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Quantum diffusion in a biased kicked Harper system
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Quantum diffusion in a biased kicked Harper system, modeling field-induced transport in superlattices, is
studied for fully chaotic dynamics of the underlying classical system. Under these conditions, the classical
transport is diffusive whereas the quantum diffusion can be either enhanced or suppressed for commensurable
or incommensurable ratio of the Bloch period to the driving period, respectively. The quantum transport
properties are related to the statistical properties of the quasienergy spectra as described by random matrix
theory.
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I. INTRODUCTION

Recently much attention has been paid to the trans
and spectral properties of quantum periodic structures w
classically chaotic dynamics@1–6#. For example, Ref.@1#
discusses the dynamics of a quantum particle in
amplitude-modulated cosine potential, Ref.@2# deals with a
periodic chain of chaotic billiards, and Ref.@3# focuses on
the effect of classical stability islands, etc. In the pres
paper we study the process of ‘‘quantum diffusion’’ in pe
odically driven biased superlattices. We show that this pr
lem has many similarities with the famous quantum kick
rotor problem@7#. Namely, the temporal regime of classic
diffusion is changed to quantum ballistic or saturation
gimes, depending on the value~rational or irrational! of
some control parameter. The relation of these two regime
quantum dynamics to the quasienergy spectrum of the
tem is discussed and it is shown that the superdiffusion or
suppressed diffusion can be explained by the statistical p
erties of the spectrum, more precisely its analysis by rand
matrix theory~RMT!.

II. THE BIASED HARPER MODEL

The notion of a superlattice implies that in addition to t
natural~lattice! period, there is a larger period in the syste
enforced by some periodic potentialV(x). ~One may think,
e.g., of a semiconductor superlattice as a physical obje!
Because of the presence of this potential, each Bloch ban
the system is split intoN minibands, whereN is the super-
lattice period in units of the lattice period. In what follow
we shall use scaled variables, where the superlattice peri
taken as 2p. Then, restricting the analysis to the grou
~original! Bloch band and using the basis of localized Wa
nier states~which are essentially localized within one well o
the lattice potential and provide an alternative basis in
Hilbert space spanned by the Bloch functions! the Hamil-
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tonian of the biased superlattice, i.e., a superlattice in
external field, takes the form

Ĥ52cosp̂1V~x!1Fx, V~x12p!5V~x!, ~1!

wherep̂52 i\]/]x and\52p/N. It is worth noting that by
construction the coordinatex in the Hamiltonian~1! is a
discrete variable, i.e.,x[xn52pn/N. Correspondingly, the
operator cosp̂ is the sum of shift operators over the lattic
period 2p/N, i.e., cosp̂c(xn)5@c(xn11)1c(xn21)#/2. ~Note
that this leads to the celebrated tight-binding model.!

The classical counterpart of the Hamiltonian~1! obvi-
ously reads asH52cosp1V(x)1Fx, where the~continu-
ous! variablesx (2`,x,`) and p (2p,p<p) are the
coordinate and momentum of the classical particle. It is e
to see that the motion of a classical particle with this Ham
tonian is always bounded to a region;1/F. However, if we
periodically drive the system,V(x)→V(x,t)5V(x,t1T),
the particle can go arbitrarily far from its initial location. A
prerequisite for this is the chaotic dynamics of the system
the absence of the static field. Because the particular form
V(x,t) is irrelevant to the effects discussed below, we sh
use for simplicity ad-kicked harmonic perturbation. Thu
our model corresponds to a biased kicked Harper system

Ĥ52cosp̂2K cosx(
m

d~ t2mT!1Fx. ~2!

It is worth noting that, since the kicked Harper system w
introduced in Ref.@8# to model a random walk on a web an
in Refs.@9,10# in the field of classical and quantum chaos,
has been widely used to model different phenomena and
appear in very different context~see, for example, Refs
@4,5#, which also contain an extended list of references
kicked Harper related problems!. A stroboscopic bias has
been considered in the quantum kicked rotor to follow acc
erator mode islands@11#. In the present work we use it to
study the effect of a static field on the chaotic diffusion of t
coordinate. To simplify the analysis, we assume that forF
50 the kicked Harper system is in the regime of fully d
©2003 The American Physical Society02-1
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veloped chaos~no stability islands!, and we restrict ourselve
to such a weak fieldF that it does not change this property
the system.~In general, the effect of the static field is rath
nontrivial and it may both enhance or suppress chaos.! Under
this presumption, the classical system~2! shows perfect dif-
fusion, i.e., the mean squared displacement grows asymp
cally linearly in time, ^x2&5Dt, with essentially the same
value of the diffusion constantD as in the unbiased case
This is illustrated by the dashed line in Fig. 1 for syste
parametersK52, T54, F50.024 and an initial ‘‘minimum
uncertainty’’ ensemble of classical particles with^x&5^p&
50. ~The diffusion constantD'0.05 as to be compared t
D'0.07 forF50.!

The quantum dynamics in the presence of static field
however, quite different from the classical one. The k
point is that the biased quantum system has another~intrin-
sic! time period besides the period of the driving forceT.
This is the so-called Bloch periodTB5\/F. Figure 1 also
shows ^x2& for the quantum evolution. Depending on th
ratio T/TB , the temporal classical diffusion becomes eith
accelerated~dashed-dotted line! or suppressed~full line!.
Namely, for a commensurable ratio, one finds a ballistic
namics with^x2&;t2 for large times, and for an irrationa
ratio the classical diffusion is quantum mechanically loc
ized. These differences in the diffusion regimes reflect
qualitatively different structures of the quasienergy spectr
the two cases, which are analyzed in the following.

III. THE QUASIENERGY SPECTRUM

We begin with the analysis of the quasienergy spectrum
the biased kicked Harper system~2! for resonant driving,T
5TB . In this case, the quasienergy spectrumea(k) of the
system determined by the eigenstates of the Floquet oper

FIG. 1. Diffusion regimes for the biased Harper system~2!. The
dashed line shows the expectation value^x2& for the classical dif-
fusion ~system parametersK52, T54, andF50.024). The corre-
sponding quantum evolution (\52p/63) shows a suppression o
the classical diffusion~solid line!, whereas in the commensura
case,TB5T ~which is realized by choosingF5\/T'0.024 93) the
quantum diffusion is accelerated~dashed-dotted line!.
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Û~T!ca,k~x!5expS 2
i

\
ea~k!TDca,k~x!, ~3!

consists ofN bandsea(k), a51, . . . ,N, with a quasimo-
mentum k confined to the first Brillouin zone21/2,k
<1/2. To find the spectrum numerically, one has to diag
nalize ak-dependentN3N unitary matrix given by the ex-
pression@12#

Û (k)~T!5expS iFT

\
xDexp̂S i

\E0

T

cos~ p̂1\k2Ft !dtD
3expS iK

\
cosxD , ~4!

where exp̂denotes time ordering. We note that due to t
condition T5TB , the quantityFT/\ in the first exponent
equals unity. The advantage of the displayed form of
evolution operator is that it also correctly captures the cas
a vanishing static field.

The spectra of the system in these two cases (F50 and
F5\/T) are compared in Fig. 2 forK52, T54, and N
52p/\563. Even visually it can be concluded that the sta
field changes the statistical properties of the spectrum.
deed, it can be shown that forFÞ0 and any value ofk,
excludingk50 andk561/2, matrix~4! has no antiunitary
symmetry@13,14#. Thus, forFÞ0, the statistical properties
of the spectrum should be similar to those of a circular u
tary ensemble~CUE! of random matrices, whereas forF
50 we know that the statistics follows the circular orthog
nal ensemble~COE! @15#. In particular, we expect that th
distribution of the gapss5(ea112ea)/D, whereD is the
mean gap width, follows the RMT distributions

PCOE~s!5
p

2
s e2ps2/4, ~5!

for F50, and

FIG. 2. The quasienergy spectrum of the system forF50 ~left
panel! andF5\/T ~right panel! (K52, T54, N52p/\563).
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PCUE~s!5
32

p2
s2e24s2/p, ~6!

for FÞ0. @In Eqs. ~5! and ~6! the conditionN@1 is as-
sumed.# We shall test our conjecture in terms of the cum
lated distributionsI (s)5*0

sP(s8) ds8. Then Eq.~5! and Eq.
~6! take the form I COE(s)512exp(2ps2/4) and I CUE(s)
5erf(2s/Ap)2(4s/p)exp(24s2/p), respectively. The com
parison of the cumulated distributions of the energy ga
shown in the left panel of Fig. 3, confirms the anticipat
statistics. ~In order to increase the number of states,N
5255 has been used instead ofN563 in Fig. 2.! It is clearly
seen that for the biased system withF chosen to satisfy the
condition TB5T, the statistics of the quasienergy ga
changes from COE to CUE. Let us also note that the coin
dence between numerical data and theoretical curves ca
improved if the vicinitiesdk;\ of the center and the edge
of Brillouin zone are excluded from the analysis. These
the so-called ‘‘contact zones,’’ where the symmetry, a
hence the adequate RMT ensemble, changes~see, e.g., the
related observations in studies of magnetic band struct
@16# or billiard chains@6#!.

Next we analyze the caseTB /T5r /q wherer and q are
coprime integers. It has been shown in Ref.@12# that in this
case the quasienergy spectrum of the system can be
structed from the spectrum of the evolution operator over
commonperiod rT5qTB ,

Û~rT !5exp~ iqx!)
n51

r Fexp̂S i

\E(n21)T

nT

cos~p2Ft !dtD
3expS iK

\
cosxD G . ~7!

FIG. 3. Integrated distribution of the energy gaps. The two so
lines in the left panel are the numerical results forF50 and F
5\/T, the solid line in the right panel corresponds toF
529\/27T. ~Scaled Planck’s constant\52p/255, the other pa-
rameters are the same as in Fig. 2!. The dashed lines show COE an
CUE statistics according to RMT.
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The energy bands of operator~7! are periodic functions of
the quasimomentum with period 1/r ~see Fig. 4!. This re-
flects the fact that the quasienergy spectrum of system~2! is
confined to the reduced Brillouin zone21/2r ,k<1/2r . It is
also interesting to note that for large values ofr and q the
distribution of the energy gaps again approaches a COE
tistics. This can be understood by noticing that for a sm
Brillouin zone ~which is the case for a larger ) any point is
actually in the ‘‘vicinity’’ of the special pointsk50 ~zone
center! or k561/2r ~zone edges!. As an example, the righ
panel of Fig. 3 shows the integrated gap statistics fo
slightly increased fieldF529\/27T'1.07\/T compared to
F5\/T in the left panel. We clearly see that the COE d
tribution of the unbiased case is approximately restored.

The other important result, which can be concluded fro
Fig. 4, is that the widths of the quasienergy bands tend
zero whenr ,q→`. This is in agreement with the assumptio
about the discrete quasienergy spectrum in the case o
commensurate periods.~Although this assumption looks
quite natural, we are not aware of any formal proof of th
statement.! In principle, one can study the dependence of
bandwidth on the system parameters. However, the more
portant quantity for our present aim is the mean squa
group velocity

v5
T

r F K S ]ea~k!

\]k D 2L G1/2

, ~8!

where the angle brackets denote an average over the
index and the quasimomentum. It is easy to show that qu
tity ~8! is directly related to the prefactor of the asympto
^x2&;t2 regime of the quantum diffusion realized in th
commensurate case. Figure 5 shows the velocityv as a func-
tion of TB /T5r /q for the rational numbers withq,30. One
observes a highly structured behavior which depends se
tively on the denominatorq ~note that velocities with the
same denominator are approximately equal!. Up to now we
have no analytical estimate for the mean velocity, but n

d
FIG. 4. The spectrum of the evolution operator~7! for TB /T

5r /q with r 53, q54 ~left panel!, andr 527, q529 ~right panel!.
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merical data suggest thatv decays~with increasing noncom-
mensurability! faster thanv;q23/2. This problem requires
further study.

IV. CONCLUDING REMARKS

Finally, we would like to discuss the relation of the r
ported results to those for the kicked quantum rotor@7# and
to those of Ref.@17#.

For the kicked rotor system, we have classical diffusion
the momentum, which becomes either suppressed or acc
ated, depending on the ratio~rational/irrational! of the driv-
ing period to some internal quantum period. For the bia
kicked Harper system considered here, we find diffusion
the coordinate which is suppressed or accelerated in
quantum case, depending on the ratio of the driving perio
the Bloch period~which is a pure quantum quantity!. This
similarity raises the question whether such an analogy

FIG. 5. The mean squared velocity~8! as a function ofTB /T
5r /q, for rational number in the interval 1<r /q<2, q,30.
s.
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tween these two problems can be extended. In particula
would be interesting to study the dependence of the local
tion length of the quasienergy wave functions on the cla
cal diffusion coefficient, a problem, which has been intens
discussed for the kicked rotor and variety of the other s
tems with classical diffusion of the momentum.

The system considered in Ref.@17# is formally closer to
the biased kicked Harper~than the kicked rotor! but has a
completely different dynamics. Indeed, in the cited paper
have studied the dynamical and spectral properties of a
tem with the Hamiltonian

H5 p̂2/21V~x,t !1Fx, ~9!

whereV(x,t) is periodic both in space and time. For syste
~9! the condition of commensurability between the drivin
and Bloch periods mainly affects the stability properties.
particular, it was shown that the survival probability~the
absolute square of the wave function overlap fort50 andt
.0) decays algebraically ast2q for TB /T5r /q rational, in
contrast to an exponential decay for the irrational ca
TB /TÞr /q. In this present paper, we have considered
‘‘stabilized version’’ of system~9!, which is obtained by im-
posing a periodicity condition on the momentum,p2/2
→2cosp. ~As mentioned in the introductory part of Sec. I
this situation can be realized for superlattices.! In this case,
the condition of commensurability controls the process
chaotic diffusion—for rationalTB /T the diffusion is acceler-
ated but it is suppressed for irrationalTB /T. It is interesting
to note that in terms of the survival probability the behav
of system~2! appears to beoppositeto that of system~9!.
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