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Floguet-Bloch operator for the Bose-Hubbard model with static field
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This paper deals with the spectral properties of the one-dimensional Bose-Hubbard Hamiltonian amended by
an external static field—a model for cold spinless atoms loaded in a quasi-one-dimensional optical lattice and
subject to an additional statidor example, gravitationalforce. The analysis is performed in terms of the
Floquet-Bloch operator, defined as the evolution operator of the system over one Bloch period. Depending on
the particular choice of parameters, the spectrum is found to be either regular or chaotic. Moreover, in the
chaotic case, the matrix of the Floquet-Bloch operator is well characterized as a random matrix of the circular
orthogonal ensemble.
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[. INTRODUCTION the eigenvalue problem for the FB operator, one can express
the dynamics of the system in terms of its eigenfunctions. It
Recently, much attention has been paid to the dynamics adppears reasonable to study the properties of the FB operator
ultracold neutral atoms in optical lattices. Such systemslso in the presence of atom-atom interactions. This consti-
mimic crystalline electrons and allow to study many phe-tutes the aim of the present work, which is an analysis of the
nomena of solid state physics with unprecedented experspectrum of the FB operator for variable system parameters.
mental control. A beautiful example is provided by Bloch Following this aim, we will confirm our earlier conjecture
oscillations(BOs) [1], which were observed in experiments [11] that BOs with interacting bosons defines a problem of
[2,3] on dilute gases of cold alkali-metal atoms. Note that aguantum chaosind, hence, requires the specific tools of this
dilute gas implies the absence of atom-atom interactions antheory. In turn, the spectral problem considered here contrib-
hence, a single-particle approach suffices to describe suchuges an interesting example to the field of quantum chaos,
system. The next generation of BO experiments involved avhich merits discussion in some detail.
relatively dense gas of atoms, where the atom-atom interac- The foundation of quantum chaos is usually traced back
tion cannot be neglected any mdee5]. (From now on we to the energy spectra of compound nudkse Refs[14,15
use the term Bloch oscillations in a wide sense, as the sysnd references therginA celebrated postulate of the theory
tem’s response to a static forc& number of effects incom-  states that, because of the extreme complexity of the system,
patible with the single-particle picture were observed, thughe Hamiltonian of a compound nucleus can be modeled by a
challenging theory. random matrix of appropriate symmetry. This conjecture led
Among the theoretical approaches to BOs of interactingo a number of theoretical predictions on the statistical prop-
(bosonig atoms one can single out the Gross-Pitaevski equaerties of the spectrum, well supported by experimental data.
tion [6—8] and the Bose-Hubbard mod&—11] as the most The idea of the generic “randomness” of a complex system
important ones. In the former case it is assumed that theeveloped further with the systematic research on classical
N-particle wave function of the system can be expressed ighaos. It was shown that the spectrum of a quantum system,
terms of a single macroscopic wave function. It should bewhich shows chaotic dynamics in the classical limit, exhibits
noted, however, that thigather strongyassumption can be universal statistical properties. Here, the complexity of the
questioned. Indeed, as shown in a recent pp&r(discuss-  system stems from the underlying classically chaotic dynam-
ing the dynamics of some model systethe validity of the ics, which(for autonomous systemsnay already emerge in
Gross-Pitaevskii equation requires a large filling factoronly two degrees of freedom. In fact, the quantum analysis
(mean number of bosons per lattice sitehich is definitely  of few degree of freedom, classically chaotic systems was
not the case realized in present-day experiments. The Boseie main subject of the theory of quantum chaos during the
Hubbard model, on the other hand, does not involveaan past two decades. Most recent developments of quantum
priori assumption on the structure of tidparticle wave chaos(facilitated to much extent by the ever growing perfor-
function, and the only limitation of this approach is the va- mance of computeysring us back to the initial formulation
lidity of the tight-binding ansatfwhich, in fact, defines the of the problem, where the systems of interest consist of a
Bose-Hubbard modglThe present paper follows the second large number of identical particles and, fundamentally, have
approach and, in this sense, extends our previous studies oo direct classical counterpart. Recent studies have shown
BOs in correlated bosonic systerfiD,11]. that quantum chaos is indeed a generic phenomenon in inter-
An important role in the single-particle theory of BOs is acting fermionic systemgone-dimensional1D) chains of
played by the Floquet-Bloch operat@*B operatoy, defined interacting spins, complex atoms, electrons in a random lat-
as the evolution operator of the system over one Bloch petice potential, etd. [16—2(. The results reported in the
riod Tg=#/dF (hereF is the magnitude of the static force present paper indicate that quantum chaos is also generic for
andd is the lattice periof[13]. Indeed, given the solution of bosonicsystems. In particular, we show that, for a certain
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region in parameter space, the FB operator of the 1D Bose- For a detailed formulation of Floquet-Bloch theory, we
Hubbard model can be identified with random circular  refer the reader to the revig3], and here restrict ourselves
orthogonal ensemble (COE) matrilt should be stressed in to the simpler tight-binding approximation. Then, the Hamil-
this context that, on the level of the Hamiltonian, our systentonian (1) takes the form

of interest does not contain any randomness. This distin-

guishes the present spectral problem from that of disordered

J
many-body systemé&ee, e.g., Ref§17,20). H=E, INI=5 D+ +H.c. +FY 24l 1),
The structure of the paper is as follows. In Sec. Il we ! ! !
recall some single-particle results on BOs and explain why it (5

is of advantage to analyze the FB operator rather than the

system Hamiltonian. Section Ill is devoted to the symmetrywhere [I) denotes the Wannier statés|l)= ¢(x), associ-
properties of the many-body FB operator, induced by theated with thelth well of the periodic potential, and is the
translational symmetry of the Bose-Hubbard model. A pre-hopping matrix element between two neighboring Wannier
liminary analysis of the spectrum of the FB operator is givenstates. Substitutiof2) amounts to the interaction representa-
in Sec. IV. Depending on the particular choice of the paramiion with respect to the static term, and the tight-binding
eters, the spectrum of the FB operator is found to be eithegounterpart of the Hamiltonia(8) reads as

regular or irregulafchaoti9. These two kinds of spectra are

then studied in more detail in Secs. V and VI. The main il

results of the paper are summarized in the concluding H(t)=E>, |I>(I|—§(e"2”Ft > |I+1)(I|+H.c.>.

Sec. VII. ! ! ©)

Il. FLOQUET-BLOCH STATES o . .
At last, the explicit form of the Floquet-Bloch solutidd) is

In the one-dimensional case, the single-particle Hamilgiven by
tonian of our system has the form

~2 . J .
H:p—+v(x)+|:X, 1) Iz//(t)>=e'E‘exp(iEsinZW(KJrFt))EI: ' 2m Py,

2
(7)
whereV(x) is the periodic potential andl is the magnitude
of the static field(Here and below we use scaled variables,yhich describes the time evolution of the Bloch sthte)
where the period of the potential isr2and the mass of the =, exp(2s«l)|l). Thus, Eq(7) can be rewritten in the form
quantum particle as well as the Planck constant are set equaj, (t))~|4, ., ), which represents one of the possible for-
to unity) First of all, we note that the translational symmetry my|ations of the BOs phenomenon.

of the Hamiltonian, apparently broken by the static field, can A remark on boundary conditions is in place here. In

actually be recovered. Indeed, with the substitution what follows we shall consider a system of finite size,
. ~ I=1,...L, with periodic (cyclic) boundary conditions
P(x,t) =exp( —iFtx) ¢(x,t) (2 imposed. As easily shown analytically, in this case the Schro

o ) s - o~ dinger equation with the Hamiltonia(®) hasL linearly in-
the Schrdinger equation readsiy/dt=H(t)y, with H(t)  gependent solutions of the same fo(#, but with discrete

the time-dependent Hamiltonian quasimomentumk=j/L (j=1,...L). We also note the
(P—Ft)? time-reversal symmetryt{~—t,x— —«) of the Floquet-

H(t)= ——=——+V(x). 3) Bloch solution. Because of this symmetry, the quasienergies

2 E of the many-body problem are typically doubly degenerate

(see the following section
We conclude this section by introducing the Floquet-
och operator

It is easy to see that the Hamiltoni&®) commutes with the
lattice shift operator. Then it is a matter of a few lines to BI
show that the Schoinger equation for the original wave
function #(x,t) has solutions in the form of translationally

. . o T - 1
invariant Floquet states, U(TB)=exp< _iJ' BH(t)dt>' TB:E! ®
0
PY(X+2m,t)=exp —i27k) (X, 1), (4)
P(X,t+ LIF) = exp — i E/F) (1) where the hat over the exponential denotes time ordering. As

an immediate consequence of K@), operaton8) is a diag-
wherex is the quasimomenturfi-1/2<x<1/2), andE is the ~ onal matrix(in the Wannier state bagis the single-particle
quasienergy { mF<E<=F). Analytically, one finds the approach, with elements exp(E/F) along the diagonal.
Floquet-Bloch(or Wannier-Bloch states(4) by solving the ~ Without loss of generality, one can sét=0, thenU(Tg)
eigenvalue problem for the unitary operatd(Tg) of the  =1. (To avoid confusion with Ref[13], we stress that the
system evolution over one Bloch peridg=1/F. last equation only holds in the tight-binding approximatjon.
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lll. FLOQUET-BLOCH OPERATOR FOR INTERACTING
BOSONS

The generalization of the tight-binding mod&l) for the

multiparticle case is given by the Bose-Hubbard model, with

an additional Stark term:

H

J
2
2

> al,,a+H.c.
|

+FZ 27lA,

W
— > A(A—1).

+ 9

Here, a] and 4, are the bosonic creation and annihilation
operatorsi, = éfréq is the occupation number operator on the
[th lattice site, and the parametéf characterizes the inter-
action between the particles. Since the Bose-Hubbard Hami
tonian conserves the total number of partichisthe wave
function of a system of finite size can be presented in the
form

|\If<t>>=§ ca(t)|N), (10)

where the vectom, with L integer components, (Zn,
=N), labels the N-particle bosonic wave function con-
structed fromN Wannier functions. The dimension of the
Hilbert space spanned by the Fock stdtesis

N=(N+L—-1)/N!(L—1)!.

The key issue we address in this work is the spectral

properties of the FB operatdB), generated by the Hamil-
tonianH (t) now given by

W
> > Ay(A—1).

L
e“ZWFt; al,,a+H.c.|+ |
(11

~ J
H(t)Z—E

The advantage of the FB operator over the Hamiltonian i
that it recovers the translational symmetry of the systeee
below). Simultaneously, knowledge &f(Tg) suffices to de-

scribe the system dynamics by a discrete one-cycle map°*.

W (t+Tg))=U(Tg)|W(1)).

Let us investigate the translational symmetry propertie
of the FB operatorU(Tg) [which are actually inherited
from the Hamiltonian (11)] in more detail. For|n’)
=|ny,n,, ... ,n ) an arbitrary Fock state, and the shift op-
eratorS defined by

Sny,ny, ... n)y=[n_,ng, ... N g, (12
there can be at modt different Fock state$n) related to
each other by the shift operator. Using these states, we co
struct an alternative basis of the Hilbert space:

M

'—i2 i2mkl)S|n’ 13
|k, )—N|:16XFII mxl)S|n’). (13

PHYSICAL REVIEW E 68, 056213 (2003
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FIG. 1. Evolution of the quasienergies of the Floquet-Bloch op-
erator (14) under changes of the inverse static fieldF.1Particle
numberN =3, lattice sizeL =3, size of Hilbert spac&/=10, block
sizesM = 4,3,3[in representatioril4)].

In Eq. (13), M is the number of different Fock states gener-
ated by repeated application of the shift operator on the
“seed” state|n’), andk=j/M (j=1,... M) denotes qua-
simomentum. In the new basig,n’), the matrix of the
Hamiltonian(11) and, therefore, the matrix of the FB opera-
tor, factorizes into a block matrix,

U(Tg)=@[_,U")(Tp), (14)

where each blockl“(Tg) corresponds to one &f possible
values of quasimomentum. Furthermore, there are pairs of
blocks in decompositiofil4) which are related to each other
by time-reversal symmetry.

Let us illustrate this factorization by a concrete example,

Jor N=L=3. The dimension of the Hilbert spaceA&=10,

and one can choose the statg@$l), [201), [210, |300 as
seed states. The value Bfin Eq. (13) is M=1 for the first
eed state, anill =3 for all others. Thus, the matrid(Tg)

consists of one block of sizex#4, corresponding ta=1 (or

§(=0, if one chooses—1/2<k<1/2 as the first Brillouin

zone, and of two “identical” blocks of size &3, corre-
sponding tox=1/3,2/3(or k==*1/3). Each block can be di-
agonalized separately and, hence, the spectrum of the Flo-
quet operator U(Tg) is a superposition of several
independent spectra. As an example, Fig. 1 shows the
quasienergie€ as a function of H# for J=0.038, andwW
=0.032. (Levels corresponding ta==*1/3 coalescg.Note
that quasienergy levels with differertalways cross, but that
Hgvels with the same value of quasimomentum may exhibit
avoided crossinggFor a more detailed analysis see the sub-
sequent sections.

To proceed further, we need to agree on the ordering of
the seed states. In what follows we use an ordering defined
by the quantity
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L
;1 n/(n/—1), (15)

N| =

M:

which is proportional to the interaction energy for the given
Fock seed statg’). The advantage of this ordering is that, in
some casetsee the following sectionthe quantityu can be
considered as a secofid addition to quasimomentunton-
served quantum number.

IV. SPECTRUM OF THE FLOQUET-BLOCH OPERATOR

The aim of this section is th@reliminary analysis of the
spectrum of thec-specific Floquet-Bloch operatt)(Tg).

If not stated otherwise, we shall assume0 and omit this
index in the formulas.

It is instructive to begin with the cask<W, and to fol-
low the structural evolution of the spectrumais increased.
Figure 2a) shows the spectrum of the FB operator for a
system ofN=3 atoms inL=5 wells, as a function of ¥,
for W=0.032 andJ=0.000 76.[For the choserN and L,
matrix (14) consists of five equal blocks of sizex7.] For
such a small value of the hopping matrix element, the
guasienergy spectruin of the system is essentially given by
the quasienergy spectrumdt0 which, in turn, is given by
the equation

exp(—iETg)=exp —iuW/F), (16)

where the quantityx was defined earlier in Eq15). Thus,
the three(different slopg straight lines in the figure corre-
spond to quasienergy levels with quantum numbersO
(two levely, u=1 (four levely, andu=3 (one leve), respec-
tively. (The number of levels is obviously given by the num-
ber of different seed states with equa) The nonzero value
of J is reflected by the lifted degeneracy of levels with the
sameu, and by the avoided crossings between levels with
different u. On the scale of the figure, one only observes
avoided crossings at a static force vake W (1/F=1W
=33). Similarly, a finite width of thew band is detectable
only for the u manifold with the largest multiplicity, i.e.,
n=1.

As Jis increased, the width of the bands becomes larger
and, simultaneously, the avoided crossings incrésese Fig.
2(b)]. However, because of the cylindric topology of the
guasienergy spectrum, this process cannot be continued up tc
arbitrary J, and above some critical value of the hopping
matrix element, J=W, the spectrum is dominated by
avoided crossing$Fig. 2(c)] (except for those regions of
very large and very smaklF, which will be analyzed sepa-
rately in Sec. V.

In addition to Fig. 2, we display analogous spectra for a
larger system of four atoms in seven wells in Fig(Bhe FB

operator is now represented by a matrix that consists of g 2 spectrum of the Floquet-Bloch operator as a function of

E/rF

E/n F

w
£
i

PHYSICAL REVIEW E 68, 056213 (2003

1/F

0

seven blocks, each of size 830) It is seen that th_e 1/F, for particle numbeN=3, lattice sizeL=5, quasimomentum

quasienergy spectrum shows the same structural evolution gs-o, interaction strengthv=0.032. The hopping matrix element
in Fig. 2, in spite of the dramatic increase of the number ofpetween adjacent lattice sites varies frdm 0.000 76(a), overJ
levels. =0.0038(b), to J=0.038(c). Clearly, the level dynamics turn from

It is worth noting an analogy between the structuralregular(top) to chaotic(bottom as the coupling between neighbor-

changes in the quasienergy spectrum discussed above and thg sites is increased.
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FIG. 3. Same as in Fig. 2, but fdt=4, L=7. Once again, a
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evolution of the spectrum of a quantum chaotic systea,

a quantum system with classically chaotic analeghen the
control parameter of the system crosses the border separating
(quasjregular and chaotic classical dynamics. This analogy
can be taken further by noting that the transition to chaos in
a classical system is related to the destruction of the system’s
integrals of motion. Quantum mechanically this means a
“destruction” of good quantum numbers associated with
such integrals. Although our system of interest has no clas-
sical counterpart, it has “integrals of motioi15), which are
destroyed in some regions of parameter space. This justifies
the use of the terms “regular” and “chaotic” for different
parameter regimes of the Bose-Hubbard model with static
field. Let us get into a more detailed analysis of the quasien-
ergy spectrum in these two differefrtegular and chaotjc
regimes in the following sections.

V. REGULAR REGIME

In what follows we choos& as a control parameter and
fix the hopping matrix element at=W. Then the regular
regime (manifest in regular level dynamicgormally corre-
sponds to the limit§&—o or F—0.

Considering the limit of strong static field, it is convenient
to treat the interparticle interaction as a perturbation. Then,
using the interaction representatigmith respect to the inter-
action term, the FB operator can be represented in the form

W (T
U<TB>=€x‘p(—i7f AR A - 1)Ut |,
0 |
an

whereUy(t) is the evolution operator of the system in the
absence of particle-particle interactiofHere we use
Uo(Tg) =1—see the above discussion following E®)].
Since we are interested in the caB& <1, we can use per-
turbation theory to findJy(t):

~J

(e7127Ft_1)> é,THé,—H.c.). (18)
|
Substituting Eq(18) into Eq.(17), we have

u<TB>=exp(—iW2TB[E JUREY

e (anc])

where the square brackets denote the commutator. It follows
from the last equation that at vanishing order in the small
parameteld/F, the FB operator is a diagonal matiix the
Fock states basisvith elements

(n"|U(Tg)[n")=exp( —IWu/F) (20

clear transition from regular to chaotic spectral structure is ob{see Fig. 4a)]. Note that, sincex is an integer number, result

served, at significantly increased level densities.

(20) leads to the appearance of a new fundamental period for
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FIG. 4. Matrix of thek-specific Floquet-Bloch operator fod OM A AN
=4, L=7, k=0, J=0.038, W=0.032, F=0.5 (a), and F=0.01 YN W/

(b). Absolute values of the matrix elements are coded lgynaar
gray scaling. /M

the system dynamidd0,21]. In other words, given the con- 0.04 0 uT
dition F>J, an arbitrary observable of the system becomes a
quasiperiodic function of time withTg=1/F and Ty FIG. 5. Instantaneous energy spectrum of the time-dependent
=2m/W induced by the external field and the particle- Hamiltonian(11). Parameters arév/=0.032, J=0.038, k=0, and
particle interaction, respectively. N=3,L=5(a),N=4,L=4 (b), N=5, L=3 (c). Observe the time

Let us now consider the opposite linfit—0. Here it is  periodicity for the castN=L=4.
convenient to treat the static field as a perturbation of the

field-free Hamiltonian. Indeed, 1éW (t)) be an arbitrary in- spectrum forF>J is “insensitive” to the increase of the
stantaneous eigenfunction of the time-dependent Hamilsystem size. This is, however, not the case for weak static
tonian (11): fields. As the size of the system is increased, the vicinity of
the point F=0, where the adiabatic approximation holds
ﬁ(t)|\'ff(t)>=E(t)|{ff(t)>. (21)  (and, thus, where the level dynamics are regukstirinks to
zero. This statement is illustrated in Figbf showing the
spectrum of a larger system for the same interval of the static
6ield as in Fig. 6a). Only a thorough inspection of the figure
reveals remnants of straight lines with fixgtegative slope.

B

Then, in the adiabatic limiE—0, the function|¥(0)) is
also an eigenfunction of the FB operator, corresponding t
the quasienergy

E_LITBE(t)dt (22 VI. CHAOTIC REGIME
TeJo As shown in Sec. 1V, the Bose-Hubbard system with static
- field can be regarded as a regular or as a chaotic system,
Examples of the instantaneous spectrii(t) of the Hamil-  depending on the particular choice of the parameters. Regu-
tonianH(t) are given in Fig. 5. Note that the instantaneouslar regimes correspond to the limit of large where the FB
spectrum reveals a hidden symmetry of the systemNor matrix is diagonal in the basis of Fock states, and to the limit
=L. In this caseE(t) are periodic functions of time with ©f smallF, where the matrix is diagonal in the basis of the
period Tg/L. (This also holds for any integer value of the €igenfunctions of the field-free Hamiltonian. For intermedi-
ratio N/L.) Note that this symmetry causes a qualitative dif-ate values of the static fieland J=W), the matrix of the
ference in the statistical properties of the chaotic quasienerglyB operator is diagonal in neither of these basis sets. More-
spectrum for integer and nonintegsfL (see Sec. Vil over, wsgally it looks like a rand(_)m matrfsee Fig. 4b)]. In

We come back to Eq(22). In a representation of the this section we explore this cc_)njecture on the randomness of
spectrum alike that in Fig. 2, resul2?) implies that the the FB operator in more detail. ,
quasienergy spectrum Bt—0 consists of a number of cross- Let us flrst. study thg statistics o_f the mqtrlx eleme.nts
ing straight lines, with slopes defined by the value€of\ (where we omit the quasimomentum index as in the previous
reminiscence of these lines is clearly seen in Fig),Gvhere ~ Se€ction$
we plot the spectrum of the system for static field values
aroundF=0.001. The presence of avoided crossings indi- u=(m’|U(Tg)|n"). (23
cates a partial failure of the adiabatic approximation:FAs

—0, the gaps progressively close, and the FB matrix colnote that, sinceU(Tg) is unitary, we have the following

lapses onto the diagonal, in the eigenfunction basis of theelation for the matrix elements=A/L is the matrix sizg
field-free Hamiltonian.

We conclude this section by a brief remark concerning the 7
thermodynamic IimiIN,Lﬁoc, N/L=const. It is easy to see E u’,;juj =8 (24)
that the above conclusion about the regular quasienergy =1
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Re(u)

FIG. 7. Upper panel—cumulative distributids) for the level
spacing(The dashed and dashed-dotted lines correspond to Poisson
and COE cumulative distributions, respectivelyower panel—
distribution of the real parts of the matrix elementof the FB
operator. The parameters d@e=0.01, J=0.038, W=0.032, k=0,
andN=7, L=9.

E/mMF

In this paper we restrict ourselves to the nearest-neighbor
level statistics, i.e., the distribution of the quantity
=(Ej+1—Ej)/AE, whereAE=2=F/J stands for the mean
level spacing. Sinc&J(Tg) is found to be a random matrix,
we anticipate that the spacing distribution obeys Wigner-
Dyson statistics. The numerical analysis undoubtedly con-
firms this expectation. The upper panel in Fig. 7 shows the
cumulative distributionl (s)= [3P(s’)ds’ for system size

1F N=7, L=9. The numerical data closely follow the Wigner-

Dyson distribution for the circular orthogonal ensemble,
FIG. 6. Spectrum of the Floquet-Bloch operator for very weak

static force. The parameters are the same as in K. (Bpper

pane) and Fig. 3c) (lower panel. P(s)= gsex% _ %52). (27)

and, henceju|~ 7Y2. The lower panel in Fig. 7 shows the
distribution of the real part Refj for F=0.01, J=0.038, We have checked resul2?) to hold for other values of the
W=0.032,x=0, andN=7, L=9 (matrix size7=715). Itis  quasimomentum and for differet and L (N,L<11,0.5
seen that the numerically obtained distribution is well ap-<N/L<1.5), excludingthe caseN=L, which requires a
proximated by a Gaussian with varianee= (J72)¥2 The  special approach described in the remainder of this section.
same result is obtained for the distribution of the imaginary Analyzing the statistical properties of the quasienergy
part Im(u). Finally, the distribution of the absolute values SPectrum, the case of an integer raldl. might come as a
lu| is found to fit the equation surprise—the straightforward calculation of the level spacing
reveals Poisson statistics,

P(Ju)~ |ulexp —|u[?/27), (29 P(s)=exg—s), (28)

and imaginary parts, provided that theseiadependentan-  g(g)]. The reason for this result is an additional symmetry of
dom variables. Thus we can conclude that the FB operatqfe system mentioned above in Sec. V. Namely, Mot L
can be indentified with a random unitary matrix, indeed.  more generally, for integer ratidN/L) the instantaneous
Next we analyze the distribution of the eigenvalues of thespactrum of the time-dependent Hamiltonidd) is periodic
FB operator, in time with the periodTg/L. This means that the operators
H(t) andH(t+Tg/L) are related to each other by a unitary
U(Tg)|e)=\|¢e), N\=exp(—iETg). (26)  transformation

056213-7



A. R. KOLOVSKY AND A. BUCHLEITNER

I(s)

I(s)

0 I I I
0 1 2 3

S

PHYSICAL REVIEW E 68, 056213 (2003

k, and the “Mott-insulator” symmetry, which is present in
the system for an integer filling factaqimean number of
bosons per lattice siteln this work, we restricted ourselves
to analyzing the spectrum of the 1D FB operator only for
x=0. It is also interesting to study the dependence of the
spectrum on quasimomentum. This problem is reserved for
the future.

For fixed k, given the conditiond<W (i.e., hopping ma-
trix element much smaller than the on-site interaction en-
ergy), the spectrum of the FB operator of a system of finite
size consists of a large number @uasjenergy levels ar-
ranged in a few bands labeled by the mean interaction en-
ergy. As a function of the static fiel#, these bands show
avoided crossings at points where the Stark energy is a ra-
tional fraction of the on-site interaction energy. It is worth
noting the relevance of this observation to the resonancelike
response of the system to a static field, observed in experi-
ment[5] (see also the theoretical papg¢Bs22], discussing

o _ this problem from different points of view
FIG. 8. Cumulative distributiom(s) of the level spacing foN ~ - .
=L=8. The upper and lower panels refer to the spectrum of the The case]=W appears to be essentially more compli

~ . cated. Here the spectrum of the FB operator is regliler,

operatorsJ(Tg) andU, respectively. can be characterized by a set of good quantum numbers
only in the limits of large and small static field strengths. For
intermediate values of, the spectrum of the FB operator
can be characterized asegular, qualitatively resembling
the spectrum of a quantum chaotic system. Using the tools of
random matrix theory, we prove that fé=W, N/L=1, and
moderate strengths of the static field, the matrix representing
the FB operator is actuallyrandom matrix belonging to the
Wigner-Dyson circular orthogonal ensemble. This constitutes
the main result of the paper and opens a perspective for the
theory of multiparticle quantum chaos. Notwithstanding our
=Q'U(0Tg/L), butnot the spectrunfA} of the FB opera- b analysis, we expect that our results will qualitatively pre-
tor U(Tg). Indeed, because of the relation=\", the yail also in 2D and 3D configurations, since increasing the
quasienergy spectrum of the FB operator approaches Poissg@imension cannot compensate for the interaction-induced de-
statistics wherL — o, as illustrated in Fig. 8, where the up- struction of dynamical symmetries of the 1D problem.
per and lower panels refer to the spectrum of the operators | et us conclude by noting that multiparticle quantum
U(Tg) andU, respectively. chaos implies observable consequences for state of the art
experiments on Bloch oscillation®,4,5], which are per-
formed in the same parameter regime as our numerical com-
putations above: Related theoretical work has shown that

We have studied the spectral properties of the 1D BoseB|och oscillations of the average momentum of the atoms in
Hubbard model in an external static field, which models in-the lattice decayrreversibly for underlying chaotiadmulti-
teracting cold spinless atoms in a quasi-one-dimensional Ofyarticle spectra[11], while exhibiting interaction-induced
tical lattice subject to a static force. The analysis iswave packet collapse and reviyal] in the strong field limit
performed in terms of the Floquet-Bloch operateB opera-  FsJ with regular spectral structure. Furthermore, the time
tor), defined as the evolution operator of the system over ongcale of the chaos-induced, irreversible decay apparently
Bloch period. The advantage of the FB operator over theynly depends on the filling factor of the atoms in the lattice,
Hamiltonian is that one can impose periodic boundary conpyt not on the actual lattice size. This observation bridges the
ditions for a system of finite size, which greatly facilitates gap from numerical to experimental lattice sizes—the latter
the transition to the thermodynamic limit,N—c, N/L  peing out of reach even for advanced supercomputing.
=const. Besides that, the FB operator allows to describe the
system dynamics by a one-cycle map.

An important result of the paper consists in uncovestig
symmetrie®f the 1D FB operator. These are the translational Fruitful discussions with B. Fine and H. J. Korsch are
symmetry, which leads to the notion of the quasimomentungratefully acknowledged.

H(t+Tg/L)=QH(1)Q, (29)

whereQ is a diagonal matrix with elements expiETg)'".
Thus, forN=L the FB-operator has the form

U(Te)=(Q'U(0,Tg/L))" (30

(here we used the relatid@" = i). It is easy to see now that
one has to analyze the spectrum! of the operatorU

VIl. CONCLUSION
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