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Abstract—The properties of the spin system in the FCC lattice described by the Heisenberg model (s = 1/2)
with antiferromagnetic interactions between the nearest neighbors were studied. It was shown within the frame-
work of spin-wave theory that long-range antiferromagnetic order was absent because of frustration of
exchange coupling and transverse quantum spin fluctuations. The system was in the quantum spin liquid state.
A method for describing it within linear second-order theory with self-consistently calculated parameters was
suggested. It was proved that the ground spin liquid state was singlet. The thermodynamic properties of the spin
liquid in the whole temperature range and the character of spatial spin correlations, which had alternating signs
and a finite correlation length, were determined. The theory was constructed based on the method of two-time
Green temperature functions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: A CRITERION
OF ANTIFERROMAGNETISM 

IN THE FCC LATTICE

A system of localized spins is described by the
Heisenberg model with the Hamiltonian

(1)

defined on an ideal lattice with periodic boundary con-
ditions. Here, f are the coordinates of lattice sites, J(R)
are the exchange integrals at intersite distance R, and

R, sf = ( , , ) is the spin operator on site f. For
three-dimensional systems, Hamiltonian (1) is largely
used to describe long-range magnetic order. The exact
first-order equation of motion (" = 1) is linearized (the
Tyablikov splitting) as

(2)

on the assumption that 〈 〉  ≠ 0. Equation (2) is the base
equation of spin-wave theory at various regular

exchange J(R) distributions and mean 〈 〉 values. To
describe collinear antiferromagnetic states, subsystems
A (N/2 sites a with spins “upward,” N is the number of
sites) and B (N/2 sites b with spins “downward”) are

introduced. We then have 〈 〉  = ,  = – , where

 = (T) and T is the temperature in energy units.
Of special interest is the FCC lattice with exchange

antiferromagnetic interactions between the nearest
neighbors: J(D) = –J, J > 0, where D are the vectors con-
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necting z1 = z = 12 nearest neighbors. There are four
types of ordering in the FCC lattice [1]. For any of
them, frustrated (energetically unfavorable) exchange
J-couplings always arise. For instance, for antiferro-
magnetic order of the first type characterized by alter-
nating ferromagnetic xy planes with spins upward and
downward, that is, antiferromagnetically coupled
planes, all four J-couplings in these planes are frus-
trated. The remaining eight (interplanar) antiferromag-
netic couplings are, however, normal, and the effective

molecular field is ±4  (“plus” sign for spins upward
and “minus” for spins downward). Stabilizing such an
antiferromagnetic structure requires taking into
account at least ferromagnetic exchange between next-
nearest neighbors, J(a) = K, K > 0, where a are the vec-
tors connecting z2 = 6 next-nearest neighbors (|a | = a is

the FCC lattice parameter, and |D | = a/ ).

Lines [2, 3] showed that antiferromagnetic order
could only exist at K ≠ 0 in a quantum spin system with
Hamiltonian (1) in the FCC lattice. This conclusion is
valid for the first (K > 0) and third (K < 0) types of
ordering. In any event, the  = (λ) order parameter
and the TN(λ) Neél temperature are functions of the λ =
|K|/J ratio and vanish at λ = 0 (K = 0). Apart from frus-
trations, this phenomenon is related to the substantial
role played by transverse quantum spin fluctuations,
which, at λ = 0, destroy long-range antiferromagnetic
order. Note that the antiferromagnetic state “survives”
in the system of classical spins [4, 5].

The conclusion on the absence of antiferromagnetic
order at K = 0 also follows from work [6]. The authors
considered a primitive cubic cell with antiferromag-
netic interactions J1 and J2 for the nearest and next-
nearest neighbors, respectively (s = 1/2), and intro-
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130 KUZ’MIN
duced the p = J2/(J1 + J2) parameter. At J1 = 0, we nearly
have the FCC spin lattice, and antiferromagnetic order
is absent in this limit (p = 1).

To summarize, it follows from [2, 3, 6] that long-
range antiferromagnetic order is absent in the FCC lat-
tice for quantum spins with antiferromagnetic
exchange J only between the nearest neighbors. What is
the state of such a system? Below, we suggest the con-
cept of a spin liquid.

2. QUANTUM SPIN LIQUID

We continue our consideration of a system with
Hamiltonian (1) and total spin operator S taking into
account antiferromagnetic exchange interactions J only
between the nearest neighbors,

(3)

In the absence of stabilizing factors, there is no antifer-
romagnetic FCC lattice state. Let us therefore analyze
the spin system with dimensionless Hamiltonian (3) as
a quantum spin liquid.

We define the spin liquid as a system without sym-
metry loss and without long-range magnetic order in
which

(1) spin correlation functions are isotropic,

(4)

and only depend on the modulus of distance r = |r |; in
addition, K0 = 1 (the sum rule);

(2) the mean values for an arbitrary spin component
on lattice sites and for an arbitrary total spin operator
component are zero,

(5)

where α = x, y, z or +, –, z;
(3) the mean values of the products of spin operators

on an odd number of different sites are zero,

(6)

Here and throughout, the symbol 〈…〉  denotes thermo-
dynamic averaging at temperature τ = T/zJ and over the
ground state wave function at τ = 0.

The whole collection of the properties of the spin
liquid, namely, its ground state, the excitation spectrum,
and the thermodynamic properties, should be described
based on Hamiltonian (3) and postulates (4)–(6). Note
that postulate (6) was introduced for the first time by
this author in [7]; the corollaries to it will be considered
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below. It will be shown that the ground state is singlet
and has a total spin of S = 0, which is equivalent to the
equality

(7)

The properties of the spin liquid state are largely
determined by the spatial and temperature dependences
of the Kr(τ) spin correlation functions. The spin liquid
state energy per bond in J units is

(8)

where K|D | = –K1 (K1 > 0) is the correlator between the
nearest neighbors.

To describe the state of the spin liquid, we use the
Fourier transforms of the spin operators

(similarly for all the other operators), where vectors q
belong to the first Brillouin zone of the FCC lattice, and
we introduce the Fourier transform of the correlation
function

(9)

with the obvious property K(q) = K(–q). Calculations
of K(q) are performed by the method of two-time Green
temperature functions [8]. Because the correlators are
isotropic, it suffices to calculate the retarded commuta-
tor Green function

(10)

where ω is the dimensionless spectral variable used to
determine K(q) by the spectral theorem,

(11)

where J(q, ω; τ) is the spectral intensity.
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3. EQUATIONS OF MOTION 
AND THE GREEN FUNCTION OF LINEAR 

SECOND-ORDER THEORY

The theory of spin liquids is based on equations of

an order not lower than second because 〈 〉  = 0, and,
in contrast to spin-wave theory, first-order equations
can not be linearized. The exact equations of motion
have the form (" = 1)

(12)

(13)

where

(14)

The second-order equation takes into account the kine-
matic properties of the spin operators on one node.

Let us truncate the chain of linked equations at the
second step by linearizing the Rf operator, which con-
tains the products of the spin operators on three differ-
ent nodes. We suggest the following linearization
scheme:

(15)

where α|n – m| are the parameters that introduce correc-
tions into the splitting (linearization). This scheme is a
simple generalization of the linearization procedure
applied in [6, 7, 9–11]. Using (15), we obtain

(16)

The sum over D' in the first term is

(17)
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 operator can now be written as

(18)

where the 

 

D

 

' 

 

≠ D restriction is removed in the second
term.

The above transformations allow us to replace the
exact equation (13) by the linearized one,

(19)

which, after the Fourier transform, takes the form

(20)

Here,

(21)

Using the notation

(22)

we can write

(23)

Applying the Fourier transform to equations of
motion (12) and (13) yields the following equations for
the Green functions:
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SICS      Vol. 96      No. 1      2003



132 KUZ’MIN
where

(24)

Using the i (q) ≈ (i (q))lin approximation [see (20)],
we obtain the Green function of linear second-order
theory in the form

(25)

Its spectral intensity (11) is

(26)

By the spectral theorem, the one-time average is

or

(27)

Equation (27) shows that the suggested version of
spin liquid theory contains three unknown parameters,
which are functions of temperature, namely, the modu-
lus of the correlator between the nearest neighbors
K1(τ), the “stiffness” parameter of the excitation spec-
trum λ(τ), and the pseudogap in the spectrum D(τ). All
these parameters should be calculated self-consistently
from three equations (see below). Note in advance that,
because –1/3 ≤ Γq ≤ 1 in the Brillouin zone of the FCC
lattice, we can conveniently separate the limiting spec-
trum point (–1/3) and write the D parameter as

(28)

which is necessary for satisfying the Ωq ≥ 0 or Eq(δ) ≥
0 condition.

4. THE SELF-CONSISTENCY EQUATION

Using the definition of spatial correlators Kr

[Eq. (9)], we obtain the system of equations
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where

(30)

Equations (29) have the formal solution (the arguments
of the functions are omitted)

(31)

Note that the D = 1/3 + δ parameter [see Eq. (28)] is
written as a complex combination of unknown correla-
tors and splitting parameters. Calculating them sepa-
rately is meaningless. For this reason, we further calcu-
late the δ value as one of the most important character-
istics of the system, which describes correlations in an
“extended” cluster. We cannot, however, determine δ
from (31) and will therefore use the method of
moments [7] to calculate it self-consistently.

Let us define and exactly calculate the first three
moments,

(32)

These calculations are performed using the rules of the
multiplication of operators on one node and the defini-
tions of K1 = –K|D| and Ktot [see Eq. (30)]; importantly,
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by virtue of condition (6), only the first term of the Rf

operator [Eq. (14)] contributes to the 〈Rf 〉  mean.

Based on the spectral theorem, the one-node mean
can be represented as

(33)

where the J(q, ω; τ) spectral intensity generally corre-
sponds to the exact Green function G(q, ω). It follows
from (33) that

(34)

Above, we calculated approximate Green function
(25). The corresponding J(q, ω; τ) spectral intensity is
given by (26). It follows that

(35)

Let us impose the requirement that exact equations (34)
should be satisfied in the linear second-order theory
under consideration. The M0 zero moment is given by
the equation that precisely reproduces the sum rule
K0 = 1. It is easy to see that substituting (35) into (34)
to obtain M1 leads to an identity. Substituting (35) into
(34) to determine M2, however, yields

(36)

Using the exact expression for M2 [Eq. (32)] and solu-
tions (31), we obtain the equation for self-consistently
calculating gap parameter δ,

(37)

It follows that consistent linear second-order theory is
based on the observance of the sum rule K0 = 1, the def-
initions of the K1 and Ktot correlators [Eqs. (29)], and
the requirement of the exact second moment value,
which leads to (37). Equation (37) plays an important
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role. Indeed, it makes the theory of spin liquids inter-
nally closed, and there appears a possibility of self-con-
sistently calculating all system parameters.

The sums over the Brillouin zone in the equations
for In and P will be written in terms of integrals with the
density of states D(ε). The D(ε) density of states that
corresponds to the isoenergy surfaces Γq = ε in the FCC
lattice should satisfy the exact relations

(38)

The D(x) density of states was approximated as

(39)

where

In selecting this approximation, we were first and fore-
most guided by the logarithmic divergence of D(ε) at
ε = –1/3 and the fulfillment of integral equations (38),
because self-consistency equations (31) and (37) are
also integral.

Combining (31) and (37) yields the system of three
equations for self-consistently calculating the spin liq-
uid parameters,
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5. THE GROUND STATE

Consider the properties of the spin liquid at τ ≡ 0
(the hyperbolic cotangent equals one). The In and P
integrals only depend on δ(0), and K1 = I1/I0 monotoni-
cally decreases as δ(0) increases and has a maximum at
δ(0) = 0. Equation (40c) at τ ≡ 0 is an equation with
respect to δ(0) and has the solution δ(0) = 1.04 × 10–3 ≠
0. We therefore have the following characteristics of the
ground state of the system:

(42)

In addition, I0 = 3.026, I2 = 0.212, α1 = 3.256, and P =
0.442.

Solution (42) being available, it is pertinent to make
some comments on the method for linearizing (15). It is
known that, in first-order theory, the linearization
(Tyablikov splitting) is performed without any correct-
ing factor (the correcting factor is taken to be one). With
αi set equal to one in the second-order theory under
consideration, equations (29) have no solutions of any
kind. If all αi = α are equal, we can, without invoking
the method of moments, obtain the gap parameter in the
form

This equation has the solution δ*(0) = 0.0435 at τ = 0,
and we obtain

Clearly, this variant gives a substantial loss in the
ground state energy compared with (42). Note also that
the singlet state energy obtained by applying the
method of moments [7] to the spin liquid in a square lat-
tice is ε0 = –0.352, which is lower than the energy of the
antiferromagnetic state at τ = 0.

Let us show that the ground state is singlet (total
spin S = 0). We will introduce the function (the mean of
the square of the total spin of the system referred to one
spin)
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which can be expressed via the Fourier transform of
correlation function (27) at q = 0. At τ ≡ 0, it follows
from (27) that K(0) = 0 and S2(0) = 0, which proves the
singlet character of the ground state in conformity
with (7). On the other hand, (43) can be treated as the
limit

(44)

From this equation, we again obtain K(0) as τ  0 (a
singlet). At τ ≠ 0, triplet excitations, however, arise in
the system, which results in S2(τ) ≠ 0. Equation (44)
will be used to analyze the temperature properties of the
spin liquid.

6. CALCULATIONS 
OF THE THERMODYNAMIC PROPERTIES 

OF THE SPIN LIQUID

System (40) was solved numerically. A t value was
set, and δ was found by (40c). At these t and δ(t), the I0,
I1 = λ, K1 = I1/I0, and α1 = 2I0I1 integrals and tempe-
rature τ = λt were calculated. As a result, all the param-
eters found numerically were functions of temperature
τ = T/zJ (z = 12).

The calculated temperature dependence of the δ(τ)
gap parameter is shown in Fig. 1. In the low-tempera-
ture region, δ(τ) grows almost as a power function of τ,
δ(τ) ∝ τ 2 according to our data. However, already at τ ≥
0.5, the δ(τ) parameter virtually coincides with its
asymptotic value 4τ.

The temperature dependence of the λ(τ) stiffness
parameter of the excitation spectrum with the asymp-

totic behavior λ(τ) ∝  1/  is shown in Fig. 2.

It is known that the thermodynamic properties of a
system are determined by its excitation spectrum. The
temperature evolution of the spectrum

is shown in Fig. 3; it was obtained by self-consistently
calculating the λ(τ) and δ(τ) parameters. The spectrum
is gapless and acoustic; that is, Ωq ∝  q as q  0 (as
with phonons or antiferromagnetic magnons). The
mean excitation energy (recall that all the energy
parameters of the system are reduced to the dimension-
less form through dividing by zJ) is

(45)

K 0( ) K q( )
q 0→
lim

K1

λ
------

1 Γq–
Eq δ( )
--------------

λEq δ( )
2τ

-----------------coth
q 0→
lim= =

=  
4τ

α1
1
3
--- Γ0 δ+ + 

 
------------------------------------.

τ

Ωq τ( ) 1 Γq– λ τ( ) 1/3 Γq δ τ( )+ +=

Ω τ( ) λ τ( ) D ε( )E ε δ τ( ),( )dε
1/3–

1

∑=

≈ λ τ( ) δ τ( ).
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This is an increasing function of temperature, which

reaches “saturation” at τ > 2; that is,   0.2.

The temperature behavior of the K1(τ) modulus of
the correlator between the nearest neighbors is shown
in Fig. 4. At τ ≥ 0.5, its temperature dependence is close
to asymptotic, K1(τ) ∝  1/τ. According to the calcula-
tions, the dimensionless heat capacity

(46)

Ω

c τ( ) ∂ε τ( )
∂τ

-------------
3
4
---

∂K1 τ( )
∂τ

-----------------–= =

δ
0.4

0.3

0.2

0.1

0 0.06 0.12 0.18
τ

Fig. 1. Dependence of gap parameter δ on dimensionless
temperature τ = T/zJ at low temperatures.

Ωq
0.4

0.3

0.2

0.1

0 1 2 3 4 5 6
q

1
2

3

4

5

Fig. 3. Temperature evolution of excitation spectrum
Ωq(τ) in the [001] direction at self-consistently calculated
δ(τ) and λ(τ) parameters: (1) τ = 0, λ = 0.56, and δ = 0.0032;
(2) τ = 0.05, λ = 0.518, and δ = 0.0172; (3) τ = 0.1, λ =
0.385, and δ = 0.091; (4) τ = 0.2, λ = 0.23, and δ = 0.47; and
(5) τ = 1.0, λ = 0.1, and δ = 3.68.
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has a form similar to that of the heat capacity of a two-
level system (Schottky anomaly), namely, it has a max-

imum at τ ≈ 0.1 ≈ /2 and the c(τ) ∝  1/τ2 asymptotic
behavior. In the low-temperature region, it, however,
exhibits the behavior of a power function, c(τ) ∝  τ3.

Magnetic susceptibility. The dynamic susceptibil-
ity of a spin system in dimensionless units is deter-
mined by the equation [8]

Ω

χαβ q ω,( ) sα q( ) sβ q–( )〈 〉〈 〉 ω.–=

λ

0.5

0.4

0.3

0.2

0.1

0 1 2 3
τ

Fig. 2. Temperature dependence of spectrum stiffness
parameter λ(τ).

K1

0.18

0.12

0.06

0 0.6 1.2 1.8
τ

Fig. 4. Temperature dependence of the correlator modulus
between nearest neighbors K1(τ); system energy ε(τ) =
−(3/4)K1(τ).
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In the spin liquid state under consideration, we have

because of the isotropic character of the correlation
functions. According to (24) and (25), the expression
for the static susceptibility (ω = 0) has the form

(47)

It follows from (47) that

(48)

(49)

where Q1 ≡ X = (0, 0, 2π) and Q ≡ W = (π, 0, 2π) are the
special points of the FCC lattice Brillouin zone at
which  =  = –1/3. Because δ(0) ≠ 0 in the spin
liquid, (49) does not diverge as τ  0, which is evi-
dence of spin liquid stability with respect to short-wave
perturbations corresponding to the Q1, 2 wave vectors
and of correlation length finiteness.

χ+ – q ω,( ) 2χzz q ω,( ) 2G q ω,( )–= =

χzz q 0,( )
K1

2
------

1 Γq–

Ωq
2

--------------
K1

2λ2
-------- 1

1/3 Γq δ+ +
-----------------------------= =

=  
1
α1
----- 1

1/3 Γq δ+ +
-----------------------------.

χzz 0 0,( ) χ τ( )≡ 1
α1 τ( ) 4/3 δ τ( )+[ ]
--------------------------------------------,=

χzz 0 0,( ) τ 0= χ 0( )≡ 0.23,=

χzz Q1 2, 0,( ) 1
α1 τ( )δ τ( )
------------------------,=

χzz Q1 2, 0,( )
r 0=

295.31,=

ΓQ1
ΓQ2

χ–1

4

3

2

1

0
–0.3 0 0.3 0.6 0.9

τ

Fig. 5. Temperature dependence of reciprocal susceptibil-
ity χ–1; at τ > 0.5, the χ–1(τ) function virtually reaches its
asymptotic value with the Curie paramagnetic point
Θ = 1/3.
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Compare susceptibility (48) with the longitudinal
thermodynamic susceptibility. By definition [8], it is
given by

(50)

where sz(0) is the operator Fourier transform at q = 0.
As 〈sz(0)〉  = 0 in the spin liquid state, it follows from the
isotropic character of the spin correlators that

(51)

where the S2(τ) function is given by (43). A comparison
of expressions (50) and (51) with (48) shows that the
longitudinal thermodynamic susceptibility coincides
with the dynamic susceptibility at ω = 0 and q = 0;

that is, (τ) = χ(τ). In addition,

(52)

The χ–1(τ) reciprocal susceptibility calculated
numerically is shown in Fig. 5. This function has a min-
imum at τ ≈ 0.2 and becomes close to the χ–1(τ) ≈ τ + Θ
function already at τ ≥ 0.5; here, Θ = 1/3 is an analog of
the paramagnetic Curie point for antiferromagnets. The
S2(τ) function calculated by (52) is shown in Fig. 6. The
α1(τ) parameter rapidly reaches its asymptotic value
(one) at τ ≥ 0.5.

χ̃zz τ( ) 1
τ
--- sz 0( )( )2〈 〉 sz 0( )〈 〉 2

–[ ] 1
τ
---χ0 τ( ),≡=

χ0 τ( ) 1
N
---- Sz( )2〈 〉 1

3
---S2 τ( )= =

=  
1
4
---K q = 0( ) τ

α1 3/4 δ+( )
----------------------------,=

χ̃zz

3τχ τ( ) S2 τ( ).=

S2

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5
τ

Fig. 6. Low-temperature behavior of the S2(τ) ≡ N–1〈S2〉
function, where S is the total spin operator of the system;
asymptotically, S2(τ)  3/4.
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7. INTERPRETATION OF THE RESULTS

In the region of maximally low temperatures, the
coth(x/2) = 1 + 2n(x) representation, where n(x) is the
Bose distribution function, can conveniently be used.
The spectrum in this region is acoustic (proportional
to q), and the parameters in this region therefore behave
as power functions,

(53)

As the energy of the system is ε = –(3/4)K1, the heat
capacity of the spin liquid in this region,

(54)

is similar to the heat capacity of Debye phonons (or
antiferromagnetic magnons).

At temperatures τ ≥ τ0, where τ0 =

λ(0)(2/ )  is the excitation energy at the
boundary (ε = –1/3 or q = Q1, 2), the thermodynamic
properties of the system become more complex,
because this region also contributes to the temperature
dependence of the parameters. Initially, the quadratic
dependence of δ predominates, but, at τ > 1, the depen-
dence becomes linear.

Asymptotic behavior (tttt  ••••). The coefficients
of the asymptotic behaviors of all the functions when
correlations disappear can be determined analytically
using the following obvious physical conditions:

(1) S2(τ)  3/4; 3/4 is the value of the square of
the spin on a lattice site.

(2) α1(τ)  1; that is, the uncoupling parameter
for noncorrelated spins becomes equal to one.

The first condition leads to the Curie law for suscep-
tibility (52),

On the other hand, the other (equivalent) definition of
susceptibility [Eq. (48)] gives

when both conditions are satisfied. For the Curie law to
be obeyed, it is necessary that

(55)

Asymptotically, the integrals take the form

λ τ( ) λ 0( ) Bτ4– , K1 τ( ) K1 0( ) Aτ4.–= =

c τ( ) ∂ε/∂τ 4Aτ3,= =

3 δ 0( )

χ τ( ) S2 τ( )
3τ

------------ 1
4τ
-----.=

χ τ( ) 1
4/3 δ τ( )+
-------------------------

δ τ( ) 4τ .

In τ( ) 1
2λ τ( )
-------------- D ε( ) ε–( )n 1 ε

4τ
-----– 

  ε.d

1/3–

1

∫
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This result and properties (38) of the density of states
give

(56)

As I1 = λ [according to self-consistency equation (40a)],
it follows from (56) that λ2 = 1/8zτ; that is,

(57)

To summarize, the behavior of the thermodynamic
characteristics of the system (spin liquid) as τ  ∞ is
as follows:

(58)

8. SPATIAL CORRELATIONS
IN THE SPIN LIQUID

By definition,

The general equation for the spatial correlation func-
tions [see (14) and (34)] has the form

where the g ≡ K1/λ and δ parameters are functions of
temperature.

Consider the character of spatial correlations in the
ground (singlet) spin liquid state. At τ ≡ 0, we have

(59)

The determination of Kr at arbitrary r is a technically
complex computational problem because the summa-
tion (integration) is over the first Brillouin zone, which
has a fairly complex form in the FCC lattice [12].

I0 τ( ) 1
2λ τ( )
--------------, I1 τ( ) 1

z
--- 1

2λ τ( )
-------------- 1

4τ
-----,

I2 τ( ) 1
z
--- 1

2λ τ( )
--------------, z 12.=

λ 1

2z
--------- 1

2 τ
----------, Ω λ δ 1

2z
---------.= =

χ τ( ) 1
4τ
-----, δ τ( ) 4τ ,

λ τ( ) Ω
2
---- 1

τ
------ 0.102

τ
-------------,=

K1 τ( ) Ω2

2
------1

τ
--- 0.021

τ
-------------.=

Kr 4
1
N
---- sf

zsf r+
z〈 〉

f

∑ 4
3
--- 1

N
---- sfsf r+〈 〉 .

f

∑= =

Kr
1
N
---- eiq r⋅ K q( ),

q

∑=

K q( )
K1

λ
------

1 Γq–
Eq δ( )
--------------

λEq δ( )
2τ

-----------------,coth=

K q( ) g 0( )R q( ), R q( )
1 Γq–

1/3 Γq δ 0( )+ +
--------------------------------------.≡=
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First, note that Eq. (43),

is evidence that spatial correlation functions are alter-
nating in the ground singlet spin liquid state and cancel
each other when the summation is performed.

It follows from (59) that the largest contribution to
the formation of spatial correlations is made by those
Brillouin zone regions in which Γq  –1/3; that is, by
the neighborhoods of points Q1 = (0, 0, 2π) and Q2 =
(π, 0, 2π) and other points with similar symmetry pro-
perties.

The neighborhood of point Q1. Set q = Q1 + p,
where |p| = p ! 1. In this region,

(60)

and the Fourier transform of the correlation function is
anisotropic and has a singular direction (z). Then,

(61)

The integration is performed in the spherical coordi-
nates over a sphere of small radius p0 (the r vector is
directed along z axis),

where A2 = r2κ2. At large r values, the integral is [13]

As a result, we obtain the following asymptotic behav-
ior:

(62)

where ξ is the correlation length. As δ(0) ≈ 10–3 and z =
12, we have ξ ≈ 8.95; that is, approximately nine lattice
parameters or 12–13 distances between the nearest
neighbors. It follows from these estimates that short-
range order is fairly well established in the spin liquid.

Kr

r

∑ 0,=

ΓQ1 p+
1
3
---–

1
12
------ pz

2,+≈

R Q1 p+( ) 4

pz
2 κ2+

---------------------, κ2 zδ 0( )≡≈

Kr 4ge
iQ1 r⋅

Can r( ),≈

Can r( ) 1

2π( )3
------------- p

eip r⋅

pz
2 κ2+

---------------------.d

p0( )
∫=

Can r( ) 1

2π2
-------- p2 p

x prx( )cosd

p2x2 κ2+
-----------------------------

0

1

∫d

0

p0

∫=

=  
1

2π2
-------- p2 p

1
p
--- z zcosd

z2 A2+
---------------------,

0

pr

∫d

0

p0

∫

z zcosd

z2 A2+
---------------------

0

∞

∫ π
2A
-------e A– , A @ 1.≈

Can r( ) r/ξ–( )exp

r/ξ
-------------------------, ξ∝ 1

κ
---

1

zδ 0( )
------------------,= =
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The cothx ≈ 1/x approximation can be used at high
temperatures to obtain

(63)

[recall that, asymptotically, α1(τ)  1 and δ(τ) 
4τ]. We then have

where vB is the volume of the Brillouin zone. As previ-
ously, the neighborhoods of the points at which Γ = –1/3
are assumed to make the major contribution to the inte-
gral. In the neighborhood of point Q1, we have

(64)

As opposed to Can(r), the  function contains a
linear term rather than a root in the denominator. The
integration by the method specified above gives

(65)

The ξ = 1/κ correlation length becomes small under

high-temperature conditions (ξ ∝  1/ ). As a result,
virtually the only remaining correlations are those
between the nearest neighbors.

It follows that spatial correlations in the main direc-
tions oscillate with a Q1 · r = 2πr period and decay fol-
lowing the behavior of the Can(r) function.

9. CONCLUSION

Let us summarize the results obtained in this work.
In systems with frustrated exchange interactions

between the nearest neighbors (as in the FCC lattice),
quantum fluctuations of transverse spin components
become substantial and can destroy the Ising antiferro-
magnetic state in the absence of additional stabilizing
factors (exchange between the next-nearest neighbors
or anisotropy).

In the absence of a long-range order in the FCC lat-
tice, the system is in the spin liquid state. This state is
characterized by an isotropic spin correlation function
(Hamiltonian symmetry is not destroyed), and the
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α1 τ( )
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∞
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ground state of the spin liquid is singlet (the total spin
of the system is S = 0), in conformity with the quantum-
mechanical classification of states according to the total
spin value.

We described the spin liquid within second-order
theory by the method of Green functions. A method for
self-consistently calculating spin liquid parameters,
namely, the parameter of excitation spectrum stiffness
λ, the modulus of the spin correlator between the near-
est neighbors K1, and the gap parameter δ, as functions
of the temperature was suggested. The spin liquid
energy (in units of exchange parameter per bond) is ε =
−(3/4)K1, and the ground state energy is ε0 = –0.133.
The δ ≠ 0 parameter plays an important role. It pre-
serves the translational invariance of the principal lat-
tice in the spin system, determines correlation length

ξ = 1/ , and leads to the Curie law for the magnetic
susceptibility of the spin liquid at high temperatures.

The spin liquid has a short-range order similar to the
antiferromagnetic order with alternating spin correla-
tion functions. The behavior of reciprocal susceptibility
is also close to that characteristic of antiferromagnets
(even to the existence of the paramagnetic Curie point).

The antiferromagnetic state can compete with the
spin liquid state if there are stabilizing factors. The con-
clusion can be drawn that systems with a long-range
magnetic order transform into the spin liquid state at
temperatures above critical.
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