a SL with
1D random modulation~which models random displace
ments of the interfaces from their initial periodic arrang
ment!, 3D modulation~which models random deformation
of the interfaces!, and the simultaneous presence of bo
kinds of these modulations~which models the mixture of the
1D and 3D inhomogeneities of the SL structure!.

For the initially sinusoidal SL, the CF in all these cases
a product of the same harmonic function cos(qrz) and a de-
creasing function that has different forms for the differe
cases. The main difference between the CF’s for 1D and
inhomogeneities is that the decreasing function goes to z
whenr z→` in the 1D case, while the decreasing function
the 3D case goes to the nonzero asymptotic valueL5exp
(23g3

2) when r→`. Because of this, the 1D inhomogen
ities have a finite correlation radiusr 15(g1

2ki)
21 in the en-

tire volume of the superlattice, while for the 3D case vo
umes with a finite correlation radiusr 35(g3

2k0)21 exist side
by side with volumes with an infinite correlation radius.
we set the total volume equal to unity, the contribution of t
volumes with the infinite correlation radius is proportional
L, while the contribution of the volumes with the finite co
relation radius is 12L. In the 1D case, the transition to th
ideal periodic structure with the decrease of the rms fluct
tion g1 is achieved by increasing the correlation radiusr 1; it
is the usual transition from a random to a periodic system
the 3D case, we have another kind of transition. The co
lation radiusr 3 increases with the decrease ofg3 as in the
1D case. But in parallel with this, the changing of the re
tionship between the volumes with finite and infinite corr
9-6
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EFFECTS OF THE DIMENSIONALITY OF . . . PHYSICAL REVIEW B 68, 024209 ~2003!
lation radii goes on with the decrease or increase of the
order. This leads to the essential differences between
effects on the wave spectrum that are due to the 1D or
inhomogeneities~the much smaller damping of waves in th
3D case, and so on!.

The decreasing part of the CF of the SL in the presenc
the mixture of the 1D and 3D inhomogeneities has the fo
of the product of the decreasing parts of the CF’s of
components of the mixtureK1(r z) andK3(r ). This leads to
the conclusion that the general form of the CF of the mixt
is determined mainly by the 1D inhomogeneities. The cha
ing of the relationship between the volumes of the medi
with and without the 3D correlations is going on with th
changing ofg3 in this case as well. However, the 1D corr
lations are present in both of these volumes. As a con
quence of this, the CF of the mixture goes to zero wher
→` for all directions exceptu5p/2 as in the 1D case; th
presence of the 3D inhomogeneities leads only to a decr
of the effective correlation radii of the mixture along all c
ordinate axes.

The dependence of the widths of the gap in the spect
and the damping of waves on the relationship between
fluctuationsg1 and g3 of the 1D and 3D inhomogeneitie
have been studied at the boundary of the first Brillouin zo
On addition of the 3D inhomogeneities to the SL contain
only 1D inhomogeneities, the damping of waves increas
But this additional damping is approximately half as large
the damping that is due to the inhomogeneities with the sa
value of g3

2 in the absence of the 1D inhomogeneities. T
situation has also been considered when a gradual chan
of inhomogeneities of one dimensionality by inhomogen
ities of the other dimensionality subject to the conditiong1

2

1g3
25const is occurring. It has been shown that the ma

mum value of the gap corresponds to some relationship
l.
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e
ing
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tweeng1
2 andg3

2 but not tog1
250 as one could expect from

general considerations. This phenomenon as well as the
nomenon of the reduction of the damping induced by the
inhomogeneities in the presence of 1D inhomogeneities
due to the fact that the decreasing parts of the CF’s of
components of the mixtureK1(r z) and K3(r ), as for the
mixture of any phase inhomogeneities, enter into the CF
the SL in the form of a product, not a sum.

For the experimental observations of the effects predic
in this paper, it is desirable to create model SL’s in which t
dimensionalities and all parameters of the inhomogenei
of the structure are known. Not only the sinusoidal SL’s th
have been considered in this paper but also SL’s with a r
angular initial profile could be used for this purpose, beca
the effects in the spectrum at the boundary of the first B
louin zone for both of these models of SL’s diffe
insignificantly.23 All the effects considered in this pape
could be observed on the three types of the model samp
samples with controlled random deviations of the plane
terfaces from their initial periodic arrangement; samples w
controlled deformations of the surfaces of the interfaces p
serving their periodic arrangement; and samples with the
multaneous presence of both of these types of inhomog
ities. The results of such model experiments could be u
for the determination by spectral methods of the dimensi
alities, rms fluctuationsg1 and g3, and correlation radiiki
and k0 in real SL’s for which these characteristics are u
known.
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