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Floquet-Bloch operator for the Bose-Hubbard model with static field
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This paper deals with the spectral properties of the one-dimensional Bose-Hubbard Hamiltonian amended by
an external static field—a model for cold spinless atoms loaded in a quasi-one-dimensional optical lattice and
subject to an additional static~for example, gravitational! force. The analysis is performed in terms of the
Floquet-Bloch operator, defined as the evolution operator of the system over one Bloch period. Depending on
the particular choice of parameters, the spectrum is found to be either regular or chaotic. Moreover, in the
chaotic case, the matrix of the Floquet-Bloch operator is well characterized as a random matrix of the circular
orthogonal ensemble.
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I. INTRODUCTION

Recently, much attention has been paid to the dynamic
ultracold neutral atoms in optical lattices. Such syste
mimic crystalline electrons and allow to study many ph
nomena of solid state physics with unprecedented exp
mental control. A beautiful example is provided by Bloc
oscillations~BOs! @1#, which were observed in experimen
@2,3# on dilute gases of cold alkali-metal atoms. Note tha
dilute gas implies the absence of atom-atom interactions
hence, a single-particle approach suffices to describe su
system. The next generation of BO experiments involve
relatively dense gas of atoms, where the atom-atom inte
tion cannot be neglected any more@4,5#. ~From now on we
use the term Bloch oscillations in a wide sense, as the
tem’s response to a static force.! A number of effects incom-
patible with the single-particle picture were observed, th
challenging theory.

Among the theoretical approaches to BOs of interact
~bosonic! atoms one can single out the Gross-Pitaevski eq
tion @6–8# and the Bose-Hubbard model@9–11# as the most
important ones. In the former case it is assumed that
N-particle wave function of the system can be expresse
terms of a single macroscopic wave function. It should
noted, however, that this~rather strong! assumption can be
questioned. Indeed, as shown in a recent paper@12# ~discuss-
ing the dynamics of some model system! the validity of the
Gross-Pitaevskii equation requires a large filling fac
~mean number of bosons per lattice site!, which is definitely
not the case realized in present-day experiments. The B
Hubbard model, on the other hand, does not involve aa
priori assumption on the structure of theN-particle wave
function, and the only limitation of this approach is the v
lidity of the tight-binding ansatz~which, in fact, defines the
Bose-Hubbard model!. The present paper follows the seco
approach and, in this sense, extends our previous studie
BOs in correlated bosonic systems@10,11#.

An important role in the single-particle theory of BOs
played by the Floquet-Bloch operator~FB operator!, defined
as the evolution operator of the system over one Bloch
riod TB5\/dF ~hereF is the magnitude of the static forc
andd is the lattice period! @13#. Indeed, given the solution o
1063-651X/2003/68~5!/056213~9!/$20.00 68 0562
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the eigenvalue problem for the FB operator, one can exp
the dynamics of the system in terms of its eigenfunctions
appears reasonable to study the properties of the FB ope
also in the presence of atom-atom interactions. This con
tutes the aim of the present work, which is an analysis of
spectrum of the FB operator for variable system paramet
Following this aim, we will confirm our earlier conjectur
@11# that BOs with interacting bosons defines a problem
quantum chaosand, hence, requires the specific tools of th
theory. In turn, the spectral problem considered here cont
utes an interesting example to the field of quantum cha
which merits discussion in some detail.

The foundation of quantum chaos is usually traced b
to the energy spectra of compound nuclei~see Refs.@14,15#
and references therein!. A celebrated postulate of the theor
states that, because of the extreme complexity of the sys
the Hamiltonian of a compound nucleus can be modeled b
random matrix of appropriate symmetry. This conjecture
to a number of theoretical predictions on the statistical pr
erties of the spectrum, well supported by experimental d
The idea of the generic ‘‘randomness’’ of a complex syst
developed further with the systematic research on class
chaos. It was shown that the spectrum of a quantum sys
which shows chaotic dynamics in the classical limit, exhib
universal statistical properties. Here, the complexity of
system stems from the underlying classically chaotic dyna
ics, which~for autonomous systems! may already emerge in
only two degrees of freedom. In fact, the quantum analy
of few degree of freedom, classically chaotic systems w
the main subject of the theory of quantum chaos during
past two decades. Most recent developments of quan
chaos~facilitated to much extent by the ever growing perfo
mance of computers! bring us back to the initial formulation
of the problem, where the systems of interest consist o
large number of identical particles and, fundamentally, ha
no direct classical counterpart. Recent studies have sh
that quantum chaos is indeed a generic phenomenon in in
acting fermionic systems@one-dimensional~1D! chains of
interacting spins, complex atoms, electrons in a random
tice potential, etc.# @16–20#. The results reported in the
present paper indicate that quantum chaos is also generi
bosonicsystems. In particular, we show that, for a certa
©2003 The American Physical Society13-1
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region in parameter space, the FB operator of the 1D Bo
Hubbard model can be identified with arandom circular
orthogonal ensemble (COE) matrix. It should be stressed in
this context that, on the level of the Hamiltonian, our syst
of interest does not contain any randomness. This dis
guishes the present spectral problem from that of disorde
many-body systems~see, e.g., Refs.@17,20#!.

The structure of the paper is as follows. In Sec. II w
recall some single-particle results on BOs and explain wh
is of advantage to analyze the FB operator rather than
system Hamiltonian. Section III is devoted to the symme
properties of the many-body FB operator, induced by
translational symmetry of the Bose-Hubbard model. A p
liminary analysis of the spectrum of the FB operator is giv
in Sec. IV. Depending on the particular choice of the para
eters, the spectrum of the FB operator is found to be ei
regular or irregular~chaotic!. These two kinds of spectra ar
then studied in more detail in Secs. V and VI. The ma
results of the paper are summarized in the conclud
Sec. VII.

II. FLOQUET-BLOCH STATES

In the one-dimensional case, the single-particle Ham
tonian of our system has the form

H5
p̂2

2
1V~x!1Fx, ~1!

whereV(x) is the periodic potential andF is the magnitude
of the static field.~Here and below we use scaled variable
where the period of the potential is 2p, and the mass of the
quantum particle as well as the Planck constant are set e
to unity.! First of all, we note that the translational symmet
of the Hamiltonian, apparently broken by the static field, c
actually be recovered. Indeed, with the substitution

c~x,t !5exp~2 iFtx !c̃~x,t ! ~2!

the Schro¨dinger equation readsi ]c̃/]t5H̃(t)c̃, with H̃(t)
the time-dependent Hamiltonian

H̃~ t !5
~ p̂2Ft !2

2
1V~x!. ~3!

It is easy to see that the Hamiltonian~3! commutes with the
lattice shift operator. Then it is a matter of a few lines
show that the Schro¨dinger equation for the original wav
function c(x,t) has solutions in the form of translational
invariant Floquet states,

c~x12p,t !5exp~2 i2pk!c~x,t !, ~4!

c~x,t11/F !5exp~2 iE/F !c~x,t !,

wherek is the quasimomentum~21/2,k<1/2!, andE is the
quasienergy (2pF,E<pF). Analytically, one finds the
Floquet-Bloch~or Wannier-Bloch! states~4! by solving the
eigenvalue problem for the unitary operatorU(TB) of the
system evolution over one Bloch periodTB51/F.
05621
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For a detailed formulation of Floquet-Bloch theory, w
refer the reader to the review@13#, and here restrict ourselve
to the simpler tight-binding approximation. Then, the Ham
tonian ~1! takes the form

H5E(
l

u l &^ l u2
J

2 S (
l

u l 11&^ l u1H.c.D 1F(
l

2p l u l &^ l u,

~5!

where u l & denotes the Wannier state,^xu l &5f l(x), associ-
ated with thel th well of the periodic potential, andJ is the
hopping matrix element between two neighboring Wann
states. Substitution~2! amounts to the interaction represent
tion with respect to the static term, and the tight-bindi
counterpart of the Hamiltonian~3! reads as

H̃~ t !5E(
l

u l &^ l u2
J

2 S e2 i2pFt (
l

u l 11&^ l u1H.c.D .

~6!

At last, the explicit form of the Floquet-Bloch solution~4! is
given by

uc~ t !&5e2 iEt expS i
J

F
sin 2p~k1Ft ! D(

l
ei2p l (k1Ft)u l &,

~7!

which describes the time evolution of the Bloch stateuck&
5( l exp(i2pkl)ul&. Thus, Eq.~7! can be rewritten in the form
uck(t)&;uck1Ft&, which represents one of the possible fo
mulations of the BOs phenomenon.

A remark on boundary conditions is in place here.
what follows we shall consider a system of finite siz
l 51, . . . ,L, with periodic ~cyclic! boundary conditions
imposed. As easily shown analytically, in this case the Sch¨-
dinger equation with the Hamiltonian~6! hasL linearly in-
dependent solutions of the same form~7!, but with discrete
quasimomentumk5 j /L ( j 51, . . . ,L). We also note the
time-reversal symmetry (t→2t,k→2k) of the Floquet-
Bloch solution. Because of this symmetry, the quasienerg
E of the many-body problem are typically doubly degener
~see the following section!.

We conclude this section by introducing the Floqu
Bloch operator

U~TB!5exp̂S 2 i E
0

TB
H̃~ t !dtD , TB5

1

F
, ~8!

where the hat over the exponential denotes time ordering
an immediate consequence of Eq.~7!, operator~8! is a diag-
onal matrix~in the Wannier state basis! in the single-particle
approach, with elements exp(2iE/F) along the diagonal.
Without loss of generality, one can setE50, thenU(TB)
51̂. ~To avoid confusion with Ref.@13#, we stress that the
last equation only holds in the tight-binding approximation!
3-2
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III. FLOQUET-BLOCH OPERATOR FOR INTERACTING
BOSONS

The generalization of the tight-binding model~5! for the
multiparticle case is given by the Bose-Hubbard model, w
an additional Stark term:

H52
J

2 S (
l

âl 11
† âl1H.c.D 1F(

l
2p l n̂ l

1
W

2 (
l

n̂l~ n̂l21!. ~9!

Here, âl
† and âl are the bosonic creation and annihilatio

operators,n̂l5âl
†âl is the occupation number operator on t

l th lattice site, and the parameterW characterizes the inter
action between the particles. Since the Bose-Hubbard Ha
tonian conserves the total number of particlesN, the wave
function of a system of finite sizeL can be presented in th
form

uC~ t !&5(
n

cn~ t !un&, ~10!

where the vectorn, with L integer componentsnl (( lnl
5N), labels the N-particle bosonic wave function con
structed fromN Wannier functions. The dimension of th
Hilbert space spanned by the Fock statesun& is

N5~N1L21!!/N! ~L21!!.

The key issue we address in this work is the spec
properties of the FB operator~8!, generated by the Hamil
tonianH̃(t) now given by

H̃~ t !52
J

2 S e2 i2pFt(
l 51

L

âl 11
† âl1H.c.D 1

W

2 (
l

n̂l~ n̂l21!.

~11!

The advantage of the FB operator over the Hamiltonian
that it recovers the translational symmetry of the system~see
below!. Simultaneously, knowledge ofU(TB) suffices to de-
scribe the system dynamics by a discrete one-cycle m
uC(t1TB)&5U(TB)uC(t)&.

Let us investigate the translational symmetry proper
of the FB operatorU(TB) @which are actually inherited
from the Hamiltonian ~11!# in more detail. For un8&
5un1 ,n2 , . . . ,nL& an arbitrary Fock state, and the shift o
eratorS defined by

Sun1 ,n2 , . . . ,nL&5unL ,n1 , . . . ,nL21&, ~12!

there can be at mostL different Fock statesun& related to
each other by the shift operator. Using these states, we
struct an alternative basis of the Hilbert space:

uk,n8&5
1

AM
(
l 51

M

exp~ i2pk l !Sl un8&. ~13!
05621
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In Eq. ~13!, M is the number of different Fock states gene
ated by repeated application of the shift operator on
‘‘seed’’ state un8&, andk5 j /M ( j 51, . . . ,M ) denotes qua-
simomentum. In the new basisuk,n8&, the matrix of the
Hamiltonian~11! and, therefore, the matrix of the FB oper
tor, factorizes into a block matrix,

U~TB!5 % j 51
L U (k j )~TB!, ~14!

where each blockU (k j )(TB) corresponds to one ofL possible
values of quasimomentum. Furthermore, there are pair
blocks in decomposition~14! which are related to each othe
by time-reversal symmetry.

Let us illustrate this factorization by a concrete examp
for N5L53. The dimension of the Hilbert space isN510,
and one can choose the statesu111&, u201&, u210&, u300& as
seed states. The value ofM in Eq. ~13! is M51 for the first
seed state, andM53 for all others. Thus, the matrixU(TB)
consists of one block of size 434, corresponding tok51 ~or
k50, if one chooses21/2,k<1/2 as the first Brillouin
zone!, and of two ‘‘identical’’ blocks of size 333, corre-
sponding tok51/3,2/3~or k561/3!. Each block can be di-
agonalized separately and, hence, the spectrum of the
quet operator U(TB) is a superposition of severa
independent spectra. As an example, Fig. 1 shows
quasienergiesE as a function of 1/F for J50.038, andW
50.032. ~Levels corresponding tok561/3 coalesce.! Note
that quasienergy levels with differentk always cross, but tha
levels with the same value of quasimomentum may exh
avoided crossings.~For a more detailed analysis see the su
sequent sections.!

To proceed further, we need to agree on the ordering
the seed states. In what follows we use an ordering defi
by the quantity

1 20 40 60 80 100
1

0 

1 

1/F

E
/π

 F

FIG. 1. Evolution of the quasienergies of the Floquet-Bloch o
erator ~14! under changes of the inverse static field 1/F. Particle
numberN53, lattice sizeL53, size of Hilbert spaceN510, block
sizesM54,3,3 @in representation~14!#.
3-3
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m5
1

2 (
l 51

L

nl8~nl821!, ~15!

which is proportional to the interaction energy for the giv
Fock seed stateun8&. The advantage of this ordering is that,
some cases~see the following section!, the quantitym can be
considered as a second~in addition to quasimomentum! con-
served quantum number.

IV. SPECTRUM OF THE FLOQUET-BLOCH OPERATOR

The aim of this section is the~preliminary! analysis of the
spectrum of thek-specific Floquet-Bloch operatorU (k)(TB).
If not stated otherwise, we shall assumek50 and omit this
index in the formulas.

It is instructive to begin with the caseJ!W, and to fol-
low the structural evolution of the spectrum asJ is increased.
Figure 2~a! shows the spectrum of the FB operator for
system ofN53 atoms inL55 wells, as a function of 1/F,
for W50.032 andJ50.000 76. @For the chosenN and L,
matrix ~14! consists of five equal blocks of size 737.# For
such a small value of the hopping matrix element,
quasienergy spectrumE of the system is essentially given b
the quasienergy spectrum atJ50 which, in turn, is given by
the equation

exp~2 iETB!5exp~2 imW/F !, ~16!

where the quantitym was defined earlier in Eq.~15!. Thus,
the three~different slope! straight lines in the figure corre
spond to quasienergy levels with quantum numbersm50
~two levels!, m51 ~four levels!, andm53 ~one level!, respec-
tively. ~The number of levels is obviously given by the num
ber of different seed states with equalm.! The nonzero value
of J is reflected by the lifted degeneracy of levels with t
samem, and by the avoided crossings between levels w
different m. On the scale of the figure, one only observ
avoided crossings at a static force valueF5W (1/F51/W
.33). Similarly, a finite width of them band is detectable
only for the m manifold with the largest multiplicity, i.e.
m51.

As J is increased, the width of them bands becomes large
and, simultaneously, the avoided crossings increase@see Fig.
2~b!#. However, because of the cylindric topology of th
quasienergy spectrum, this process cannot be continued
arbitrary J, and above some critical value of the hoppi
matrix element, J.W, the spectrum is dominated b
avoided crossings@Fig. 2~c!# ~except for those regions o
very large and very smallF, which will be analyzed sepa
rately in Sec. V!.

In addition to Fig. 2, we display analogous spectra fo
larger system of four atoms in seven wells in Fig. 3.~The FB
operator is now represented by a matrix that consists
seven blocks, each of size 30330.! It is seen that the
quasienergy spectrum shows the same structural evolutio
in Fig. 2, in spite of the dramatic increase of the number
levels.

It is worth noting an analogy between the structu
changes in the quasienergy spectrum discussed above an
05621
e

h
s

to

a

of

as
f

l
the

FIG. 2. Spectrum of the Floquet-Bloch operator as a function
1/F, for particle numberN53, lattice sizeL55, quasimomentum
k50, interaction strengthW50.032. The hopping matrix elemen
between adjacent lattice sites varies fromJ50.000 76~a!, over J
50.0038~b!, to J50.038~c!. Clearly, the level dynamics turn from
regular~top! to chaotic~bottom! as the coupling between neighbo
ing sites is increased.
3-4
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1 20 40 60 80 100
1

0

1

1/F

E
/π

 F

(a)

1 20 40 60 80 100
1

0

1

1/F

E
/π

 F

(b)

1 20 40 60 80 100
1

0

1

1/F

E
/π

 F

(c)

FIG. 3. Same as in Fig. 2, but forN54, L57. Once again, a
clear transition from regular to chaotic spectral structure is
served, at significantly increased level densities.
05621
evolution of the spectrum of a quantum chaotic system~i.e.,
a quantum system with classically chaotic analog!, when the
control parameter of the system crosses the border separ
~quasi!regular and chaotic classical dynamics. This analo
can be taken further by noting that the transition to chaos
a classical system is related to the destruction of the syste
integrals of motion. Quantum mechanically this means
‘‘destruction’’ of good quantum numbers associated w
such integrals. Although our system of interest has no c
sical counterpart, it has ‘‘integrals of motion’’~15!, which are
destroyed in some regions of parameter space. This just
the use of the terms ‘‘regular’’ and ‘‘chaotic’’ for differen
parameter regimes of the Bose-Hubbard model with st
field. Let us get into a more detailed analysis of the quasi
ergy spectrum in these two different~regular and chaotic!
regimes in the following sections.

V. REGULAR REGIME

In what follows we chooseF as a control parameter an
fix the hopping matrix element atJ.W. Then the regular
regime~manifest in regular level dynamics! formally corre-
sponds to the limitsF→` or F→0.

Considering the limit of strong static field, it is convenie
to treat the interparticle interaction as a perturbation. Th
using the interaction representation~with respect to the inter-
action term!, the FB operator can be represented in the fo

U~TB!5exp̂S 2 i
W

2 E0

TB
dtU0

†~ t !(
l

n̂l~nl̂21!U0~ t ! D ,

~17!

whereU0(t) is the evolution operator of the system in th
absence of particle-particle interaction.@Here we use
U0(TB)51̂—see the above discussion following Eq.~8!#.
Since we are interested in the caseJ/F!1, we can use per-
turbation theory to findU0(t):

U0~ t !.1̂1
J

2F S ~e2 i2pFt21!(
l

âl 11
† âl2H.c.D . ~18!

Substituting Eq.~18! into Eq. ~17!, we have

U~TB!5expS 2 i
WTB

2 H(
l

n̂l~ n̂l21!

2
J

2F F S i(
l

âl 11
† âl2H.c.D , S (

l
n̂l~ n̂l21! D G J D ,

~19!

where the square brackets denote the commutator. It foll
from the last equation that at vanishing order in the sm
parameterJ/F, the FB operator is a diagonal matrix~in the
Fock states basis! with elements

^n8uU~TB!un8&5exp~2 iWm/F ! ~20!

@see Fig. 4~a!#. Note that, sincem is an integer number, resu
~20! leads to the appearance of a new fundamental period
-

3-5
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the system dynamics@10,21#. In other words, given the con
dition F@J, an arbitrary observable of the system become
quasiperiodic function of time withTB51/F and TW
52p/W induced by the external field and the particl
particle interaction, respectively.

Let us now consider the opposite limitF→0. Here it is
convenient to treat the static field as a perturbation of

field-free Hamiltonian. Indeed, letuC̃(t)& be an arbitrary in-
stantaneous eigenfunction of the time-dependent Ha
tonian ~11!:

H̃~ t !uC̃~ t !&5Ẽ~ t !uC̃~ t !&. ~21!

Then, in the adiabatic limitF→0, the functionuC̃(0)& is
also an eigenfunction of the FB operator, corresponding
the quasienergy

E5
1

TB
E

0

TB
Ẽ~ t !dt. ~22!

Examples of the instantaneous spectrumẼ(t) of the Hamil-
tonian H̃(t) are given in Fig. 5. Note that the instantaneo
spectrum reveals a hidden symmetry of the system foN

5L. In this case,Ẽ(t) are periodic functions of time with
period TB /L. ~This also holds for any integer value of th
ratio N/L.! Note that this symmetry causes a qualitative d
ference in the statistical properties of the chaotic quasiene
spectrum for integer and nonintegerN/L ~see Sec. VI!.

We come back to Eq.~22!. In a representation of the
spectrum alike that in Fig. 2, result~22! implies that the
quasienergy spectrum atF→0 consists of a number of cross
ing straight lines, with slopes defined by the values ofE. A
reminiscence of these lines is clearly seen in Fig. 6~a!, where
we plot the spectrum of the system for static field valu
aroundF50.001. The presence of avoided crossings in
cates a partial failure of the adiabatic approximation: AsF
→0, the gaps progressively close, and the FB matrix c
lapses onto the diagonal, in the eigenfunction basis of
field-free Hamiltonian.

We conclude this section by a brief remark concerning
thermodynamic limitN,L→`, N/L5const. It is easy to see
that the above conclusion about the regular quasiene

m

n

(b)

m

n

(a)

FIG. 4. Matrix of thek-specific Floquet-Bloch operator forN
54, L57, k50, J50.038, W50.032, F50.5 ~a!, and F50.01
~b!. Absolute values of the matrix elements are coded by a~linear!
gray scaling.
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spectrum forF@J is ‘‘insensitive’’ to the increase of the
system size. This is, however, not the case for weak st
fields. As the size of the system is increased, the vicinity
the point F50, where the adiabatic approximation hold
~and, thus, where the level dynamics are regular!, shrinks to
zero. This statement is illustrated in Fig. 6~b!, showing the
spectrum of a larger system for the same interval of the st
field as in Fig. 6~a!. Only a thorough inspection of the figur
reveals remnants of straight lines with fixed~negative! slope.

VI. CHAOTIC REGIME

As shown in Sec. IV, the Bose-Hubbard system with sta
field can be regarded as a regular or as a chaotic sys
depending on the particular choice of the parameters. Re
lar regimes correspond to the limit of largeF, where the FB
matrix is diagonal in the basis of Fock states, and to the li
of small F, where the matrix is diagonal in the basis of th
eigenfunctions of the field-free Hamiltonian. For intermed
ate values of the static field~and J.W), the matrix of the
FB operator is diagonal in neither of these basis sets. Mo
over, visually it looks like a random matrix@see Fig. 4~b!#. In
this section we explore this conjecture on the randomnes
the FB operator in more detail.

Let us first study the statistics of the matrix elemen
~where we omit the quasimomentum index as in the previ
sections!

u5^m8uU~TB!un8&. ~23!

Note that, sinceU(TB) is unitary, we have the following
relation for the matrix elements (J.N/L is the matrix size!:

(
j 51

J
um, j* uj ,n5dm,n , ~24!

0 10.04

0

0.04

0.08

0.12

t/T
B

E
(t

)

(a) (b) (c)

FIG. 5. Instantaneous energy spectrum of the time-depen
Hamiltonian ~11!. Parameters areW50.032, J50.038, k50, and
N53, L55 ~a!, N54, L54 ~b!, N55, L53 ~c!. Observe the time
periodicity for the caseN5L54.
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and, hence,uuu;J 1/2. The lower panel in Fig. 7 shows th
distribution of the real part Re(u) for F50.01, J50.038,
W50.032,k50, andN57, L59 ~matrix sizeJ5715!. It is
seen that the numerically obtained distribution is well a
proximated by a Gaussian with variances5(J/2)1/2. The
same result is obtained for the distribution of the imagin
part Im(u). Finally, the distribution of the absolute value
uuu is found to fit the equation

P~ uuu!;uuuexp~2uuu2/2J!, ~25!

which follows from the Gaussian distributions for the re
and imaginary parts, provided that these areindependentran-
dom variables. Thus we can conclude that the FB oper
can be indentified with a random unitary matrix, indeed.

Next we analyze the distribution of the eigenvalues of
FB operator,

U~TB!ucE&5lucE&, l5exp~2 iETB!. ~26!

900 920 940 960 980 1000
1

0

1

1/F

E
/π

 F

(a)

900 920 940 960 980 1000
1

0

1

1/F

E
/π

 F

(b)

FIG. 6. Spectrum of the Floquet-Bloch operator for very we
static force. The parameters are the same as in Fig. 2~c! ~upper
panel! and Fig. 3~c! ~lower panel!.
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In this paper we restrict ourselves to the nearest-neigh
level statistics, i.e., the distribution of the quantitys
5(Ej 112Ej )/DE, whereDE52pF/J stands for the mean
level spacing. SinceU(TB) is found to be a random matrix
we anticipate that the spacing distribution obeys Wign
Dyson statistics. The numerical analysis undoubtedly c
firms this expectation. The upper panel in Fig. 7 shows
cumulative distributionI (s)5*0

sP(s8)ds8 for system size
N57, L59. The numerical data closely follow the Wigne
Dyson distribution for the circular orthogonal ensemble,

P~s!5
p

2
s expS 2

p

4
s2D . ~27!

We have checked result~27! to hold for other values of the
quasimomentum and for differentN and L (N,L<11,0.5
,N/L,1.5), excluding the caseN5L, which requires a
special approach described in the remainder of this sect

Analyzing the statistical properties of the quasiener
spectrum, the case of an integer ratioN/L might come as a
surprise—the straightforward calculation of the level spac
reveals Poisson statistics,

P~s!5exp~2s!, ~28!

instead of the expected Wigner-Dyson distribution@see Fig.
8~a!#. The reason for this result is an additional symmetry
the system mentioned above in Sec. V. Namely, forN5L
~more generally, for integer ratioN/L) the instantaneous
spectrum of the time-dependent Hamiltonian~11! is periodic
in time with the periodTB /L. This means that the operato
H̃(t) andH̃(t1TB /L) are related to each other by a unita
transformation

0 1 2 3 4
0

1

s

I(
s)

(a)

0.2 0.1 0 0.1 0.2
0

0.2

Re(u)

P
(u

)

(b)

FIG. 7. Upper panel—cumulative distributionI (s) for the level
spacing.~The dashed and dashed-dotted lines correspond to Poi
and COE cumulative distributions, respectively.! Lower panel—
distribution of the real parts of the matrix elementsu of the FB
operator. The parameters areF50.01, J50.038, W50.032, k50,
andN57, L59.
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A. R. KOLOVSKY AND A. BUCHLEITNER PHYSICAL REVIEW E68, 056213 ~2003!
H̃~ t1TB /L !5Q†H̃~ t !Q, ~29!

whereQ is a diagonal matrix with elements exp(2iETB)1/L.
Thus, forN5L the FB-operator has the form

U~TB!5„Q†U~0,TB /L !…L ~30!

~here we used the relationQL51̂). It is easy to see now tha
one has to analyze the spectrum$l̃% of the operatorŨ
5Q†U(0,TB /L), but not the spectrum$l% of the FB opera-
tor U(TB). Indeed, because of the relationl5l̃L, the
quasienergy spectrum of the FB operator approaches Po
statistics whenL→`, as illustrated in Fig. 8, where the up
per and lower panels refer to the spectrum of the opera
U(TB) and Ũ, respectively.

VII. CONCLUSION

We have studied the spectral properties of the 1D Bo
Hubbard model in an external static field, which models
teracting cold spinless atoms in a quasi-one-dimensional
tical lattice subject to a static force. The analysis
performed in terms of the Floquet-Bloch operator~FB opera-
tor!, defined as the evolution operator of the system over
Bloch period. The advantage of the FB operator over
Hamiltonian is that one can impose periodic boundary c
ditions for a system of finite sizeL, which greatly facilitates
the transition to the thermodynamic limitL,N→`, N/L
5const. Besides that, the FB operator allows to describe
system dynamics by a one-cycle map.

An important result of the paper consists in uncoveringall
symmetriesof the 1D FB operator. These are the translatio
symmetry, which leads to the notion of the quasimoment

0 1 2 3 4
0

1

s

I(
s)

(a)

0 1 2 3 4
0

1

s

I(
s)

(b)

FIG. 8. Cumulative distributionI (s) of the level spacing forN
5L58. The upper and lower panels refer to the spectrum of

operatorsU(TB) andŨ, respectively.
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k, and the ‘‘Mott-insulator’’ symmetry, which is present i
the system for an integer filling factor~mean number of
bosons per lattice site!. In this work, we restricted ourselve
to analyzing the spectrum of the 1D FB operator only
k50. It is also interesting to study the dependence of
spectrum on quasimomentum. This problem is reserved
the future.

For fixedk, given the conditionJ!W ~i.e., hopping ma-
trix element much smaller than the on-site interaction
ergy!, the spectrum of the FB operator of a system of fin
size consists of a large number of~quasi!energy levels ar-
ranged in a few bands labeled by the mean interaction
ergy. As a function of the static fieldF, these bands show
avoided crossings at points where the Stark energy is a
tional fraction of the on-site interaction energy. It is wor
noting the relevance of this observation to the resonance
response of the system to a static field, observed in exp
ment @5# ~see also the theoretical papers@9,22#, discussing
this problem from different points of view!.

The caseJ.W appears to be essentially more comp
cated. Here the spectrum of the FB operator is regular~i.e.,
can be characterized by a set of good quantum numb!
only in the limits of large and small static field strengths. F
intermediate values ofF, the spectrum of the FB operato
can be characterized asirregular, qualitatively resembling
the spectrum of a quantum chaotic system. Using the tool
random matrix theory, we prove that forJ.W, N/L.1, and
moderate strengths of the static field, the matrix represen
the FB operator is actually arandom matrix, belonging to the
Wigner-Dyson circular orthogonal ensemble. This constitu
the main result of the paper and opens a perspective for
theory of multiparticle quantum chaos. Notwithstanding o
1D analysis, we expect that our results will qualitatively pr
vail also in 2D and 3D configurations, since increasing
dimension cannot compensate for the interaction-induced
struction of dynamical symmetries of the 1D problem.

Let us conclude by noting that multiparticle quantu
chaos implies observable consequences for state of the
experiments on Bloch oscillations@2,4,5#, which are per-
formed in the same parameter regime as our numerical c
putations above: Related theoretical work has shown
Bloch oscillations of the average momentum of the atoms
the lattice decayirreversibly for underlying chaotic~multi-
particle! spectra@11#, while exhibiting interaction-induced
wave packet collapse and revival@10# in the strong field limit
F@J with regular spectral structure. Furthermore, the tim
scale of the chaos-induced, irreversible decay appare
only depends on the filling factor of the atoms in the lattic
but not on the actual lattice size. This observation bridges
gap from numerical to experimental lattice sizes—the la
being out of reach even for advanced supercomputing.
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