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Interaction-Induced Decoherence of Atomic Bloch Oscillations
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We show that the energy spectrum of the Bose-Hubbard model amended by a static field exhibits
Wigner-Dyson level statistics. In itself a characteristic signature of quantum chaos, this induces the
irreversible decay of Bloch oscillations of cold, interacting atoms loaded into an optical lattice, and
provides a Hamiltonian model for interaction-induced decoherence.
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FIG. 1 (color online). Energy spectrum (top left) together
with Wannier state projections jclj

2 of the field-free k � 0
eigenstate of (1), for increasing values of the static field 0 �
F � 0:1. TheN � 1 particle is loaded into a lattice with 11 sites
(L � 5). The level dynamics illustrate the transition from a
where the strength of the static field F or, more precisely,
Bloch band to a Wannier ladder, associated with the progressive
localization of the wave function in l.
The Bose-Hubbard Hamiltonian serves as a paradigm
in the field of quantum phase transitions [1]. Recently, this
model was realized in experiments on ultracold atoms
loaded into a three-dimensional optical lattice [2], open-
ing new perspectives for the laboratory study of corre-
lated bosonic systems. Consequently, new theoretical
work on the Bose-Hubbard model was stimulated, which,
in particular, addresses the response to a static field [3–
5]—a question which shifts the focus from the Bose-
Hubbard ground state (which is mostly studied in the
literature) to dynamical and spectral properties of the
system. In single-particle quantum mechanics, these are
associated with Bloch oscillations in the time domain
and, with the emergence of a Wannier-Stark ladder, in
the energy domain [6].

This Letter is devoted to the spectral properties of the
Bose-Hubbard Hamiltonian under the additional action
of a static field or, equivalently, to the Wannier-Stark
problem for interacting bosons. Our analysis is formu-
lated in a spirit close to ongoing experiments on cold
atoms in optical lattices [2,7], and we assume that the
atoms are in the ‘‘superfluid phase’’; i.e., they are delo-
calized over the lattice in the absence of any external
perturbation. This latter assumption distinguishes the
present work from previous contributions [3,4] devoted
to the Mott insulator phase and restricts the values of the
hopping matrix element J and of the on-site interaction
energy W to the range W=J < 5:8 (see [2] and references
therein). To be specific, we fix J � 0:038 and W �
0:032— the experimental values (in units of photon re-
coil energies) for rubidium atoms in optical lattices with a
potential well depth of approximately ten photon re-
coils — throughout the sequel of this Letter. With âayl , âal,
and n̂nl the particle creation, the particle annihilation, and
the number operator at site l of the lattice, the total
Hamiltonian reads

ĤH��
J
2

�X
l

âayl�1âal�H:c:
�
�
W
2

X
l

n̂nl�n̂nl�1��F
X
l

ln̂nl;

(1)
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the Stark energy (the lattice period is set to unity) will be
our free parameter.

Let us first address the issue of boundary conditions. It
is well known that, for an infinite lattice, there is no
smooth transition between the spectrum at F � 0 and
F � 0. Formally, this is due to the fact that for any non-
vanishing value of F the Hamiltonian (1) is an unbounded
operator, whereas it is bounded for F � 0. However, for a
lattice of finite size, �L � l � L, the operator (1) is
always bounded and, hence, the spectrum of the system
changes continuously as a function of F, as illustrated by
the numerically generated level dynamics in the top left
panel of Fig. 1, for N � 1 particle and Dirichlet (i.e.,
vanishing) boundary conditions. As F is increased, the
spectrum evolves from a Bloch spectrum with energies
E�k� � �J sin��k=�2L� 2�	, k � �L; . . . ; L, into a
Wannier-Stark ladder El ’ Fl, l � �L; . . . ; L. The other
panels in Fig. 1 show the evolution of the field-free k � 0
2003 The American Physical Society 253002-1
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FIG. 2. Energy spectrum of the Hamiltonian (1) as a function
of the static field F, for particle number N � 3 and lattice size
2L� 1 � 11. Particle interaction strength W � 0:032, and
hopping matrix element J � 0:038. The inset zooms into the
central part of the spectrum, in the range 0 � F � 0:01.
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eigenstate in the basis of theWannier states, with increas-
ing F [8]. The progressive localization of the atomic wave
function in l with F is known as Stark localization.

When discussing the time evolution of a wave function
governed by (1), it is preferable to use periodic boundary
conditions instead of Dirichlet. To do so, one first elimi-
nates the static term in (1) by transforming to the inter-
action representation, where the hopping and the on-site
term in (1) define the unperturbed Hamiltonian, hence

ĤH ! ~HH�t�

� �
J
2

�
exp

�
�i

F
�h
t
�X

l

âayl�1âal � H:c:
�

�
W
2

X
l

n̂nl�n̂nl � 1�; (2)

and then identifies the site l � L� 1 of the lattice with
l � �L. This choice has the advantage that the time
evolution operator of a system of noninteracting atoms
over one Bloch period TB � 2� �h=F coincides with the
unit matrix, independently of the size of the system. That
facilitates the analysis of the dynamics in the thermody-
namic limit �nn � N=L � const, N;L! 1 (see below,
Fig. 4) [5]. In what follows, we shall use Dirichlet bound-
ary conditions when calculating eigenvalues, and periodic
boundary conditions when simulating the dynamics [9].
Note that a restriction of Eq. (2) to two sites, with vanish-
ing boundary conditions, describes the modulated two-
mode model of a Bose-Einstein condensate in a double
well [10] rather than Bloch dynamics in a periodic lattice
[6]. While the latter has no classical counterpart, the
former has a driven top, with possibly chaotic classical
dynamics [11]. In strong contrast, the characteristic fea-
tures of quantum chaos described below are inherited
from many-particle interactions and not from classical
chaos. Also, a mean field approach is justified in [10], for
large �nn! 1, but becomes invalid in our present problem
with moderate �nn� 1.

Our analysis of the spectrum of the multiparticle sys-
tem (1) follows the one for the single-particle problem.
Let us assume for the moment that there are no atom-
atom interactions, i.e., W � 0. As already mentioned, for
large values of F the single-atom energy levels form a
Wannier ladder, and the energies of an N-atom system are
consequently given by

Em � F
XL
l��L

lml � Fltot; jltotj � LN; (3)

where the ml (m � m�L; . . . ; mL,
PL

�L ml � N) are the
occupation numbers of the Wannier-Stark states. Note
that, in general, many different sets m correspond to
the same total energy, and the N-particle Wannier ladder
levels Em � Fltot are, thus, typically degenerate. The
N-particle wave function associated with a given level
Em can be constructed from single-particle Wannier-
Stark states j li by an appropriate symmetrization pro-
253002-2
cedure. In the basis of Fock states (symmetrized products
of Wannier functions j�ni), an arbitrary Wannier-Stark
state, at finite F, is given by the sum

j�mi �
X
n

c�m�
n jni; jni � jn�L; . . . ; nLi; (4)

and in the limit F ! 1 only one coefficient c�m�
n with n �

m differs from zero in Eq. (4). On the contrary, in the
opposite limit F ! 0, almost all expansion coefficients
are nonzero and the Wannier-Stark states approach
N-particle Bloch states with (once again, degenerate)
energies

E�k� � �J
XL
k��L

sin

�
�k

2L� 2

�
nk; (5)

the straightforwardN-particle generalization of the above
one-particle result.

Let us now include the effect of atom-atom interac-
tions. Figure 2 shows the energy levels of the Hamiltonian
(1) as a function of F, for N � 3 atoms loaded into a
lattice with 11 sites (i.e., L � 5). As expected, the atom-
atom interactions remove the above-mentioned degener-
acy — for small F the spectrum appears dense (almost
continuous), and for large F the degenerate levels of the
Wannier ladder split into ‘‘Wannier-ladder energy bands’’
[see Eq. (6) below]. In this latter limit, the spectrum and
the associated Wannier-Stark states can still be found
analytically. Indeed, since the hopping term in Eq. (1)
couples only those Fock states separated by one single
quantum in the Stark excitation, one has

Em ’ F
XL
l��L

lml �
W
2

XL
l��L

ml�ml � 1�; (6)

and
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j�mi ’ jmi �
J
2

 XL�1

l��L

X
m0

hm0jâayl�1âaljmi

Em0 � Em
jm0i � H:c:

!
;

(7)

where jEm0 � Emj � F.
The perturbative results (6) and (7) cannot hold when

F < J. Moreover, the complex level dynamics which are
borne out for small F in the inset of Fig. 2 indicate that
any attempt to assign a set of quantum numbers to indi-
vidual levels is bound to fail for F < J. Instead, a statis-
tical analysis of the spectrum is appropriate in this
situation. For that purpose, the upper part of Fig. 3 pre-
sents the cumulative distribution of the spacings between
adjacent energy levels, for N � 4 atoms loaded into a lat-
tice with 11 sites, at F�0:01 [12]. Clearly, the normalized
energy intervals s��E=�E exhibit GOE (Gauss-
ian orthogonal ensemble) statistics, P�s� � ��2=6�s�
exp���s2=4�, a hallmark of quantum chaos [11,13].
Thus, for weak static fields, the system (1) can be re-
garded as a quantum chaotic system. The origin of
‘‘quantum chaos,’’ i.e., of the strongly F-dependent, non-
perturbative mixing of energy levels can be understood
here as a consequence of the interaction-induced lifting
of the degeneracy of the multiparticle Wannier-Stark
levels in the crossover regime from Bloch to Wannier
spectra, making nearby levels strongly interact, for com-
parable magnitudes of hopping matrix elements and Stark
shifts. In contrast, for large F (and in the limit of large
L;N), the nearest neighbor distribution tends towards
Poissonian statistics, P�s� � exp��s�, as evident from
the lower part of Fig. 3.

Which are the physical, that is, experimentally ob-
servable manifestations of the irregular spectrum of (1),
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FIG. 3. Solid line: Cumulative nearest neighbor level spacing
distribution I�s� �

R
s
0 P�s

0�ds0 for normalized spacings s �
�E=�E (�E is the average level spacing in the central part
of the spectrum), with F � 0:01 (top) and F � 0:04 (bottom).
N � 4 atoms loaded into a lattice of size 2L� 1 � 11. The
dashed and dash-dotted lines indicate GOE and Poisson cumu-
lative distributions, respectively.
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at small field strengths? To answer this question, we
consider the Bloch oscillations of the mean atomic mo-
mentum, which can be observed rather easily in state-of-
the-art experiments [7,14]. In the absence of atom-atom
interactions, the average momentum p�t� � tr�p̂p �̂��t�	 of
the atoms oscillates with the Bloch frequency!B � F= �h.
Here �̂��t� is the single-particle density matrix with ele-
ments (in the Wannier state basis)

�l;l0 �t� � h��t�jâayl âal0 j��t�i: (8)

As shown in [5], the presence of atom-atom interactions
modifies the Bloch dynamics, and p�t� exhibits an addi-
tional beating signal at frequency !W � W= �h. Namely,
after the scaling p�t� ! p�t�=NJ and in the thermody-
namic limit �nn � const, N;L! 1, one has

p�t� � f�t� sin�!Bt�;

f�t� � exp��2 �nn�1� cos�!Wt�	�:
(9)

The appearance of the new frequency !W originates in
the splitting of the Wannier ladder levels into ‘‘energy
bands’’ [15]. It must be stressed that the result (9) is valid
only for large values of the static field, where the spec-
trum is regular. Consequently, it is to be expected that for
weak static fields the atomic Bloch oscillations will be
qualitatively different, due to the irregular/chaotic struc-
ture of the spectrum. Indeed, numerical simulations of
the dynamics indicate that, in the weak field regime, the
Bloch oscillations decay irreversibly on rather short time
scales. As an example, Fig. 4 shows the behavior of the
scaled momentum for F � 0:05, N � 7, L � 3 (top), and
N � 9, L � 4 (bottom) [16]. After only a few Bloch
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FIG. 4. Irreversible decay of the Bloch oscillations of the
average atomic momentum p�t� (scaled as p! p=NJ) for a
weak static field F � 0:05, a filling factor �nn � 1, and lattice
sizes 2L� 1 � 7 (top) and 2L� 1 � 9 (bottom). (The respec-
tive dimensions of Hilbert space are N � 1716 and N �
24 310.) Comparison of both plots shows rapid convergence
towards the thermodynamic limit, with a well defined charac-
teristic decay time ".
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periods, the mean momentum has almost comletely de-
cayed. Comparison of the results for the smaller (top) and
the larger (bottom) lattice sizes, at fixed �nn � 1, clearly
illustrates the rapid convergence towards the thermody-
namic limit, where the residual fluctuations (present in a
finite size system) die out. Thus, for a weak static field, the
envelope function in Eq. (9) approaches f�t� � exp��t="�
in the thermodynamic limit, and the characteristic decay
time " is a robust experimentally accessible quantity.
Note that the decay of the Bloch oscillations is due to
the decay of the off-diagonal elements of the one-particle
density matrix (8) and that, hence, the time " can equally
be considered as the decoherence time for a system of
interacting bosons. The precise dependence of " on the
system parameters W, J, and F hitherto remains an open
problem.

Finally, let us briefly discuss the conditions for the
observed chaos transition in system (1). Our numerical
simulations of the system dynamics, performed for fixed
ratioW=J and different values ofN and L (0:2 � �nn � 1:2,
L � 10, N � 10), suggest the condition

#l� �nn�1; (10)

as a criterion of the transition to chaos, where #l denotes
the localization length of the single-particle wave func-
tion on the lattice (#l ’ J=F for F < J, and #l ’ 1 for
F > J), and �nn�1 has the meaning of an average particle
distance. It is clear, however, that condition (10) cannot be
universal, since it does not account for the on-site energy
W. Indeed, for W ! 0, the particle-particle interaction
vanishes, and the system is integrable for arbitrary F. On
the other hand, when W ! 1, the Bose-Hubbard model
can undergo a Mott transition into the insulating phase,
where its response to the static field has a very different
(resonantlike) character [3,4]. It therefore remains a chal-
lenging theoretical problem to formulate general criteria
for the chaos transition.

To conclude, we have shown that the spectrum of the
Bose-Hubbard Hamiltonian amended by a static field
(and at fixed particle-particle interaction corresponding
to the ‘‘superfluid’’ regime in the field-free case) is either
regular or irregular, depending on the relative strength
of the hopping matrix element and of the external per-
turbation. In particular, we have seen that the irregular
level structure at intermediate strengths of the static field
manifests in a rapid decay of the Bloch oscillations of the
mean atomic momentum, and that the time scale of this
decay provides a direct measure for the decay of particle-
particle coherences across the lattice. Hence, dynamics of
cold, interacting atoms loaded into a one-dimensional
optical lattice allow for experimental probing and control
of interaction-induced decoherence.

We thank Boris Fine and Henning Schomerus for use-
ful discussions.
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