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Abstract—Homogeneous thermal fluctuations of the orientational order parameters S and G of biaxial mole-
cules in a uniaxial nematic liquid crystal are investigated in the framework of the molecular–statistical theory.
It is demonstrated that the molecular biaxiality significantly affects the order parameters S and G, their temper-
ature dependences in the nematic phase, the amplitude and the temperature dependence of the order parameter
fluctuations in the nematic and isotropic phases, and the character of the transition from the nematic phase to
the isotropic liquid phase. It is established that the fluctuations of the parameters S and G in the nematic phase
are related to the temperature dependences of S and G and the susceptibilities χS and χG of the nematic liquid
crystal to external fields, which leads to a change in the parameters S and G at a fixed director orientation. Expla-
nations are offered for the known experimental data on the orientational ordering of biaxial molecules under
the action of external fields in the isotropic phase of nematic liquid crystals. © 2003 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The orientational order of lathlike biaxial molecules
with respect to the director n in a uniaxial calamitic
nematic liquid crystal is characterized by the Saupe
matrix elements [1]:

(1)

where θin is the angle between the ith axis of the molec-
ular coordinate system xyz and the director n and the
brackets 〈…〉  indicate statistical averaging. In the case
of molecules with point symmetry group (C2v, D2, or
D2h), when the intrinsic coordinate system of the matrix
Sij is chosen as the molecular coordinate system, there
are two independent order parameters, namely, S = Szz

and G = Sxx – Syy.

A number of important aspects of the influence of
the molecular shape on the transition from a nematic
phase to an isotropic liquid phase (N–I transition) were
considered in [2–11] within different variants of the
molecular–statistical theory and molecular models.
However, the specific features of variations in the
parameters S and G and the two-phase region in the
vicinity of the N–I transition have not been investigated
as a function of the molecular biaxiality. Moreover, it
has been found that the N–I transition becomes similar
in character to a second-order transition with an
increase in the degree of molecular biaxiality [2–10].
The elucidation of the origin of this effect requires anal-

Sij 3 θin θ jncoscos δij–〈 〉 /2,=
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ysis of the fluctuations , , and  in the
range of the N–I transition, which has not been per-
formed to date.

At present, the fluctuations of the macroscopic ten-
sor order parameter Qαβ in nematic liquid crystals have
been studied in detail in the framework of the Landau–
de Gennes theory (see [1, 12, 13] and references
therein). The molecular–statistical theory of spatially
homogeneous and inhomogeneous fluctuations of the
order parameter S for uniaxial molecules in the vicinity
of the N–I transition was developed in [14–16]. How-
ever, the influence of the molecular biaxiality on the
amplitude and temperature dependence of the fluctua-

tions , , and  in the nematic and isotro-
pic phases remains unclear.

For calamitic and discotic nematic liquid crystals
with uniaxial molecules, the relation of the function

S(T) to the fluctuations  and the linear and nonlin-
ear susceptibilities of the nematic phase to external
fields, which are thermodynamically conjugate to the
magnitude of S, was established in [17, 18]. For nem-
atic liquid crystals with biaxial molecules, the relation
of the dependences S(T) and G(T) to the fluctuations

, , and  is of even greater interest,
because the dependence G(T) in the nematic phase
exhibits a nonmonotonic behavior [3, 5, 8]. Further-
more, the order parameter G (like the order parameter S
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[1]) in the isotropic phase with molecular ordering
induced by external fields anomalously increases as the
temperature TNI of the N–I transition is approached
[19–21]. In this respect, it is important to reveal how the
susceptibilities χS = (∂S/∂h)T; h → 0 and χG =
(∂G/∂h)T; h → 0 of the nematic and isotropic phases to the
external fields h are related to the dependences S(T) and

G(T) and also to the fluctuations , , and .

In this work, the above problems were analyzed in
terms of the molecular–statistical theory. Expressions
were derived for the free energy of nonequilibrium and
equilibrium states of the nematic phase, and the influ-
ence of the biaxiality on the N–I transition was investi-

gated. Moreover, the fluctuations , , and

 in the nematic and isotropic phases were exam-
ined. Consideration was given to the response of a nem-
atic liquid crystal with biaxial molecules to external
fields, which leads to a change in the parameters S and
G. The relation of the susceptibilities χS and χG to the
temperature dependences of the parameters S and G
and their fluctuations was revealed. An interpretation
was offered for the experimental data obtained in
[19−21].

2. FREE ENERGIES OF A NEMATIC LIQUID 
CRYSTAL IN NONEQUILIBRIUM 

AND EQUILIBRIUM STATES

In a uniaxial calamitic nematic liquid crystal con-
sisting of molecules with the aforementioned symme-
try, the orientation of the molecular coordinate system
xyz with respect to the director coordinate system XYZ
(n || Z) is characterized by the Euler angles Ω(φ, θ, ψ).
Here, φ and θ are the azimuthal and polar angles of the
long molecular axis z in the coordinate system XYZ,
respectively; and ψ is the rotation angle of the molecule
about the z axis. With the use of the orientational distri-
bution function of molecules f(Ω), we can write

(2)

where P2(cosθ) is the Legendre polynomial. The quan-
tity G characterizes the degree of hindrance to the rota-
tion of molecules about their long axes z. For given
parameters S and G, reasoning from the principle of the
maximum informational entropy [22] with due regard
for formulas (2) and the normalizing condition for f(Ω),
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S P2〈 〉≡ P2 θcos( ) f Ω( ) Ω,d∫=

G D θ ψ,( )〈 〉≡ 1 P2–( ) 2ψf Ω( ) Ω,dcos∫=
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the function f(Ω) can be represented in the following
form [23]:

(3)

The parameters S and G can be defined by the expres-
sions

(4)

which form a system of equations for determining λP(S,
G) and λD(S, G).

We will consider the nematic and isotropic phase at
a constant volume. The difference between the free
energies of the nematic and isotropic phases per mole-
cule can be written in the form

(5)

where E(S, G) is the anisotropic part of the internal
energy. In the mean-field approximation, with allow-
ance made for the results of analyzing the intermolecu-
lar interactions in nematic liquid crystals [5, 8, 23, 24],
we can write

(6)

where u > 0 and the parameter λ1 is determined by the
molecular properties. For anisotropic dispersion inter-
molecular interactions in the mesophase, this parameter
has the form

(7)

Here, γii are the molecular polarizability tensor compo-
nents averaged over the entire spectral range. At 0 ≤
λ1 ≤ 1, molecules have polarizability ellipsoids that are
either prolate (λ1 < 1/3) or oblate (λ1 > 1/3) along the z
axis and, correspondingly, form either calamitic or dis-
cotic nematic phases. Within the approaches developed
in [11, 25], the parameter λ1 for the same form of
E(S, G) [expression (6)] can be associated with the
sizes of molecules characterized by an ellipsoidal or
more complex shape.

Substitution of formulas (3) and (6) into expres-
sion (5) gives the functional of the nonequilibrium free
energy:

(8)

f Ω( ) 1

8π2
Z

------------ λPP2 λDD+( ),exp=

Z
1

8π2
-------- λPP2 λDD+( ) Ω.dexp∫=

S ∂ Z/∂λP, Gln ∂ Z/∂λD,ln= =

∆F E S G,( ) kT 8π2
f Ω( )[ ] f Ω( ) Ω,dln∫+=

E S G,( ) u/2( ) S λ1G+( )2
,–=

λ1 γxx γyy–( )/ 2γzz γxx– γyy–( ).=

∆F
u
2
--- S λ1G+( )2

–=

+ kT λPS λDG Z λP λD,( )ln–+[ ] ,
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where λP and λD are the functions of the parameters S
and G. Then, taking into account relationships (4), we
have

(9)

The conditions of the thermodynamic equilibrium
(∂F/∂S)T = (∂F/∂G)T = 0 allow us to obtain the relation-
ships

(10)

for determining the dependences S(T) and G(T) corre-
sponding to extrema of functional (8). Substitution of
relationships (10) into expressions (3) gives the equilib-
rium distribution function

(11)

at which functional (5) has an extremum. With the use
of relationships (10) in functional (8), we find the equi-
librium free energy

(12)

at the extreme points of functional (8). Expression (12)
cannot be treated (as was done in monographs [1, 26]
and also in [2, 14]) as a functional valid at arbitrary
(nonequilibrium) values of S and G and cannot be used

for calculating the fluctuations , , and .
This misinterpretation of expression (12) will be dem-

onstrated below using calculations of  for a nematic
liquid crystal with uniaxial molecules as an example.
The difference between the Landau series in the expan-
sions of ∆F [formula (8)] and ∆Fe [formula (12)] in
powers of the parameters S and G is shown in Appen-
dix 1, in which the obtained data are also compared
with those for uniaxial molecules [26, 27].

3. THE INFLUENCE OF MOLECULAR 
BIAXIALITY ON THE CHARACTER 

OF THE N–I TRANSITION
The specific features of the N–I transition with a

change in λ1 in the range 0 ≤ λ1 < 1/3 can be revealed
using numerical calculations. The relationships

(13)

∂F/∂S( )T –u S λ1G+( ) kTλP,+=

∂F/∂G( )T –uλ1 S λ1G+( ) kTλD.+=

λP S G,( ) u
kT
------ S λ1G+( ),=

λD S G,( )
uλ1

kT
-------- S λ1G+( )=

f e Ω( ) 1

8π2
Ze

-------------- u
kT
------ S λ1G+( ) P2 λ1D+( ) ,exp=

Ze
1

8π2
-------- u

kT
------ S λ1G+( ) P2 λ1D+( ) Ω,dexp∫=

∆Fe u/2( ) S λ1G+( )2
kT Zeln–=

δS
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2 δSδG
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2

S P2 θcos( ) f e Ω( ) Ω,d∫=

G D θ ψ,( ) f e Ω( ) Ωd∫=
P

represent the system of self-consistent equations,
which possesses several solutions. Among them, ∆F
exhibits a minimum for the dependences Se(T) and
Ge(T), which satisfy the following conditions:

(14)

Here, the subscript e refers to the derivatives FSS =
∂2F/∂S2, … at thermodynamic equilibrium. For subse-
quent analysis, we introduce the variances

(15)

which characterize the nonuniformity of the orienta-
tional distribution of molecules in a sample. The vari-
ances can be written in the form

(16)

With the use of these expressions, we obtain the Jaco-
bian

(17)

which is positive in the stability region of the calamitic
nematic phase. Therefore, with due regard for relation-
ships (16) and (17), we can write the following expres-
sions:

(18)

The repeated differentiation of relationships (9) and the
use of expressions (18) give

(19)

where t = kT/u and variances (15) are calculated with
the distribution function (11) at S = Se and G = Ge. The
limiting temperatures of the stability of the isotropic
and nematic phases can be obtained from the condition
that the left-hand side of the last inequality in relation-
ships (14) becomes zero. These temperatures obey the
equation

(20)

in which we used the designations

(21)

FSS( )T e, 0, FGG( )T e, 0,≥ ≥

FSS( )T e, FGG( )T e, FSG( )T e,
2

– 0.≥

∆P P2
2〈 〉 S

2
, ∆PD– P2D〈 〉 SG,–= =

∆D D
2〈 〉 G

2
,–=

∆P ∂S/∂λP, ∆PD ∂S/∂λG ∂G/∂λP,= = =

∆D ∂G/∂λD.=

J ∂ S G,( )/∂ λP λD,( ) ∆P∆D ∆PD
2

,–= =

∂λP/∂S ∆D/J , ∂λD/∂G ∆P/J ,= =

∂λP/∂G ∂λD/∂S ∆PD/J .–= =

FSS( )T e, kT ∆D/J 1/t–( ),=

FGG( )T e, kT ∆P/J λ1
2
/t–( ),=

FSG( )T e, kT ∆PD/J λ1/t+( ),–=

t ∆P 2λ1∆PD λ1
2∆D ∆A,≡+ +=

∆A A
2〈 〉 A〈 〉 2

, A– P2 λ1D.+= =
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In the isotropic phase, we have ∆P = 1/5, ∆D = 3/5, and
∆PD = 0 and formula (20) can be rearranged to give the
expression

(22)

for the limiting temperature of the stability of the iso-
tropic phase. By substituting this expression into rela-
tionships (11) and (13) at fixed λ1, we find the parame-
ters S* = Se(t*, λ1) and G* = Ge(t*, λ1). The simulta-
neous solution of the system of equations (13) and (20)
at fixed λ1 gives the limiting temperature t1(λ1) of the
stability of the nematic phase and the parameters S1 =
Se(t1, λ1) and G1 = Ge(t1, λ1). The simultaneous solution
of the system of equations (13) and the equation ∆Fe =
0 in expression (12) at fixed λ1 enables us to obtain the
temperature tNI(λ1) and the parameters SNI = Se(tNI, λ1)
and GNI = Ge(tNI, λ1). The dependences of the above
parameters on λ1 are plotted in Figs. 1 and 2.

As can be seen from Fig. 1, an increase in λ1 leads
to an increase in the ratio (S* – SNI)/(SNI – S1) from
1.762 at λ1 = 0 to 2 in the range corresponding to linear
dependences of S*, SNI, and S1 on λ1. In this range, the
ratios between S*, SNI, and S1 do not depend on λ1 and
are determined by formulas (A1.6)–(A1.10) given in
Appendix 1. The dependences of the parameters SNI
and GNI on λ1 are qualitatively similar to those obtained
in [4, 6, 7, 10] within other variants of the molecular–
statistical theory and different models of biaxial mole-
cules. A characteristic feature of the influence of λ1 on
the N–I transition is that a decrease in the two-phase
region (t1 – t*) with an increase in λ1 is attended by a
weak change in the ratio (tNI – t*)/(t1 – tNI) from 7.65 at
λ1 = 0 to 8 at λ1 ≈ 1/3. It should be noted that the inclu-
sion of the anisotropy of the orientational distribution
of molecules over the angle φ results in the appearance
of the low-temperature biaxial nematic phase Nb. An
increase in λ1 leads to a decrease in the temperature
range of the calamitic nematic phase, and the I–Nb con-
tinuous transition occurs at λ1 = 1/3 [1–3, 9].

The dependences of the parameters G*, GNI, and G1
on λ1 exhibit a nonmonotonic behavior. The change in
the ratios between G*, GNI, and G1 as a function of λ1
is associated with the nonmonotonic dependence of
G(T) in the nematic phase. The differentiation of
expressions (13) with respect to temperature and the
solution of the obtained system of equations with
respect to the derivatives ∂S/∂T and ∂G/∂T give the rela-
tionships

(23)

t* λ1( ) 1 3λ1
2

+( )/5=

∂S
∂T
------

A〈 〉 ∆ P λ1∆PD+( )
T t ∆A–( )

------------------------------------------,–=

∂G
∂T
-------

A〈 〉 ∆ PD λ1∆D+( )
T t ∆A–( )

------------------------------------------.–=
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A comparison of these relationships with formula (20)
shows that the derivatives ∂S/∂T and ∂G/∂T diverge at
t = t1. The derivative ∂G/∂T is equal to zero when the
following condition is satisfied:

(24)

Since the inequality ∆D ≥ 0 is valid irrespective of the
sign of λ1, the sign of ∆PD is opposite to the sign of λ1.
The solution of the system of equations (13) and (24) at
fixed λ1 gives the quantities t2(λ1), S2 = Se(t2, λ1), and
G2 = Ge(t2, λ1) corresponding to the maximum in the

∆PD λ1∆D.–=
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Fig. 1. Dependences of the parameters (1–3) S and (1'–3') G
on λ1 at t = (1, 1') t*, (2, 2') tNI, and (3, 3') t1.
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Fig. 2. Dependences of the temperatures (1) t*, (2) tNI,
(3) t1, (4) t2, (5) t3, (6) t4, and (7) t5 on λ1. Points (with the
abscissas λ1 = 0.075, 0.111, 0.122, and 0.184) indicate the
intersections of the curve tNI(λ1) with the curves t2(λ1),
t3(λ1), t5(λ1), and t4(λ1), respectively.
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dependence G(t) at given λ1. The dependences of these
quantities are displayed in Figs. 2 and 3.

It can be seen from Fig. 2 that, at λ1 ≤ 0.075, the ine-
quality tNI(λ1) ≤ t2(λ1) is satisfied and the function G(t)
monotonically increases with an increase in t over the
entire range t ≤ tNI. For molecules with λ1 > 0.075, we
have tNI(λ1) > t2(λ1) and an increase in t leads to a non-
monotonic variation in the function G(t). This function
increases in the range t ≤ t2 from zero at t = 0 to the
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1'

Fig. 3. Dependences of the parameters (1–3) S and (1'–3') G
on λ1 at t = (1, 1') t2, (2, 2') t3, and (3, 3') t4.

0.9

0.6

0.4

0.2

0

–0.2

0.90 0.95 1.00 1.05

1

2

3

0

1.0

1
23

3'3''

2''

2''
3''

2'

3'

1'

3

T/TNI

N
δS

δG
––

––

T/TNI
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NδS
2

NδG
2

NδSδG

N
δS

2
N

δG
2

N
δS

δG
,

,

P

maximum value G2 at t = t2 and then decreases in the
range t2 < t ≤ tNI. The inequality t* < t2 is valid at λ1 <
0.212, and the inequality t2 < t* holds at 0.212 < λ1 <
1/3. The value of S2 depends weakly on λ1 and varies
from 0.413 to 0.402, which agrees with the experimen-
tal data for pure nematic liquid crystals in the absence
of low-temperature smectic phases. The dependence
G2(λ1) is nearly linear over the entire range of λ1 and
can be used for estimating the value of λ1 from the max-
imum of the experimental dependence G(t) for real liq-
uid crystals.

4. FLUCTUATIONS OF THE ORDER 
PARAMETERS S AND G

In a nematic liquid-crystal sample containing N
molecules, the homogeneous thermal fluctuations δS =
S – Se and δG = G – Ge lead to the change in the total
free energy of the sample δF = N(∆F – ∆Fe), which can
be written, correct to terms quadratic in δS and δG, in
the form

(25)

The distribution function w ~ exp(–δF/kT) for the quan-
tities x1 = (N)1/2δS and x2 = (N)1/2δG has the following
form:

(26)

where the matrix elements βik and the matrix determi-
nant β are defined by the relationships

(27)

According to [28], averaging with the use of function (26)
gives

(28)

where  is the element of the matrix that is inverse to
the matrix βik. As a result, we obtain

(29)

δF

=  
N
2
---- FSS( )T e, δS

2
2 FSG( )T e, δSδG FGG( )T e, δG

2
+ +[ ] .

w x1 x2,( ) β
2π
------- 1

2
---βikxixk– 

  ,exp=

i k, 1 2,,=

β11 ∆D/J 1/t, β12– β21 ∆PD/J λ1/t+( ),–= = =

β22 ∆P/J λ1
2
/t, β– t ∆A–( )/Jt.= =

xixk xixkw x1 x2,( ) x1 x2dd

∞–

∞

∫
∞–

∞

∫ βik
1–
,= =

βik
1–

NδS
2 t∆P λ1

2
J–

t ∆A–
-----------------------, NδG

2 t∆D J–
t ∆A–

-----------------,= =

NδSδG
t∆PD λ1J+

t ∆A–
--------------------------.=
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The temperature dependences of these fluctuations are
depicted in Fig. 4. Let us consider the cases of uniaxial
and biaxial molecules.

4.1. Uniaxial Molecules

At λ1 = ∆PD = 0, the fluctuations δS and δG are sta-

tistically independent and  = 0. For both phases,

we have  = ∆D. In the nematic phase, the follow-
ing relationships are valid:

(30)

where P4(cosθ) is the Legendre polynomial. With allow-
ance made for these relationships, from formulas (29),
we obtain

(31)

As can be seen from Fig. 4, this quantity increases only
slightly with an increase in t and remains finite at t =
t1 = 0.2228 and S1 = 0.3236, whereas the derivative

 diverges at this point. Upon the N–I transi-

tion, the quantity  jumpwise increases from
0.2631 to a value of 3/5, which is independent of tem-
perature. The temperature dependences of the fluctua-
tions

(32)

in the nematic and isotropic phases are asymmetric

with respect to TNI. In the isotropic phase, we have 
~ (T – T*)–1 in the vicinity of the temperature TNI and

the value of  approaches 1/(5N) at t @ ∆P = 1/5. In
the nematic phase, we obtain

(33)

and  more rapidly decreases away from the temper-
ature TNI. This is in qualitative agreement with the
experimental data on the temperature dependence of
the longitudinal susceptibility for the nematic phase χ ~

 [17, 29]. The value of  for both phases at T =

TNI is considerably larger than  and decreases
from 2.1991 to 2.1812 upon the N–I transition.

From analyzing the results obtained for the uniaxial
molecules, it is clearly seen that the calculation of the

fluctuations  with the use of ∆Fe [defined by

δSδG

NδG
2

∆D 3/5 6S/7– 9 P4〈 〉 /35,+=

P4〈 〉 7 5S 35t–+( )/12,=

NδG
2 ∆D S t,( ) 3 1 S– t–( )/4.= =

dδG
2
/dt

NδG
2

δS
2 t∆P

N t ∆P–( )
-----------------------=

δS
2

δS
2

∆P S t,( ) 1 S 2S
2

– 3t–+( )/2=

δS
2

δS
2

NδS
2

NδG
2

δS
2
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expression (12)] instead of ∆F given by formula (8) (as
was done in [14]) leads to the relationship

(34)

This relationship differs from expression (32) and gives

correct parameters  only at t ≈ ∆P, which corre-
sponds to the temperatures t ≈ t* (t ≈ t1) that cannot be
experimentally obtained in the isotropic (nematic)
phase. Even at t = tNI, from formula (34), we obtain

 = 2.4202 and 2.4010 for the nematic and isotro-
pic phases, respectively. These values differ signifi-
cantly from the above values calculated from expres-
sion (32). In view of the difference between formulas
(32) and (34), expression (32) can be derived without
recourse to relationship (8) (see Appendix 2).

4.2. Biaxial Molecules

At λ1 ≠ 0 and a fixed ratio T/TNI, the quantities 

and  increase with an increase in λ1 due to a
decrease in the two-phase region T1 – T*. In this case,

jumps in  and  at T = TNI increase in magnitude.
The specific features of the dependence G(T) consider-
ably affect the temperature dependences of the fluctua-

tions  and . In the nematic phase, at t = t2 and
under condition (24), from relationships (29), we
obtain

(35)

As a result, we have  < 0 in the range 0 < t ≤ t2
regardless of the value of λ1. At t > t2 and ∂G/∂T < 0, the

values of  and  increase rapidly. The numer-

ator in formula (29) for  involves two terms with
different signs and becomes zero under the condition

(36)

For fixed λ1, the solution to the system of equations (13)
and (36) gives the quantities t3(λ1), S3 = Se(t3, λ1), and

G3 = Ge(t3, λ1) corresponding to the equality  =
0. The dependences of the quantities t3, S3, and G3 on λ1
are represented in Figs. 2 and 3. It can be seen from
Fig. 2 that, at λ1 ≤ 0.111, the inequality tNI(λ1) ≤ t3(λ1)

is satisfied and  < 0 over the entire range t < tNI
(curve 2'' in the inset in Fig. 4). In the range 0.075 <
λ1 < 0.111, the inequality  < 0 is valid and the
function G(t) decreases with an increase in t > t2(λ1).
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At λ1 > 0.111, the values of  are positive in the
vicinity of TNI. The dependence S3(λ1) is weak, whereas
the dependence G3(λ1) exhibits a nearly linear behavior
and is very similar to the dependence G2(λ1).

From formulas (29), it follows that, in the case when
the condition

(37)

is satisfied, the equality  =  holds. In the
nematic phase, at fixed λ1, the solution of the system of
equations (13) and (37) leads to the dependences t4(λ1),
S4 = Se(t4, λ1), and G4 = Ge(t4, λ1), which are shown in
Figs. 2 and 3. It can be seen from Fig. 2 that, in the nem-
atic phase, at λ1 < 0.184 and T = TNI, we have

(TNI) < (TNI). This situation is illustrated by
curves 3' and 3'' in Fig. 4. As can be seen from Fig. 3,
the dependence S4(λ1) is nonmonotonic and differs sig-
nificantly from the dependences S2, 3(λ1). On the other
hand, the dependence G4(λ1) exhibits a nearly linear
behavior and differs from the dependences G2, 3(λ1)
only at λ1 ≤ 1/3.

For the isotropic phase, Eq. (37) has the solution

(38)

The corresponding dependence is plotted in Fig. 2. The

inequality (TNI) < (TNI) holds at λ1 < 0.122.

At λ1 > 0.184, the inequality (TNI) > (TNI) is
satisfied for both phases (see Fig. 4). In the isotropic
phase, relationships (29) are reduced to the following
formulas:

(39)

where t*(λ1) is given by expression (22). Then, at t ≈

t*(λ1) and  @ 3/5, we obtain

(40)

Note that the last two formulas directly follow from
relationship (A1.5) [valid in the vicinity of t ≈ t*(λ1)]
and the expression δG =  = 3λ1δS. In

this temperature range, the inequalities  ≤  ≤

 are satisfied at λ1 ≤ 1/3. As the difference [t –

t*(λ1)] increases, the quantities  and 
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P

approach their limiting values of 1/5 and 3/5 and the

quantity  ~ [t – t*(λ1)]–1 tends to zero. A compar-
ison of formulas (39) and (32) at ∆P(S = 0) = 1/5 indi-
cates that, at a fixed difference t – t*, the molecular
biaxiality leads only to a small decrease in the value of

, whereas the temperature dependences of the

quantities  and  and their divergence at t =
t*(λ1) in the isotropic phase are completely determined
by the molecular biaxiality.

The fluctuation effects in the nematic and isotropic
phases in the vicinity of the N–I transition differ con-
siderably in character. In the nematic phase, at λ1 = 0.2

and T = TNI, the values of , , and 
are equal to 5.7214, 0.4431, and 0.6272, respectively.

As a result, we obtain the inequalities  @  and

 @ . At λ1 < 0.2, an increase in  in the
vicinity of TNI due to molecular biaxiality is not large
enough to change the inequality

(41)

which follows from the experimental data for typical
calamitic nematic liquid crystals, such as MBBA and

alkylcyanobiphenyls [17, 29]. In inequality (41), 
is the homogeneous long-wavelength fluctuation of S in
the volume V = 4πξ3/3, where ξ is the correlation length
of fluctuations of S. By virtue of inequality (41), the
effect of fluctuations of S and G on the physical proper-
ties dependent on S is weak in the calamitic nematic
phase of typical mesogenic compounds. On the other
hand, condition (41) is the criterion for the applicability
of the mean-field approach to the description of the N–
I transition [28]. For mesogenic compounds with
parameters λ1 close to 1/3, condition (41) is violated

and the values of  and  become comparable

to those of . In this case, the N–I transition should

be described taking into account the fluctuations 

and  in addition to the fluctuations .

In the isotropic phase, at the transition point TNI, the

values of , , and  (even at λ1 = 0.2)
are equal to 4.9059, 2.2941, and 2.8235, respectively;
i.e., they are close in order of magnitude. Therefore, the
pretransitional effects should be analyzed with due

regard for the fluctuations , , and . This
is particularly true for the description of the response of
nematic liquid crystals to external actions.
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5. RESPONSE OF A NEMATIC LIQUID CRYSTAL 
TO EXTERNAL FIELDS

Let us consider the response of a calamitic nematic
liquid crystal to an external field h, which leads to a
change in the order parameters S and G at a fixed orien-
tation of the director n. The susceptibilities serve as a
measure of the linear response and are defined by the
relationships

(42)

For magnetic (H) and high-frequency electric [E(ω)]
fields parallel to the director, the expressions for h have
the form

(43)

where ∆k = kzz – (kxx + kyy)/2 and ∆γ(ω) = γzz(ω) – [γxx(ω)
+ γyy(ω)]/2 are the anisotropies of the diamagnetic and
electric molecular polarizabilities, respectively; f||(ω) is
the component of the tensor of the local field acting on
a molecule in the liquid crystal; and E(ω) is the ampli-
tude of the macroscopic electric field in the liquid crys-
tal. In the presence of the field h, formula (8) takes the
form

(44)

Here, the second term on the right-hand side character-
izes the energy of interaction between the liquid crystal
and the field per molecule and the parameter λ2 is
defined by expression (7), in which γii is replaced either
by kii at h = hH or by γii(ω) at h = hE. In the general case,
the values of λ1 and λ2 are different, even though they
can coincide for particular compounds. The parameters
λP(S, G) and λD(S, G) are determined from the system
of equations (4), in which S = S(h) and G = G(h). Under
thermodynamic equilibrium conditions (∂F/∂S)T, h =
(∂F/∂G)T, h = 0, with the use of relationships (44), we
obtain the system of equations of state for a nematic liq-
uid crystal in the external field h, that is,

(45)

Substitution of these expressions into formula (3) gives
the equilibrium distribution function of molecules in
the presence of the external field:

χS ∂S/∂h( )T ; h 0→ , χG ∂G/∂h( )T ; h 0→ .= =

hH
∆k
3
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2
, hE
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3

------------------------------E
2 ω( ),= =
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λD S G,( )
uλ1
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λ2h
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(46)

Differentiation of the equations of state (45) with
respect to h at a constant temperature with allowance
made for expressions (18) leads to the system of equa-
tions in (∂S/∂h)T and (∂G/∂h)T. By solving this system,
we obtain

(47)

Here, the parameters described by formulas (15), (17),
and (21) are calculated with the distribution function (46)
and depend on h. The derivatives (∂S/∂h)T and (∂G/∂h)T

diverge at the temperatures t*(λ1, h) and t1(λ1, h) obey-
ing the equation

(48)

The parameter ∆A [expression (21)] is the second-order
cumulant, which can be written in the following form:

(49)

where λA = u(S + λ1G)/kT. The dependence ∆A(h) can be
represented as a series:

(50)

where λB = h/kT and B = P2 + λ2D. Here, all the cumu-
lant averages 〈a1|a2 |…|an〉0 are calculated at h = 0 with
the distribution function (11). In the approximation lin-
ear in h, Eq. (48) for the isotropic phase takes the form

(51)

For uniaxial molecules at λ1 = λ2 = 0, with due regard
for expressions (43) at h = hH, this expression coincides
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with the relationship obtained earlier in [30] in a differ-
ent way. At λ1 = λ2 = 1/3, T* becomes independent of h.

In the limit h  0, the rearrangement of relation-
ships (47) with allowance made for expressions (29)
permits us to obtain susceptibilities (42) in the follow-
ing form:

(52)

A comparison of formulas (23) and (47) at h = 0 makes
it possible to derive the relationships between the sus-
ceptibilities and the temperature dependences of the
order parameters S and G in the absence of a field. At
λ1 = λ2, these relationships are simplified and take the
form

(53)

From these relationships, we have χG < 0 at t < t2 and

∂G/∂T > 0. The contributions of the fluctuations 

to the susceptibility χS and the fluctuations  to the
susceptibility χG are determined by the value of λ2,
which is different for the electric and magnetic fields.

At t = t3 and  = 0, the susceptibilities χS and χG

are governed only by the fluctuations  and ,
respectively.

In the isotropic phase, substitution of expressions (39)
into formulas (52) gives

(54)

Since 5t > 1 and λ1 – λ2 ! 1, from formulas (54), we
find

(55)

In the linear-field approximation, the order parameters
S(h) and G(h) induced by the field h in the isotropic
phase of the nematic liquid crystal are given by the
expressions

. (56)

The parameters S(h) and G(h) increase proportionally
to [T – T*(λ1)]–1 as the temperature TNI is approached.
Making allowance for formulas (43) and (54), expres-
sions (56) fit the experimental data obtained in [19–21]
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for pure nematic liquid crystals fairly well. The inter-
pretation of the dependences G(h) ~ S(h) ~ (T – T*)–1

observed in the constant field h for the order parameters
of impurity biaxial molecules with a small concentra-
tion in the isotropic phase of the nematic matrix [21]
calls for special examination, because the constant λm

in the expression G(h) = 3λmS(h) in this case is predom-
inantly determined by the interaction between the
impurity and the matrix.

Now, we analyze the possibilities of using formu-
las (56) to interpret the experimental data on the qua-
drupole splitting ∆νk of the 2D NMR lines associated
with the C–Dk bonds. The quadrupole splitting ∆νk

depends on the orientation of the C–Dk bond with
respect to the axes of the molecular coordinate system
xyz and orientational order of molecules and can be rep-
resented as

(57)

Here, Sβ = (3cos2β – 1)/2, Gβϕ = (3/2)sin2βcos2ϕ β is
the angle between the C–Dk bond and the z axis of the
molecular coordinate system xyz, and ϕ is the angle
between the x axis and the projection of the C–Dk bond
onto the xy plane. The quadrupole splitting ∆νk can
become zero for a continuum of C–Dk directions. In the
molecular coordinate system, the equation ∆νk = 0 can
be rearranged to the following form:

(58)

Among the three parameters Sii, two parameters have
the same sign. By designating their magnitudes as Su

and Sv and allowing for the condition TrS = 0, from
Eq. (58), we obtain the expression

(59)

which is an equation of an elliptic cone with a vertex at
the origin of the coordinates and the axis . In the sec-
tion that is perpendicular to the  axis and is located at
the distance c = ±(Su + Sv )–1/2 from the origin of the
coordinates, the cone directrix is an ellipse with the
semiaxes a = (Su)–1/2 and b = (Sv )–1/2. The angles βu

and βv determining the half-aperture of the cone are
defined as

(60)

The equality ∆νk = 0 is satisfied for all the C–Dk direc-
tions lying on this “magic” cone C(xyz). The diagonals

 =  =  of the molecular coordinate system lie
on the cone C(xyz) and correspond to Sβ = Gβϕ = 0. For
uniaxial molecules with the axis z =  and Su = Sv, the
circular cone C(xyz) is characterized by the half-aper-
ture angle β ≈ 54.74°.

∆νk const SSβ GGβϕ/3+( ).=
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The shape of the cone C(xyz) is specified by the
parameters S and G and depends on the mesophase tem-
perature and the ratio between the parameters Su and Sv .
At S > G and Sxx = –(S – G)/2, Syy = –(S + G)/2, and
Szz = S, we have  = x,  = y,  = z. In the nematic
phase, at values of λ1 close to 1/3, the parameters S
and G in the vicinity of the N–I transition are small
and are related by the expression S = 3λ1G [see rela-
tionship (A1.5)]. Therefore, the angles

(61)

are independent the temperature. As the value of λ1
approaches 1/3, the semiaxis a increases and tends to
infinity at G = S. In this case, the cone C(xyz) degener-
ates into two mutually perpendicular planes which
intersect along the x axis and make the angles βy = ±45°
with the z axis. For particular compounds and C–Dk

bonds, one of the parameters Sii in Eq. (58) can change
sign with a variation in the mesophase temperature,
because the dependence G(S) in the nematic phase
exhibits a nonmonotonic behavior. As a consequence,
the  axis changes its direction from one axis in the
system xyz to another axis. The changeover to the ine-
quality G > S, which is valid only for biaxial impurity
molecules in the calamitic nematic liquid crystal, is
accompanied by the transformation of the above planes
into the cone C(xyz) with the axes  = x,  = z, and

 = y and the semiaxes of the ellipse a @ b.

In the isotropic phase, when expressions (56) hold
true, λ1 in formulas (61) should be replaced by λ2 or λm

for impurity molecules) and the angles βx, y do not
depend on the parameters S(h) and G(h). This circum-
stance accounts for the situation where the proportional
relationship ∆νk ~ S(h) is observed for a number of C–
Dk bonds in the molecule, whereas the other C–Dk

bonds in the same molecule are characterized by ∆νn =
0 [19, 21]. The orientation of the latter bonds is similar
to that of the directrix of the cone C(xyz) with parame-
ters (61). This provides the basis for the technique of
determining the orientation of C–Dk bonds in the
molecular coordinate system.

6. CONCLUSIONS

Thus, the results obtained in the present work dem-
onstrated that the molecular biaxiality substantially
affects the dependences S(T) and G(T) and the magni-
tudes SNI and GNI upon the N–I transition. An increase
in the molecular biaxiality parameter λ1 is attended by
a decrease in the values SNI and GNI and a narrowing of
the two-phase region. However, the ratio (TNI –
T*)/(T1 – TNI) remains unchanged up to the parameter
λ1 = 1/3, which is a limiting value for calamitic nematic
liquid crystals and corresponds to the I–Nb transition to

u v w

βx = 
2

1 3λ1–
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  1/2

, βyarctan  = 
2

1 3λ1+
------------------ 

  1/2

arctan

w
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the biaxial nematic phase. The specific features of the
dependence G(T) have a considerable effect on the
magnitude and temperature behavior of the fluctuations

 and . The fluctuations  in the nematic
phase vary nonmonotonically and can change sign from
negative to positive as the temperature TNI is

approached. In the nematic phase, the fluctuations 

and  at values λ1 < 0.2 typical of mesogenic mol-

ecules are appreciably less than the fluctuations 
and do not affect the applicability of the mean-field
approach to the description of the N–I transition. At val-
ues of λ1 close to 1/3 and small parameters SNI, the fluc-

tuations , , and  are large and compara-
ble to each other, so that the mean-field approximation
is inapplicable.

In the isotropic phase, the molecular biaxiality

determines the ratios between the fluctuations ,

, and  and their temperature behavior. At
λ1 ≈ 0.2 for real mesogenic molecules, the fluctuations

, , and  are comparable to each other in
the vicinity of the temperature TNI. The inclusion of the
molecular biaxiality makes it possible to explain the
dependences G(h) ~ S(h) ~ (T – T*)–1, which are exper-
imentally observed for the parameters G(h) and S(h)
that are induced by the field h in the isotropic phase of
the nematic. Moreover, the specific features of the qua-
drupole splitting of the NMR lines in the spectra of
selectively deuterated mesogenic and impurity mole-
cules in the isotropic phase of nematic liquid crystals
can also be interpreted in terms of the molecular biaxi-
ality.

APPENDIX 1

Let us now demonstrate that the expansions of ∆F
[defined by formula (8)] and ∆Fe [represented by for-
mula (12)] into a Landau series in powers of the param-
eters S and G up to fourth-order terms differ signifi-
cantly. The expansion of the function Z(λP , λD) [given
by expression (3)] into a power series of λP, D and sub-
stitution of this series into relationships (4) give the
series S = S(λP , λD) and G = G(λP , λD) whose inversion
makes it possible to obtain the dependences λP(S, G)
and λD(S, G). With the required precision up to third-
order terms, these dependences have the form
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The dependence λP(S, G) is the even function and the
dependence λD(S, G) is the odd function of the param-
eter G. Substitution of formulas (A1.1) into the series
lnZ(λP , λD) gives

(A1.2)

This expansion is a power series of the invariants I2 =
Tr(S2) = (3S2 + G2)/2 and I3 = Tr(S3) = 3(S3 – SG2)/4 of
the matrix S (1). In the diagonal form, this matrix has
the following elements: Sxx = –(S – G)/2, Syy = –(S +
G)/2, and Szz = S. Substitution of formulas (A1.1) and
(A1.2) into relationship (8) leads to the sought expan-
sion

(A1.3)

The minimization of expression (A1.3) with respect to
the parameters S and G results in the system of equa-
tions (10). From this system of equations, we derive the
relationship

(A1.4)

Substitution of series (A1.1) into relationship (A1.4)
gives the expression

. (A1.5)

With this expression, the function ∆F described by for-
mula (A1.3) can be reduced to a form ∆F(S) with coef-
ficients dependent on λ1. At G < S, the third-order term
in formula (A1.3) is negative and the N–I transition is a
first-order transition. Let us consider the situation at G
≤ S when the N–I transition is similar in character to a
continuous transition and the parameters S and G are
small in its vicinity. Then, in relationship (A1.5), it is
possible to retain only the first term. Its substitution into
formula (A1.3) leads to the series

(A1.6)

with the coefficients

(A1.7)

At λ1 = 0, these coefficients are reduced to the coeffi-
cients (4.23) obtained in [27]. The coefficient b(λ1, T)
becomes zero at λ1 = 1/3, which agrees with the results
following from formula (7). The limiting temperature
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of the stability of the isotropic phase t* = kT*/u and the
parameter S* = S(t*) are defined by the expressions

(A1.8)

The temperature tNI of the N–I transition and the param-
eter SNI can be written as follows:

(A1.9)

The limiting temperature of the stability of the nematic
phase t1 and the parameter S1 = S(t1) are related to
parameters (A1.8) through the expression

(A1.10)

In the λ1 range under consideration, the ratios between
the parameters S*, SNI, and S1 do not depend on λ1 and
the two-phase region t1 – t* decreases with an increase
in λ1. However, the ratio (tNI – t*)/(t1 – tNI) varies from
7.4 at λ1 = 0 to 8 in the limit λ1 = 1/3.

Now, expansions similar to those represented by for-
mulas (A1.3) and (A1.6) will be derived for the func-
tion ∆Fe given by formula (12). Let us introduce the fol-
lowing designations:

(A1.11)

It can be shown that the two equations (∂Fe/∂S)T =
(∂Fe/∂G)T = 0 are equivalent to one self-consistent
equation for the parameter η; that is,

(A1.12)

The expansion of the function ∆Fe [formula (12)] in
powers of η has the form

(A1.13)

where the expression for T*(λ1) = u(1 + 3 )/5k coin-
cides with that in relationship (A1.8). Substitution of
the first term of expansion (A1.5) into formula (A1.13)

t* λ1( ) 1 3λ1
2

+( )/5, S*
7 1 9λ1

2
–( )

17 1 3λ1
2

+( )
2

-------------------------------.= =

tNI

153 1 3λ1
2

+( )
3
t*

153 1 3λ1
2

+( )
3

10 1 9λ1
2

–( )
2

–
-----------------------------------------------------------------------,=

SNI 2S*/3.=

t1

68 1 3λ1
2

+( )
3
t*

68 1 3λ1
2

+( )
3

5 1 9λ1
2

–( )
2

–
-----------------------------------------------------------------,=

S1 S*/2.=

η S λ1G,+=

A θ ψ,( ) P2 θcos( ) λ1D θ ψ,( ).+=

η A〈 〉 e A θ ψ,( ) f e Ω( ) Ω.d∫≡=

∆Fe η( ) u
2T
------ T T* λ1( )–[ ]η 2

=

–
1 9λ1

2
–( )u

3

105 kT( )2
----------------------------η3 1 3λ1

2
+( )

2
u

4

700 kT( )3
------------------------------η4 …,+ +

λ1
2
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gives the expansion of ∆Fe(S) in the form of series
(A1.6) with the coefficients

(A1.14)

These coefficients differ from coefficients (A1.7) and,
at λ1 = 0, coincide with those given in [2, 26]. At T =
T*(λ1), we have ae = a, be = b, and ce = 7c/17. There-
fore, the use of expansion (A1.13) is sufficiently correct
only in the isotropic phase at temperatures close
to T*(λ1).

APPENDIX 2

For a nematic liquid crystal with uniaxial molecules
at a constant volume, formula (32) can be obtained
from the general thermodynamic relations [28]

(A2.1)

under the assumption that the temperature fluctuations
are responsible for the fluctuations of S(T). The heat
capacity at a constant volume with due regard for
expression (6) at λ1 = 0 can be written in the form

(A2.2)

Substitution of formula (A2.2) into relations (A2.1)
gives the relationship

(A2.3)

between the fluctuations  in the nematic phase and
the dependence S(T). By substituting the first expres-
sion out of the two expressions in (23) at λ1 = 0 into
relationship (A2.3), we obtain formula (32).
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