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Vortex Phase Diagram of F � 1 Spinor Bose-Einstein Condensates
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We have calculated the F � 1 ground state of a spinor Bose-Einstein condensate trapped harmonic
potential with an applied Ioffe-Pitchard magnetic field. The vortex phase diagram is found in the plane
spanned by perpendicular and longitudinal magnetic fields. The ferromagnetic condensate has two
vortex phases which differ by winding number in the spinor components. The two vortices for the
Fz � �1 antiferromagnetic condensate are separated in space. Moreover, we considered an average
local spin jh ~SSij to testify to what extent it is parallel to magnetic field (the nonadiabatic effects). We have
shown that the effects are important at vortex cores.

DOI: 10.1103/PhysRevLett.90.200401 PACS numbers: 03.75.Lm, 05.30.Jp, 67.57.Fg
h ~FF�r	i � �
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shown that the spatial variations of the magnetic field B
give rise to vortical ground state. In particular, these
Introduction.—One of the recent developments in
Bose-Einstein condensates (BEC) in atomic gases is the
study of dilute Bose gases with spin degrees of freedom.
The first realization of such a system is found in optically
trapped 23Na, which is a spin-1 Bose gas [1]. The nature of
the spinor condensate depends on the magnetic interac-
tion. In zero magnetic field the spinor condensate can be
either ferromagnetic or antiferromagnetic (‘‘polar’’).
Both have very different properties [2,3].

In this Letter we study the ground state structure of
BEC described by a constituent atom with the hyperfine
state jFj � 1 (Fz � �1; 0) where the order parameter of
the Bose condensate is characterized by three compo-
nents: ��, � � �1; 0 similar to the spin part of super-
fluid 3He. However, these degrees of freedom bring about
a remarkable difference between the BEC of alkali atoms
and that of 4He. The hyperfine spin aligns along the
direction of the local magnetic field when a BEC is
magnetically trapped. Then, even though the alkali atoms
carry spins, they behave like scalar particles. In contrast,
the spin of the alkali atoms is an important degree of
freedom in an optical trap formed by the optical dipole
force which confines atoms in all hyperfine states Fz �
�1; 0 [4]. In order to manipulate by spin states we assume
at the same time that the BEC is created in a magnetic
Ioffe-Pitchard trap [5].

Following [6,7] we introduce the basis set jxi, jyi, jzi
defined by Fijii � 0, i � x; y; z. The order parameter is
then expressed via a three-dimensional vector �i where

j�i � �xjxi ��yjyi ��zjzi: (1)

~�� behaves as a vector under spin space rotation. In
what follows, the Latin indexes define the XYZ basis (1)
while the Greek indexes denote the z-quantized basis with
Fz � �1; 0.

In particular, a mean value of spin is equal to
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where ~FF�� are the matrix elements of the spin operators
Fi in the basis (1). We write the order parameter via the
Bose condensate density n

�i�r	 � �
i �r	
���������
n�r	

p
; (3)

and the average local spin via normalized spinor ��

h ~SS�r	i � �� ~FF����: (4)

In terms of the order parameter (1) the BEC free energy
density has the form [6,8]
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where

U�r	 � m�!2
zz2 �!r2	=2 (6)

is the potential of the optical trap, �� is the gyromagnetic
ratio, and B�r� is magnetic field of the Ioffe-Pitchard trap.
The two interaction constants g1 and g2 are character-
istics of the three-component order parameter which
represent the spin degrees of freedom of the condensate.
The two nonlinear terms in (5) originate from the inter-
actions [6]

1
2gnn

2 � 1
2gshFi

2; (7)

where g1 � gs � gn, g2 � �gs. As shown by Klausen
et al. [9], the spin interaction of 87Rb is ferromagnetic
(gs < 0), while for 23Na this interaction is antiferromag-
netic (gs > 0) [10].

When the system is uniform and infinitely large, the
ground state is either ferromagnetic or antiferromagnetic
[6,8]. However, a rich variety of topological defects have
been predicted [6,8,11–14]. Ho and Shenoy [12] have
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variations are necessary to produce the magnetic trap-
ping. The basic assumption of Ho and Shenoy is that the
spin state �i�r	 � �i�r	��r	, defined by the normalized
spinor �i is aligned with the magnetic field. This approach
has established locally a spin-gauge symmetry of the
condensate. It means that a local gauge U�1	 transforma-
tion is undone by a local spin rotation. Nodal points of the
scalar field � define vortices. Yip [13] has considered
composite vortices in the spin-1 BEC in a rotating trap.
These vortices display interesting internal structure. They
may have broken cylindrical symmetry with nodes of the
order parameter of individual components appearing at
positions other than the trap center.

Topological defects similar to composite vortices,
called Skyrmions in general, have been proposed in the
spinor BEC [11,14,15]. However, it was shown that in the
ferromagnetic spin-1 BEC trapped in a harmonic poten-
tial, the Skyrmions or composite vortices are not thermo-
dynamically stable without rotation [11,14]. The
Skyrmions were shown to be favored over the singular
vortices and other non-axis-symmetric vortices. Fol-
lowing [14] we introduce a specification of different
vortex phase winding numbers as �m1; m0; m�1	 for the
condensate wave function ��1;�0;��1	 with m� �
0;�1;�2; . . . . We show that the vortices with different
winding numbers are stable even without rotation in the
Ioffe-Pitchard trap for the ground state.

Gross-Pitaevskii equations.—We consider the ground
state of the spin-1 BEC which is uniform along the z axis.
We introduce cylindrical coordinates r � �r; ’; z	.
Suppose that a Ioffe-Pitchard magnetic field

B � �B?�r	 cos’;�B?�r	 sin’;Bz� (8)

is applied to the system. The trapping potential (6) gives
rise to a characteristic length d �

����������������
�h=2m!

p
and a char-

acteristic energy E0 � �h! which allow one to write the
dimensionless form of the free energy density (5),
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Since the spin-1 BEC is uniform along the z axis, we fix
the linear density of the Bose gas by condition

Z
d2rj�jj

2 �
N
L
:

Substituting notations (10) and the coupling constants [8]

g1 �
4+ �h2

m
a2; g2 �

4+ �h2

3m
�a0 � a2	; (11)

we obtain
Z
d2 ~''j ij

2 � 8+a2
N
L
; (12)

where ~'' is a dimensionless two-dimensional radius vec-
tor. For the case of 23Na, ~gg is negative ( � �0:1), and an
external magnetic field is uniform, then the ground state
is antiferromagnetic. For the case of 87Rb ~gg is positive
( � 0:03), and the ground state is ferromagnetic. For a
strong magnetic field or small BEC density, it is reason-
able to consider ~gg � 0 as the first step. Then the Gross-
Pitaevskii equation in the z-quantized basis  � takes the
following form:

��r2 � v�'	 � ~��� � � n�'	 � � E�� � � 0; (13)
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One can see that Eq. (13) gives rise to a separation of
variables ' and ’. Equations (13) and (14) imply that
 � �  ��1e

i’. This equality gives us the simple relation

m� � m��1 � 1 (15)

between vortical winding numbers m� of the spinor com-
ponent  �.

On the one hand, for the strong magnetic field bz the
spinor component  1 is prevailing. On the other hand, the
kinetic energy prevents this component from having
nodes. Therefore, the solution for the ground state has
the form 0

B@ h1�'	
h0�'	e�i’

h�1�'	e
�2i’

1
CA (16)

for which the Gross-Pitaevskii equation is
d2h1
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(17)
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FIG. 1. Vortex phase diagram of the spin-1 BEC in the Ioffe-
Pitchard trap for ~gg � 0.
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FIG. 2. The radial behavior of the �1 0 �1	 vortex at bz �
0:7; b � 1 and of the �0 �1 �2	 vortex at bz � 0:8; b � 1.

FIG. 3. Phase images arg� i	 in the vortex phase �0 �1 �20	
for ~gg � �0:1, bz � 0:9, b � 0:2, ~�� � 11:44.
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Here

v�'	 � 1
4'

2; b? � b'; (18)

with obvious normalization condition n�'	 � h��'	2.
For small longitudinal magnetic field bz a different

solution of the Gross-Pitaevskii equation0
B@ f1�'	e
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1
CA (19)

could be favorable for the ground state. Substituting (19)
into the Gross-Pitaevskii Eq. (13) we obtain
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Numerical results.—In order to find the ground state of
the spin-1 BEC for ~gg � 0 we numerically solved Eqs. (17)
and (20). The ground states that correspond to solutions
(16) and (19) were chosen by the minimum energy of the
BEC. For computations, since in the magnetic field of the
Ioffe-Pitchard trap magnetization is not conserved, we
fixed the dimensionless linear density (12) but not mag-
netization similar to [7,8,12].We tookN=L � 1000 fitting
the chemical potential ~�� in the Gross-Pitaevskii equa-
tions. The vortex phase diagram in the plane spanned by
the perpendicular magnetic field b and longitudinal one
200401-3
bz is shown in Fig. 1 for ~gg � 0. As expected, the vortex
phase �0 �1 �2	 is substituted by the vortex phase
�1 0 �1	 when the magnetic field bz is decreased as
shown in Fig. 1. One can see that the winding number
rule (15) holds for each vortex phase. Figure 2 shows the
radial behavior of the spinor components in the vortex
phases presented in Fig. 1. We also performed a compu-
tation for the ground state of the ferromagnetic case ~gg �
0:03 (87Rb) using the Metropolis procedure with a total
number of sites of the order 50 000. For this case the
vortex phase diagram shown in Fig. 1 is slightly de-
formed. However, deviation of the effective constant ~gg
from zero gives rise to a solution which violates rotational
symmetry of the Bose condensate around the z axis.

For the antiferromagnetic case ~gg � �0:1 (23Na) the
vortex phase diagram changes. The rule (15) still holds.
However, a new vortex phase appears in which two modal
points of the component  �1 are spacely separated as
shown in Fig. 3. We denote this kind of vortices as
two prime. At the solid line between vortex phases
(0 �1 �20) and (0 �1 �2) shown in Fig. 4 the vortices
of the component  �1 are joining together at ' � 0. As
the magnetic field b decreases, the distance between the
vortices increases. For small b these vortices go to the
region '� 1 where the wave function is exponentially
small because of optical trapping. As a result the vortices
become practically invisible. The dashed line in Fig. 4
shows where this happens.

The ground vortex phase (1 0 �1) is interesting be-
cause by that it has non-axis-symmetric vortices for the
spinor components  1 and  �1 as it was found by
Mizushima et al. for rotating BEC [14].
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0   0.25 0.5 0.75
0  

0.5

1  

1.5

2  

(0 −1 −2) 

(0 −1 −2’) 
(1 0 −1) 

b 

b
z

FIG. 4. Vortex phase diagram of the spin-1 BEC in the Ioffe-
Pitchard trap for ~gg � �0:1.
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Next, we evaluated jh ~SS�'	ij in order to find out to what
extent nonadiabatic effects are important [12]. It is well
known that in quantum magnets with anisotropy these
effects are important for the ground state. Quantitatively
the nonadiabatic effects can be described by a quantum
reduction of the spin jh ~SS�'	ij< 1 and deviation of the
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FIG. 5. The radial dependence of the average local spin hS�'	i
(a) and its projection onto the direction of local magnetic field
b specified by the angle / (b) for different vortex phases shown
in Fig. 1. Solid line refers to the vortex phase �1 0 � 1	, ~gg � 0,
bz � 0:1, b � 0:2, ~�� � 11:5, and dashed line refers to the
vortex phase �0 �1 �2	, ~gg � 0, bz � 1:5, b � 0:5, ~�� � 12.
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direction of average local spin with respect to the mag-
netic field. In Fig. 5(a) we show the radial dependence of
jh ~SS�'	ij in the vortex phases (0 �1 �2) and (1 0 �1).
As seen from Fig. 5(a) the quantum spin reduction is
maximal for the vortex phase (1 0 �1). The value of the
average local spin jh ~SS�'	ij substantially reduces at the
vortex core. For the vortex phase (0 �1 �2) the quan-
tum spin reduction is almost absent [shown in Fig. 5(a) by
the dashed line].

Moreover, we calculated the radial behavior of the
deviation of the direction h ~SS�'	i relative to the direction
of the local magnetic field ~bb. We found that in the plane
perpendicular to the z axis the local spin completely
follows the direction of the magnetic field. In the plane
parallel to the z axis the situation is different. For the
vortex phase (1 0 �1) shown in Fig. 5(b) the direction of
the local spin (4) substantially differs from the direction
of the magnetic field, while for the phase (0 �1 �2)
this is not so. Therefore, the adiabatic approximation is
applicable only for the phase (0 �1 �2).

Thus we conclude that the ground state of the spin-1
Bose-Einstein condensate trapped in the harmonic po-
tential and subjected by the Ioffe-Pitchard magnetic field
is given by a rich variety of winding numbers in different
spinor components. At the vortex cores of the ground state
the quantum spin reduction is substantially large and the
direction of the average local spin can deviate from the
magnetic field.
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