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Quantum diffusion in a biased kicked Harper system

A. R. Kolovsky*
Max-Planck-Institut fu Physik Komplexer Systeme, D-01187 Dresden, Germany
and Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia

H. J. Korsch
Technische UniversiteKaiserslautern, FB-Physik, D-67653 Kaiserslautern, Germany
(Received 16 May 2003; published 3 October 2003

Quantum diffusion in a biased kicked Harper system, modeling field-induced transport in superlattices, is
studied for fully chaotic dynamics of the underlying classical system. Under these conditions, the classical
transport is diffusive whereas the quantum diffusion can be either enhanced or suppressed for commensurable
or incommensurable ratio of the Bloch period to the driving period, respectively. The quantum transport
properties are related to the statistical properties of the quasienergy spectra as described by random matrix
theory.
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[. INTRODUCTION tonian of the biased superlattice, i.e., a superlattice in an
external field, takes the form
Recently much attention has been paid to the transport
and spectral properties of quantum periodic structures with H=—cosp+V(x)+Fx, V(x+2m)=V(x), (1)
classically chaotic dynamickl—6]. For example, Ref[1]

discusses the dynamics of a quantum particle in aQyherep=—i#g/9x ands=2/N. It is worth noting that by
amplitude-modulated cosine potential, Ref] deals with a  onstruction the coordinate in the Hamiltonian(1) is a

periodic chain of chaotic billiards, and R¢B] focuses on  giscrete variable, i.ex=x,=27n/N. Correspondingly, the
the effect of classical stability islands, etc. In the present A . .
paper we study the process of “quantum diffusion” in peri- opgrator cop |.s the sum of shift operators over the lattice
odically driven biased superlattices. We show that this probPeriod 2m/N, i.e., cop ¢{x)=[¢(Xy. 1)+ ¥{x,-1)}/2. (Note

lem has many similarities with the famous quantum kickedthat this leads to the celebrated tight-binding model.

rotor problem[7]. Namely, the temporal regime of classical ~ The classical counterpart of the Hamiltoni&h) obvi-
diffusion is changed to quantum ballistic or saturation re-0usly reads asi=—cosp+V(x)+Fx, where the(continu-
gimes, depending on the valugational or irrational of ~ OUS variablesx (—«<x<w) andp (- 7<p=m) are the
some control parameter. The relation of these two regimes dioordinate and momentum of the classical particle. It is easy
quantum dynamics to the quasienergy spectrum of the syd0 see that the motion of a classical particle with this Hamil-
tem is discussed and it is shown that the superdiffusion or théonian is always bounded to a regionl/F. However, if we
suppressed diffusion can be explained by the statistical propgeriodically drive the systemV(x)—V(x,t)=V(x,t+T),

erties of the Spectrum, more precise|y its ana|ysis by rando[ﬂqe partiCle can go arbitrarily far from its initial location. A
matrix theory(RMT). prerequisite for this is the chaotic dynamics of the system in

the absence of the static field. Because the particular form of
V(x,t) is irrelevant to the effects discussed below, we shall
IIl. THE BIASED HARPER MODEL use for simplicity as-kicked harmonic perturbation. Thus

The notion of a superlattice implies that in addition to the U model corresponds to a biased kicked Harper system,

natural(lattice) period, there is a larger period in the system,
enforced by some periodic potentM(x). (One may think, H=—cosp—K cost S(t—mT)+Fx. 2
e.g., of a semiconductor superlattice as a physical object. m
Because of the presence of this potential, each Bloch band of
the system is split intdN minibands, whereN is the super- It is worth noting that, since the kicked Harper system was
lattice period in units of the lattice period. In what follows, introduced in Ref[8] to model a random walk on a web and
we shall use scaled variables, where the superlattice period is Refs.[9,10] in the field of classical and quantum chaos, it
taken as Zr. Then, restricting the analysis to the ground has been widely used to model different phenomena and may
(original) Bloch band and using the basis of localized Wan-appear in very different contexisee, for example, Refs.
nier stategwhich are essentially localized within one well of [4,5], which also contain an extended list of references to
the lattice potential and provide an alternative basis in thé&icked Harper related problemsA stroboscopic bias has
Hilbert space spanned by the Bloch functiptise Hamil-  been considered in the quantum kicked rotor to follow accel-
erator mode islandgll]. In the present work we use it to
study the effect of a static field on the chaotic diffusion of the
*Electronic address: kolovsky@mpipks-dresden.mpg.de coordinate To simplify the analysis, we assume that for
"Electronic address: korsch@physik.uni-kl.de =0 the kicked Harper system is in the regime of fully de-
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FIG. 1. Diffusion regimes for the biased Harper syst@n The FIG. 2. The quasienergy spectrum of the systemFer0 (left
dashed line shows the expectation va{ué} for the classical dif- pane) andF=7#/T (right pane) (K=2, T=4, N=2/%=63).
fusion (system parameteis=2, T=4, andF=0.024). The corre-

sponding quantum evolutior& 27/63) shows a suppression of i
the classical diffusion(solid line), whereas in the commensurate (T X :exr{ —— e ()T X 3
caseTg=T (which is realized by choosing=#/T~0.024 93) the (1) ¥a(X) h (T [P X), @
quantum diffusion is acceleratédashed-dotted line ] )
consists ofN bandse, (), a=1,... N, with a quasimo-

veloped chaono stability islands and we restrict ourselves Mentum « confined to the first Brillouin zone-1/2<«

to such a weak fiel@ that it does not change this property of =1/2. To find the spectrum numerically, one has to diago-
the system(In general, the effect of the static field is rather Nalize ax-dependenNXN unitary matrix given by the ex-
nontrivial and it may both enhance or suppress chadsder ~ Pression12]

this presumption, the classical systé2 shows perfect dif- )
fusion, i.e., the mean squared displacement grows asymptoti- O(K)(T):eXp(EX
cally linearly in time,(x?)=Dt, with essentially the same h

Y i I 1 N
ex;{—f cogp+hk—Ft)dt
fi)o

value of the diffusion constar®d as in the unbiased case. )
This is illustrated by the dashed line in Fig. 1 for system % ex ﬁcosx) ()
parameterK =2, T=4, F=0.024 and an initial “minimum h '

uncertainty” ensemble of classical particles witk)=(p) .
=0. (The diffusion constanD~0.05 as to be compared to where expdenotes time ordering. We note that due to the

D~0.07 forF=0.) condition T=Tg, the quantityFT/% in the first exponent
The quantum dynamics in the presence of static field isequals unity. The advantage of the displayed form of the
however, quite different from the classical one. The keyevolution operator is that it also correctly captures the case of
point is that the biased quantum system has andih&in-  a vanishing static field.
sic) time period besides the period of the driving for€e The spectra of the system in these two cases Q and
This is the so-called Bloch periolg=#%/F. Figure 1 also F=#/T) are compared in Fig. 2 foK=2, T=4, andN
shows(x?) for the quantum evolution. Depending on the =27/4=63. Even visually it can be concluded that the static
ratio T/Tg, the temporal classical diffusion becomes eitherfield changes the statistical properties of the spectrum. In-
accelerated(dashed-dotted lineor suppressedfull line). deed, it can be shown that fét#0 and any value ok,
Namely, for a commensurable ratio, one finds a ballistic dy-excludingk=0 andx= = 1/2, matrix(4) has no antiunitary
namics with(x?)~1t2 for large times, and for an irrational symmetry[13,14]. Thus, forF#0, the statistical properties
ratio the classical diffusion is quantum mechanically local-of the spectrum should be similar to those of a circular uni-
ized. These differences in the diffusion regimes reflect theary ensemble(CUE) of random matrices, whereas fér
qualitatively different structures of the quasienergy spectra in=0 we know that the statistics follows the circular orthogo-
the two cases, which are analyzed in the following. nal ensemblgCOE) [15]. In particular, we expect that the
distribution of the gaps=_(€,,1—€,)/A, whereA is the

lll. THE QUASIENERGY SPECTRUM mean gap width, follows the RMT distributions

We begin with the analysis of the quasienergy spectrum of Peods) = zs o sl ©)
the biased kicked Harper systei®@) for resonant drivingT co 2 '
=Tg. In this case, the quasienergy spectrapix) of the

system determined by the eigenstates of the Floquet operatdor F=0, and
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FIG. 3. Integrated distribution of the energy gaps. The two solid FIG. 4. The spectrum of the evolution opera(@) for Te/T
lines in the left panel are the numerical results For0 andF r/q with =3, q=4 (left pane}, andr =27, q=29 (right pane}.
=#/T, the solid line in the right panel corresponds ®
=291/27T. (Scaled Planck’s constart=2/255, the other pa-
rameters are the same as in Figj. The dashed lines show COE and
CUE statistics according to RMT.

The energy bands of operatff) are periodic functions of
the quasimomentum with periodrl(see Fig. 4. This re-
flects the fact that the quasienergy spectrum of sys®rs
confined to the reduced Brillouin zonel/2r <xk<1/2r. Itis

also interesting to note that for large valuesradnd g the
distribution of the energy gaps again approaches a COE sta-
tistics. This can be understood by noticing that for a small
N ) Brillouin zone (which is the case for a largg any point is

for F#0. [In Egs. (5) and (6) the conditionN>1 is as-  actually in the “vicinity” of the special pointsc=0 (zone
sumed] We shall test our conjecture in terms of the CUMU-centej or k= +1/2r (zone edges As an example, the right
lated distributiond (s) = [gP(s’) ds’. Then Eq.(5) and EQ.  panel of Fig. 3 shows the integrated gap statistics for a
(6) take the formlcog(s)=1—exp(-ms74) and Icue(S)  slightly increased field = 29%/27T~1.07:/T compared to

= erf(2s/\/m) — (4s/m)exp(~4s?/m), respectively. The com- F=#/T in the left panel. We clearly see that the COE dis-
parison of the cumulated distributions of the energy gapsiribution of the unbiased case is approximately restored.
shown in the left panel of Fig. 3, confirms the anticipated The other important result, which can be concluded from
statistics. (In order to increase the number of statds, Fig. 4, is that the widths of the quasienergy bands tend to
=255 has been used instead\of 63 in Fig. 2) Itis clearly  zero wherr,q— . This is in agreement with the assumption
seen that for the biased system wiichosen to satisfy the about the discrete quasienergy spectrum in the case of in-
condition Tg=T, the statistics of the quasienergy gapscommensurate periodsAlthough this assumption looks
changes from COE to CUE. Let us also note that the coinciquite natural, we are not aware of any formal proof of this

32, .
Pcug(s)= — s’ *77, (6)
a

OT)=expigx) [ ]

dence between numerical data and theoretical curves can Beatemeny.In principle, one can study the dependence of the
improved if the vicinitiesSx ~# of the center and the edges bandwidth on the system parameters. However, the more im-
of Brillouin zone are excluded from the analysis. These argortant quantity for our present aim is the mean squared
the so-called “contact zones,” where the symmetry, andgroup velocity
hence the adequate RMT ensemble, char{ges, e.g., the
related observations in studies of magnetic band structures T[ /(e (x)\2\ ]2
[16] or billiard chaing[6]). v=— << o ) H , (8
Next we analyze the cask;/T=r/q wherer andq are ' K
coprime integers. It has been shown in R&£] that in this
case the quasienergy spectrum of the system can be Coyyhere the angle br_ackets denote_an average over the band
structed from the spectrum of the evolution operator over théhdex and the quasimomentum. It is easy to show that quan-
commonperiodrT=qTs, tity (8) is d|r¢ctly related to the prefactqr of the' asymptotic
(x?)~1? regime of the quantum diffusion realized in the
commensurate case. Figure 5 shows the velacig a func-
tion of Tg/T=r/q for the rational numbers with<30. One
n=1 observes a highly structured behavior which depends sensi-
tively on the denominatoq (note that velocities with the
same denominator are approximately egudp to now we
have no analytical estimate for the mean velocity, but nu-

_[i [nT
ex;{—f cogp—Ft)dt
ilim-nr

: (@)

» iK
exp| 4-cosx
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10° tween these two problems can be extended. In particular, it
would be interesting to study the dependence of the localiza-
] tion length of the quasienergy wave functions on the classi-
107k ] cal diffusion coefficient, a problem, which has been intensely
N * discussed for the kicked rotor and variety of the other sys-
. X * tems with classical diffusion of the momentum.
107} o, * W * e . The system considered in R¢fL7] is formally closer to
. o0 A A the biased kicked Harpdthan the kicked rotgrbut has a
f?“**: atr e T - . completely different dynamics. Indeed, in the cited paper we
10°F & 5, #, % * vt Fe T *} o T f‘i 5 have studied the dynamical and spectral properties of a sys-
* et o &M*** AT PN N . . .
LA T TR | tem with the Hamiltonian
*
e : il f:*ﬂ *1*:**## *3‘1**%#
* %y * * * ~
4| * * * o ® Nl x 4 2
10 o« & S H=p“/2+V(x,t) +FX, 9)
* *
B whereV(x,t) is periodic both in space and time. For system
10 12 12 18 18 > (9 the condition of commensurability between the driving

rlq and Bloch periods mainly affects the stability properties. In
particular, it was shown that the survival probabilitthe
absolute square of the wave function overlaptfer0 andt
>0) decays algebraically @s9 for Tg/T=r/q rational, in
contrast to an exponential decay for the irrational case
Tg/T#r/qg. In this present paper, we have considered a
“stabilized version” of systen{(9), which is obtained by im-
posing a periodicity condition on the momentump?/2
— —cosp. (As mentioned in the introductory part of Sec. I,
this situation can be realized for superlatti¢én. this case,
Finally, we would like to discuss the relation of the re- the condition of commensurability controls the process of
ported results to those for the kicked quantum r¢#rand  chaotic diffusion—for rational g /T the diffusion is acceler-
to those of Ref[17]. ated but it is suppressed for irrationgd /T. It is interesting
For the kicked rotor system, we have classical diffusion ofto note that in terms of the survival probability the behavior
the momentum, which becomes either suppressed or accel@t system(2) appears to beppositeto that of systen(9).
ated, depending on the ratioational/irrational of the driv-
ing period to some internal quantum period. For the biased
kicked Harper system considered here, we find diffusion of
the coordinate which is suppressed or accelerated in the Support from the Deutsche Forschungsgemeinschaft as
quantum case, depending on the ratio of the driving period tavell as from the Volkswagen Foundation is gratefully ac-
the Bloch period(which is a pure gquantum quantityThis  knowledged. We would also like to thank Thomas Dittrich
similarity raises the question whether such an analogy befor useful suggestions which improved the manuscript.

FIG. 5. The mean squared velocif§) as a function ofTg/T
=r/q, for rational number in the intervaldr/q=<2, q<30.

merical data suggest thatdecayswith increasing noncom-
mensurability faster thanv~q~ 2 This problem requires
further study.

IV. CONCLUDING REMARKS
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