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Abstract—The properties of the spin system in the FCC lattice described by the Heisenberg model (s = 1/2)
with antiferromagnetic interactions between the nearest neighbors were studied. It was shown within the frame-
work of spin-wave theory that long-range antiferromagnetic order was absent because of frustration of
exchange coupling and transverse quantum spin fluctuations. The system was in the quantum spin liquid state.
A method for describing it within linear second-order theory with self-consistently calculated parameters was
suggested. It was proved that the ground spin liquid state was singlet. The thermodynamic properties of the spin
liquid in the whol e temperature range and the character of spatial spin correlations, which had aternating signs
and afinite corrélation length, were determined. The theory was constructed based on the method of two-time
Green temperature functions. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION: A CRITERION
OF ANTIFERROMAGNETISM
IN THE FCC LATTICE

A system of localized spins is described by the
Heisenberg model with the Hamiltonian

1
H =53 IR B "

JR) = IJ(R), I(0) = O,

defined on an ideal lattice with periodic boundary con-
ditions. Here, f are the coordinates of lattice sites, J(R)
are the exchange integrals at intersite distance R, and
R,s=(s, s, s) isthe spin operator on site f. For
three-dimensional systems, Hamiltonian (1) is largely
used to describe long-range magnetic order. The exact
first-order equation of motion (% = 1) islinearized (the
Tyablikov splitting) as

i$f=zJ(R)(ESfZ+RESf+—E$fZESf++R) )

on the assumption that [$ [ 0. Equation (2) isthe base
equation of spin-wave theory at various regular
exchange J(R) distributions and mean (% Ovalues. To

describe collinear antiferromagnetic states, subsystems
A (N/2 sites a with spins “upward,” N is the number of
sites) and B (N/2 sites B with spins “downward”) are

introduced. We then have 5, 0= s, s; = -8, where
§ = 5(T) and T isthe temperature in energy units.

Of special interest is the FCC lattice with exchange
antiferromagnetic interactions between the nearest
neighbors: J(A) =—J, J > 0, where A are the vectors con-

necting z; = z = 12 nearest neighbors. There are four
types of ordering in the FCC lattice [1]. For any of
them, frustrated (energetically unfavorable) exchange
J-couplings always arise. For instance, for antiferro-
magnetic order of the first type characterized by alter-
nating ferromagnetic xy planes with spins upward and
downward, that is, antiferromagneticaly coupled
planes, al four J-couplings in these planes are frus-
trated. The remaining eight (interplanar) antiferromag-
netic couplings are, however, normal, and the effective

molecular field is£4J3 (“plus’ sign for spins upward
and “minus’ for spins downward). Stabilizing such an
antiferromagnetic  structure requires taking into
account at least ferromagnetic exchange between next-
nearest neighbors, J(a) = K, K > 0, where a are the vec-
tors connecting z, = 6 next-nearest neighbors (|a| = ais

the FCC lattice parameter, and |A | = &/ /2).

Lines [2, 3] showed that antiferromagnetic order
could only exist at K # 0 in aquantum spin system with
Hamiltonian (1) in the FCC lattice. This conclusion is
valid for the first (K > 0) and third (K < 0) types of
ordering. In any event, the 5 = S(A) order parameter
and the Ty(A\) Nedl temperature are functions of the A =
[K[/J ratio and vanish at A = 0 (K = 0). Apart from frus-
trations, this phenomenon is related to the substantial
role played by transverse quantum spin fluctuations,
which, at A = 0, destroy long-range antiferromagnetic
order. Note that the antiferromagnetic state “survives’
in the system of classical spins[4, 5].

The conclusion on the absence of antiferromagnetic
order at K = 0 also follows from work [6]. The authors
considered a primitive cubic cell with antiferromag-
netic interactions J; and J, for the nearest and next-
nearest neighbors, respectively (s = 1/2), and intro-
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ducedthep = J,/(J; + J,) parameter. At J; =0, we nearly
have the FCC spin lattice, and antiferromagnetic order
isabsent in thislimit (p = 1).

To summarize, it follows from [2, 3, 6] that long-
range antiferromagnetic order is absent in the FCC lat-
tice for quantum spins with antiferromagnetic
exchange J only between the nearest neighbors. What is
the state of such a system? Below, we suggest the con-
cept of aspin liquid.

2. QUANTUM SPIN LIQUID

We continue our consideration of a system with
Hamiltonian (1) and total spin operator S taking into
account antiferromagnetic exchange interactions J only
between the nearest neighbors,

_H_1 - -1
h_ZJ - ZZgSf[Sf+A’ S_ Zsh S = 2 (3)

In the absence of stabilizing factors, there is no antifer-
romagnetic FCC lattice state. Let us therefore analyze
the spin system with dimensionless Hamiltonian (3) as
aquantum spin liquid.

We define the spin liquid as a system without sym-
metry loss and without long-range magnetic order in
which

(2) spin correlation functions are isotropic,

Y 0= 1Y B
f f (4)

e e ool
- Nfzﬁf8f+r[|_4Kr,

and only depend on the modulus of distancer =|r[; in
addition, K, = 1 (the sum rule);

(2) the mean values for an arbitrary spin component
on lattice sites and for an arbitrary total spin operator
component are zero,

0= 0,

whereda =X, y, zor +,—, z

(3) the mean values of the products of spin operators
on an odd number of different sites are zero,

FLO=0, f£m#n. (6)

Here and throughout, the symbol .. COdenotes thermo-
dynamic averaging at temperature T = T/zJ and over the
ground state wave function at T = 0.

The whole collection of the properties of the spin
liquid, namely, its ground state, the excitation spectrum,
and the thermodynamic properties, should be described
based on Hamiltonian (3) and postulates (4)—6). Note
that postulate (6) was introduced for the first time by
thisauthor in [7]; the corollariesto it will be considered

0= 0, (5)
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below. It will be shown that the ground state is singlet
and has atotal spin of S= 0, which is equivalent to the

equality
[5T-0 = 0. (7)

The properties of the spin liquid state are largely
determined by the spatial and temperature dependences
of the K, (1) spin correlation functions. The spin liquid
state energy per bond in J unitsis

HO _ 3

= W2ymg - akv ®)

where Ky, = —K; (K; > 0) is the correlator between the
nearest neighbors.

To describe the state of the spin liquid, we use the
Fourier transforms of the spin operators

iqd o

o 1
s(q)—ﬁze S

(similarly for al the other operators), where vectors q
belong to thefirst Brillouin zone of the FCC lattice, and
we introduce the Fourier transform of the correlation
function

K(a) = 5 ek,

= 43(q)s'(-q)0 = 23'(q)s (-9)0 ©)
K= 5y e K@)
q

with the obvious property K(q) = K(—q). Calculations
of K(q) are performed by the method of two-time Green
temperature functions [8]. Because the correlators are
isotropic, it suffices to calculate the retarded commuta-
tor Green function

[T37(q)|s"(—9)@, = G(q, w),

where w is the dimensionless spectral variable used to
determine K(q) by the spectral theorem,

(10)

00

7K(@) = E(@)s (a0 = [I(q v Ddo,

eu)/r 0 ]-D

J(q,w; 1) = —= 11
(@i 1) = e (1)
x Im 3°(q) |S° (=) My o,
where J(q, w; T) isthe spectral intensity.
No.1 2003
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3. EQUATIONS OF MOTION
AND THE GREEN FUNCTION OF LINEAR
SECOND-ORDER THEORY

The theory of spin liquids is based on equations of

an order not lower than second because [$ C= 0, and,
in contrast to spin-wave theory, first-order equations
can not be linearized. The exact eguations of motion
have the form (# = 1)

1 Z _+ Z +

= EZ(Sfo+A_Sf+ASf)!

* (12)
1 + - + —

= Z—ZZ(&SM—SM&)EM“
o8 Y E-S0 R 0
ot
where
[Sfo+ASf+A
AZA (14
+ (SfZ+A—A'_SfZ+A')Sfo+A - SfZ+AS;rSf_+A—A']'

The second-order equation takes into account the kine-
matic properties of the spin operators on one node.

Let us truncate the chain of linked equations at the
second step by linearizing the R; operator, which con-
tains the products of the spin operators on three differ-
ent nodes. We suggest the following linearization
scheme:

szS;Sr_n = sza\n—m\ |:'dSJr;S‘r_nD
1 ) (15)
= éa‘n_m‘K‘n_m‘s,, f£n#m,

where ay, _, are the parameters that introduce correc-
tions into the splitting (linearization). This schemeisa
simple generaization of the linearization procedure
appliedin[6, 7, 9-11]. Using (15), we obtain

1 VA VA
(R)yin = - [G\A—A'\K\A—A'\(Sf —Stia)
2z AZA (16)

(A%A)

+ alKl(sz+A‘ _sz+A'—A)]1
The sum over A'inthefirst termis

_1
=2 z Oja— a1 Kja—a

I
(A'#A)

Kw = _Kl'

=

(17)
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where indices 1, 2, 3, and 4 denote the coordination
zoneswith the corresponding |JA — A'| distances. Thelin-
earized R; operator can now be written as

(Riin = %[Hi L ZK]EiZ(
(18)
a KlZ( SfZ+A+A') '

where the A' # A restriction is removed in the second
term.

The above transformations allow us to replace the
exact equation (13) by the linearized one,

9°sd
(|Mf)lln - B——SfD
O at® 4.,

(19)

1 Z zZ
-3 —=Sr+a) + (R)jins
222% (sr=St+4) + (RY),

which, after the Fourier transform, takes the form

. 2.z
(iM(@)in = 32 Zt(qum = %(1—rq)
1+a,K (20
x| R+ = aKar [S(a) = 23S a).

Here,
My = %Ze“m = %(cxcy+cxcz+cycz),
A (21)
g;
¢, = cos.

Using the notation

o, K, =2 K + (1+a,Ky)/z

2 a,K; D. (22)

we can write
QF = N(1-T)(D+Ty) =N\E.. (23)

Applying the Fourier transform to equations of
motion (12) and (13) yields the following equations for
the Green functions:

wG(q, w) = OM(q)|s"(—q),,
wIM(q)|s(-q)@, = A, + OM(q)[s(—q)T,,
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where 1 K

K K = T3 (Te)K(a) = 57123, 7),

A = OM(q), S (—@)I0= 57 (1-Ty). (24 a
2
where

Using thei M (q) = (i M ()),;, approximation [see (20)], ATy AEy(d)
we obtain the Green function of linear second-order 1,(, 1) = Z( -Ty) coth——,
theory in the form VE (5) 2t

A
G(q, w) = !
(g, w) F.g

Its spectral intensity (11) is

.. (25)

q

e(.o/T Aq
co/T 12Q

x[3(w— Q) —8(w+ Q)], Qq=0.

By the spectral theorem, the one-time averageis

[%'(a)s'(~q)0= 3K (a)

J(0, w; 1) =

(26)

0

= IJ(q,oo; T)dw = 'l coth

2Q,

or

_Ky1-T, AE,(D)
K(q) )\ Eq(D)coth CTERE
Equation (27) shows that the suggested version of
spin liquid theory contains three unknown parameters,
which are functions of temperature, namely, the modu-
lus of the correlator between the nearest neighbors
K,(1), the “tiffness’ parameter of the excitation spec-
trum A(T1), and the pseudogap in the spectrum D(t). All
these parameters should be calculated self-consistently
from three equations (see below). Notein advance that,
because -1/3 < ', < 1 in the Brillouin zone of the FCC
lattice, we can conveniently separate the limiting spec-
trum point (—1/3) and write the D parameter as

D= 1/3+5, &=25(1)20, (28)

which is necessary for satisfying the Q, = 0 or Ey(d) =
0 condition.

(27)

4. THE SELF-CONSISTENCY EQUATION

Using the definition of spatial correlators K,
[EQ. (9)], we obtain the system of equations

Ko=1= =T K(@) = 1a(5,1),
q

L= 2T K@ = 26D, (29
q
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E,(3) = J(l rq)EB+r +3

tot ZK\A+A\

7 ’

(30)

z=12.

Equations (29) have the formal solution (the arguments
of the functions are omitted)

)\ = I]_a Kl = |1/|0’
K = loflo, 0y = 2141,

Note that the D = 1/3 + d parameter [see Eq. (28)] is
written as a complex combination of unknown correla-
tors and splitting parameters. Calculating them sepa-
rately is meaningless. For thisreason, we further calcu-
late the & value as one of the most important character-
istics of the system, which describes correlationsin an
“extended” cluster. We cannot, however, determine o
from (31) and will therefore use the method of
moments [7] to calculate it self-consistently.

Let us define and exactly calculate the first three
moments,

Mo= (0S(0)7-0 = 5= 7,

M1—< 0s() >

[l ive o ol K
= <§—Zg(sfsf+A—sf+Asf)sf> =7

(31)

(32)

=k g

These calculations are performed using therules of the
multiplication of operators on one node and the defini-
tions of K; = —K,, and K, [see Eq. (30)]; importantly,
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QUANTUM SPIN LIQUID IN THE FCC LATTICE

by virtue of condition (6), only the first term of the R;
operator [Eq. (14)] contributes to the [R;s; Cmean.

Based on the spectral theorem, the one-node mean
can be represented as

tﬁmﬁwmzjé%%dwmm
- (33)

3w = £ 3@, 1),
q

where the J(q, w; T) spectral intensity generally corre-
sponds to the exact Green function G(q, w). It follows
from (33) that

(=) [

My = IJo(w)dm, M, = J’coJo(co)dm,
- ~ (34)

M, = J’ooZJO(oo)dw.

Above, we calculated approximate Green function
(25). The corresponding J(q, w; T) spectral intensity is
given by (26). It follows that

Kile €97 1-T,
INNZ 71 E,

q
x[8(0— Q) -d(w+ Q)], Qg = AE,.

L et usimpose the requirement that exact equations (34)
should be satisfied in the linear second-order theory
under consideration. The M, zero moment is given by
the equation that precisely reproduces the sum rule
Ko = 1. It is easy to see that substituting (35) into (34)
to obtain M, leads to an identity. Substituting (35) into
(34) to determine M, however, yields

Jo(w) = (35)

M, = )\TKlp(a),
1 (36)
P(d) = NZ (1- I'q)chothz—Tq.
q

Using the exact expression for M, [Eq. (32)] and solu-
tions (31), we obtain the equation for self-consistently
calculating gap parameter 9,

1,(8) + 1,(8)/12
215(3)

It follows that consistent linear second-order theory is
based on the observance of the sumrule K, = 1, the def-
initions of the K; and K correlators [Egs. (29)], and
the requirement of the exact second moment value,
which leads to (37). Equation (37) plays an important

P(&) =

;0 = 3(T). (37)
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role. Indeed, it makes the theory of spin liquids inter-
nally closed, and there appears apossibility of self-con-
sistently calculating all system parameters.

The sums over the Brillouin zone in the equations
for I,,and P will bewritten in terms of integralswith the
density of states D(g). The D(g) density of states that
correspondsto the isoenergy surfacesl, = €inthe FCC
lattice should satisfy the exact relations

1
I D(g)de = 1,
-1/3

Dy =

1
D, = J’sD(s)de =0,

-1/3

(38)

1
— 2 -1
D, = Is D(g)de = >
-1/3
The D(x) density of states was approximated as

-1/3<x<0
O0<x<1,

OA(X),
D = 39
(x) EB(X)1 (39)

where

A(X) = —0.3666641 n[o.0671182§< + 13%} — 0.456693X,

0.202745
X+ 0.151142

In selecting this approximation, we were first and fore-
most guided by the logarithmic divergence of D(g) at
€ = —-1/3 and the fulfillment of integral equations (38),
because self-consistency equations (31) and (37) are
asointegral.

Combining (31) and (37) yields the system of three
equations for self-consistently calculating the spin lig-
uid parameters,

B(x) = 0.226573./1—x + —0.174703.

A=y, (402)
Ky = 14/l (40b)
p=l2th/i2 (400)
217
Hel’e,
. 1 E(s, 3)
_ _e\D —£ €,
1,(5,1) = IdsD(e)( €) G 6)coth T
-1/3
1
P, = [ deD(e)(1-9)ECe 6)c0th¥, (41)
-1/3
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E(e, 8) = J(l—s)%+s+%, t=1.

5. THE GROUND STATE

Consider the properties of the spin liquidat 1 =0
(the hyperbolic cotangent equals one). The I, and P
integrals only depend on &(0), and K; = 1,/ monotoni-
cally decreases as &(0) increases and has a maximum at
0(0) = 0. Equation (40c) at T = 0 is an equation with
respect to d(0) and has the solution &(0) = 1.04 x 103 #
0. Wetherefore have the following characteristics of the
ground state of the system:

3(0) = 1.04x10°, A(0) = 0.538,
K,(0) = 0178, ¢, = —0.133.

In addition, 1, = 3.026, I, = 0.212, o, = 3.256, and P =
0.442.

Solution (42) being available, it is pertinent to make
some comments on the method for linearizing (15). Itis
known that, in first-order theory, the linearization
(Tyablikov splitting) is performed without any correct-
ing factor (the correcting factor istaken to be one). With
0; set equal to one in the second-order theory under
consideration, equations (29) have no solutions of any
kind. If all a; = a are equal, we can, without invoking
the method of moments, obtain the gap parameter inthe
form

(42)

|2(5)_1.__];2|o(6)|1(5)—1
2143)

This equation has the solution &*(0) = 0.0435 at T = 0,
and we obtain

A*(0) = 0.319,
gy = —0.107,

Clearly, this variant gives a substantial loss in the
ground state energy compared with (42). Note also that
the singlet state energy obtained by applying the
method of moments[7] tothespinliquidin asquarelat-
ticeise, =—-0.352, which islower than the energy of the
antiferromagnetic stateat 1 = 0.

Let us show that the ground state is singlet (total

spin S=0). Wewill introduce the function (the mean of
the sguare of the total spin of the system referred to one

spin)

6_

K*(0) = 0.143,
a = 1.418.

(1)

1 _1
NESZD— NZE‘erSmD
fm (43)

= Zﬁztsf 5.,0= 3T K, = 2K(0),
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which can be expressed via the Fourier transform of
correlation function (27) at g = 0. At 1 = O, it follows
from (27) that K(0) = 0 and $(0) = 0, which provesthe
singlet character of the ground state in conformity
with (7). On the other hand, (43) can be treated as the
limit

. Ky 1-F,  AE,()
K(0) = limK(a) = FIimE) N
41 (44)

a1%+ FO+%.

From this equation, we again obtain K(0) ast — 0 (a
singlet). At T # O, triplet excitations, however, arise in
the system, which results in (1) # 0. Equation (44)
will be used to analyze the temperature properties of the
spin liquid.

6. CALCULATIONS
OF THE THERMODY NAMIC PROPERTIES
OF THE SPIN LIQUID

System (40) was solved numerically. A t value was
set, and d was found by (40c). At theset and o(t), the |,
I, = A, Ky = 14/l and a4 = 2lgl, integrals and tempe-
rature T = At were calculated. As aresult, al the param-
eters found numerically were functions of temperature
1=T/2) (z=12).

The calculated temperature dependence of the &(t)
gap parameter is shown in Fig. 1. In the low-tempera-
tureregion, &(1) grows almost as a power function of T,
d(t) Lt 2 according to our data. However, already at T >
0.5, the d(t) parameter virtually coincides with its
asymptotic value 4t.

The temperature dependence of the A(t) stiffness
parameter of the excitation spectrum with the asymp-

totic behavior A(t) O 1/./1 isshownin Fig. 2.

It is known that the thermodynamic properties of a
system are determined by its excitation spectrum. The
temperature evolution of the spectrum

Qu(1) = JI=TA(T)JTU3+T o+ 8(T)

isshownin Fig. 3; it was obtained by self-consistently
calculating the A(1) and &(t) parameters. The spectrum
is gapless and acoustic; that is, Q, D qasq — 0 (as
with phonons or antiferromagnetic magnons). The
mean excitation energy (recall that al the energy
parameters of the system are reduced to the dimension-
less form through dividing by zJ) is

Q(1) = A1) Y D(e)E(e, 8(1))de

-1/3

=\ (1)/3(71).

(45)

No.1 2003



QUANTUM SPIN LIQUID IN THE FCC LATTICE

0.3

0.2

0.1

0

Fig. 1. Dependence of gap parameter & on dimensionless
temperature T = T/zJ at low temperatures.

Qq

04 T T T T T T

0.3

0.2

0.1

0

Fig. 3. Temperature evolution of excitation spectrum
Qq(1) in the [001] direction at self-consistently calculated
O(1) and A(T) parameters: (1) =0, A =0.56, and = 0.0032;
(2) 1=0.05 A =0.518 and 6 = 0.0172; 3) T =01, A =
0.385, and 5=0.091; (4) 1 =0.2, A = 0.23, and 6 = 0.47; and
(5)1=10,A=0.1,and 5=3.68.

This is an increasing function of temperature, which
reaches “saturation” at T > 2; that is, Q —» 0.2.

The temperature behavior of the K;(t) modulus of
the correlator between the nearest neighbors is shown
inFig. 4. At1 2= 0.5, itstemperature dependenceisclose
to asymptotic, K,(t) O 1/1. According to the calcula-
tions, the dimensionless heat capacity

0g(t) _ 30K,(T)

c(t) = o0t 4 0t

(46)
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A T T T T T

05

04

0.3

0.2

01

Fig. 2. Temperature dependence of spectrum stiffness
parameter A(T).

0.12

0.06

Fig. 4. Temperature dependence of the correlator modulus
between nearest neighbors K4(1); system energy &(1) =

=(3/14)K4(1).

has aform similar to that of the heat capacity of atwo-
level system (Schottky anomaly), namely, it has amax-
imum at T = 0.1 = Q/2 and the ¢(t) O 1/12 asymptotic
behavior. In the low-temperature region, it, however,
exhibits the behavior of a power function, c¢(t) O 3.

Magnetic susceptibility. The dynamic susceptibil-
ity of a spin system in dimensionless units is deter-
mined by the equation [8]

X (q, w) = —[15(q)|s°(—q)Ll,.
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X oy
ar 0.4
3r 0.3
2r 0.2
Ir / T 0.1
0 ' ' ' . . . .

-0.3 0 0.3 0.6 0.9

Fig. 5. Temperature dependence of reciprocal susceptibil-

ity X1 at T > 0.5, the () function virtually reachesits
asymptotic value with the Curie paramagnetic point
0 =1/3.

In the spin liquid state under consideration, we have

X (9, w) = 2x™(q, w) = -2G(q, w)

because of the isotropic character of the correlation
functions. According to (24) and (25), the expression
for the static susceptibility (w = 0) has the form

@0 =3 Q7 LB HD (47)
_1_ 1
T o134+
It follows from (47) that
7z - _ 1
X(0.0)=x(1) = @B 48)
X“(0,0)|,_,=x(0) = 0.23,
X7(Q120) = —res
L a(1)8(1)’ (49)

X“(Q12 0)| _, = 295.31,

whereQ, =X=(0, 0, 2 and Q =W= (11, 0, 21 arethe
special points of the FCC lattice Brillouin zone at
which 'y =Tq, =-1/3. Because 5(0) # 0 in the spin
liquid, (49) does not diverge ast — 0, which is evi-
dence of spin liquid stability with respect to short-wave
perturbations corresponding to the Q; , wave vectors
and of correlation length finiteness.
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0 0.1 0.2 0.3 04 0.5
T

Fig. 6. Low-temperature behavior of the SX(1) = NS0
function, where S is the total spin operator of the system;

asymptotically, SX(t) — 3/4.

Compare susceptibility (48) with the longitudinal
thermodynamic susceptibility. By definition [8], it is
given by

X“(1) = 080) - (O =1%o, (50)

where s9(0) is the operator Fourier transform at g = 0.
As[3(0)= 0inthespinliquid state, it followsfrom the
isotropic character of the spin correlators that

Xo(0) = £0SYD= 25°(0)
1 T D)
= 2K@=0) = =5y

where the S(1) function is given by (43). A comparison
of expressions (50) and (51) with (48) shows that the
longitudinal thermodynamic susceptibility coincides
with the dynamic susceptibility at w =0 and g = 0;

that is, X (1) = x(t). In addition,

3tx(1) = S(1). (52)

The x(t) reciprocal susceptibility calculated
numerically isshowninFig. 5. Thisfunction hasamin-
imum at T = 0.2 and becomes closetothex (1) =1+ ©
function aready at 1 = 0.5; here, © = 1/3isan analog of
the paramagnetic Curie point for antiferromagnets. The
(1) function calculated by (52) isshowninFig. 6. The
04(1) parameter rapidly reaches its asymptotic value
(one) at 1= 0.5.
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7. INTERPRETATION OF THE RESULTS

In the region of maximally low temperatures, the
coth(x/2) = 1 + 2n(x) representation, where n(x) is the
Bose distribution function, can conveniently be used.
The spectrum in this region is acoustic (proportional
to g), and the parametersin thisregion therefore behave
as power functions,

A1) = AM0)=Bt*, Ky (1) = K, (0)-AT". (53)
As the energy of the system is € = —(3/4)K,, the heat
capacity of the spin liquid in this region,

c(1) = 9e/dT = 4AT’, (54)

is similar to the heat capacity of Debye phonons (or
antiferromagnetic magnons).

At temperatures T = T, Where 1, =
M0)(2//3)/3(0) is the excitation energy at the
boundary (¢ = =1/3 or q = Qg ), the thermodynamic
properties of the system become more complex,
because this region also contributes to the temperature
dependence of the parameters. Initialy, the quadratic

dependence of d predominates, but, at T > 1, the depen-
dence becomes linear.

Asymptotic behavior (t — ee). The coefficients
of the asymptotic behaviors of all the functions when
correlations disappear can be determined analytically
using the following obvious physical conditions:

(1) S(1) — 3/4; 3/4 is the value of the sguare of
the spin on alattice site.

(2) a,(t) — 1, that is, the uncoupling parameter
for noncorrelated spins becomes equal to one.

Thefirst condition leadsto the Curie law for suscep-
tibility (52),

SZ(T) 1

XM =2 =

On the other hand, the other (equivalent) definition of
susceptibility [EQ. (48)] gives

1
XM= 2535300

when both conditions are satisfied. For the Curie law to
be obeyed, it is hecessary that
o(1) — 41. (55)

Asymptotically, the integrals take the form

(0 5 [ PO R-F

-1/3
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This result and properties (38) of the density of states
give

11 1
lo(T) — 2>\() WO Ao =)
11

(1) — ZZA(T) z = 12.

Asl,; = A [according to self-consistency equation (40a)],
it follows from (56) that A2 = 1/8zt; that is,

1 1 = 1
A O = AR = =
J2z2.t J2z

To summarize, the behavior of the thermodynamic

characteristics of the system (spinliquid) asT — o« is
asfollows:

(57)

X = g 8D =4,

Q1 _ 0102
2k

« Q1 _ 0021
! 21 T

A1) — (58)

8. SPATIAL CORRELATIONS
IN THE SPIN LIQUID

By definition,
alv e pe 4L
r - NZ lj;f SNZ Ijsfsf+l‘|:|'

The general equation for the spatial correlation func-
tions [see (14) and (34)] has the form

_ l iq
Kr - Nze K(q)v
q

Kil-Tg
X Ey(0)

)\E o(8)

K(q) = coth
where the g = K,/A and o parameters are functions of
temperature.

Consider the character of spatial correlations in the
ground (singlet) spin liquid state. At T = 0, we have

K@) = GOR(@), R@)= |z, (59)
q

The determination of K, at arbitrary r is a technically
complex computational problem because the summa-
tion (integration) is over the first Brillouin zone, which
has afairly complex formin the FCC lattice [12].
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First, note that Eq. (43),

K, =0,
Z :

is evidence that spatial correlation functions are ater-
nating in the ground singlet spin liquid state and cancel
each other when the summation is performed.

It follows from (59) that the largest contribution to
the formation of spatial correlations is made by those
Brillouin zoneregionsinwhich ', —= —1/3; that is, by
the neighborhoods of points Q; = (0, 0, 2m) and Q, =
(1T, 0, 2m) and other points with similar symmetry pro-
perties.

The neighborhood of point Q,. Set g = Q; + p,

where [p| = p < 1. Inthisregion,
1
rQ1+p:_§+EpZ!
(60)
R(Q,+p)= K*=25(0)

4
P+ K’
and the Fourier transform of the correlation function is
anisotropic and has a singular direction (2). Then,

K, :4geiQ1DCan(r),
P (61)
jp
pz +K’

The integration is performed in the spherical coordi-
nates over a sphere of small radius p, (the r vector is
directed along z axis),

Can(r) =

C.(r) = Ip pIdxcos(prx)

2 AP+ K

p pl dzcosz
2TIZI pIA/z2 A

where A? = rk2. At large r values, theintegral is[13]

00

I dzcosz _ T T A
2+ A2 2A

As aresult, we obtain the following asymptotic behav-
ior:

A> 1.

exp(r/&) _1__ 1
Can(r) O N &= 750) (62)

where & isthe correlation length. As3(0) = 102 and z=
12, wehave & = 8.95; that is, approximately ninelattice
parameters or 12-13 distances between the nearest
neighbors. It follows from these estimates that short-
range order isfairly well established in the spin liquid.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

KUZ'MIN

The cothx = 1/x approximation can be used at high
temperatures to abtain
1

K(a)= AU1B+F +5(1)
[recall that, asymptotically, a,(1) — 1 and o(T) —
4t]. We then have

_ 41 g
e 0T T o
Gl(T)VBI 1/3+T,+9(1)

(vg)

(63)

Vg = 4(211)3,

where v; is the volume of the Brillouin zone. As previ-
oudly, the neighborhoods of the points at which I' = -1/3
are assumed to make the major contribution to the inte-
gra. In the neighborhood of point Q,, we have

K= G2 Conl),
ip OF (64)

1
Cin(r) = d
0= o] Prne

As opposed to C,(r), the C},(r) function contains a

linear term rather than a root in the denominator. The
integration by the method specified above gives

dzcosz
(21'[) Iz +Kr?

Con(r) =
(65)
- pg ri KO eXr
(21T)2 2Kr
The & = 1/k correlation length becomes small under

high-temperature conditions (§ O 1/./t). As a result,
virtually the only remaining correlations are those
between the nearest neighbors.

It follows that spatial correlationsin the main direc-
tions oscillate with aQ; - r = 21w period and decay fol-
lowing the behavior of the C,,(r) function.

9. CONCLUSION

Let us summarize the results obtained in this work.

In systems with frustrated exchange interactions
between the nearest neighbors (as in the FCC lattice),
guantum fluctuations of transverse spin components
become substantial and can destroy the Ising antiferro-
magnetic state in the absence of additional stabilizing
factors (exchange between the next-nearest neighbors
or anisotropy).

In the absence of along-range order in the FCC lat-
tice, the system isin the spin liquid state. This state is
characterized by an isotropic spin correlation function
(Hamiltonian symmetry is not destroyed), and the
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ground state of the spin liquid is singlet (the total spin
of the systemis S=0), in conformity with the quantum-
mechanical classification of statesaccording to thetotal
spin value.

We described the spin liquid within second-order
theory by the method of Green functions. A method for
self-consistently calculating spin liquid parameters,
namely, the parameter of excitation spectrum stiffness
A, the modulus of the spin correlator between the near-
est neighbors K, and the gap parameter 9, as functions
of the temperature was suggested. The spin liquid
energy (in units of exchange parameter per bond) is€ =
—(3/4)K,, and the ground state energy is g, = —0.133.
The & # 0 parameter plays an important role. It pre-
serves the trandational invariance of the principal lat-
tice in the spin system, determines correlation length

& = 1/./zd, and leads to the Curie law for the magnetic
susceptibility of the spin liquid at high temperatures.

The spin liquid has ashort-range order similar to the
antiferromagnetic order with aternating spin correla-
tion functions. The behavior of reciprocal susceptibility
is also close to that characteristic of antiferromagnets
(even to the existence of the paramagnetic Curie point).

The antiferromagnetic state can compete with the
spinliquid stateif there are stabilizing factors. The con-
clusion can be drawn that systems with a long-range
magnetic order transform into the spin liquid state at
temperatures above critical.
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