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Abstract—Homogeneous thermal fluctuations of the orientational order parameters Sand G of biaxial mole-
culesin auniaxial nematic liquid crystal are investigated in the framework of the molecular—statistical theory.
It is demonstrated that the molecular biaxiality significantly affects the order parameters Sand G, their temper-
ature dependences in the nematic phase, the amplitude and the temperature dependence of the order parameter
fluctuations in the nematic and isotropic phases, and the character of the transition from the nematic phase to
the isotropic liquid phase. It is established that the fluctuations of the parameters Sand G in the nematic phase
arerelated to the temperature dependences of Sand G and the susceptibilities x5 and xg of the nematic liquid
crystal to external fields, which leadsto achangein the parameters Sand G at afixed director orientation. Expla-
nations are offered for the known experimental data on the orientational ordering of biaxial molecules under
the action of external fields in the isotropic phase of nematic liquid crystals. © 2003 MAIK “ Nauka/Interperi-

odica” .

1. INTRODUCTION

The orientational order of lathlike biaxial molecules
with respect to the director n in a uniaxial calamitic
nematic liquid crystal is characterized by the Saupe
matrix elements[1]:

S; = [BcosB;,cos;, - §;J2, (D)

where 6;, isthe angle between the ith axis of the molec-
ular coordinate system xyz and the director n and the
brackets [l..Dindicate statistical averaging. In the case
of molecules with point symmetry group (C,,, D,, or
D,,), when theintrinsic coordinate system of the matrix
S is chosen as the molecular coordinate system, there
are two independent order parameters, namely, S= S,

and G = S-S,

A number of important aspects of the influence of
the molecular shape on the transition from a nematic
phase to an isotropic liquid phase (N- transition) were
considered in [2-11] within different variants of the
molecular—statistical theory and molecular models.
However, the specific features of variations in the
parameters S and G and the two-phase region in the
vicinity of the N-I transition have not been investigated
as a function of the molecular biaxiality. Moreover, it
has been found that the N—I transition becomes similar
in character to a second-order transition with an
increase in the degree of molecular biaxiality [2-10].
Theelucidation of the origin of thiseffect requiresanal-

ysis of the fluctuations Egz : 6_(32 , and 0S0G in the
range of the N-I transition, which has not been per-
formed to date.

At present, the fluctuations of the macroscopic ten-
sor order parameter Q,g in nematic liquid crystals have
been studied in detail in the framework of the Landau—
de Gennes theory (see [1, 12, 13] and references
therein). The molecular—statistical theory of spatially
homogeneous and inhomogeneous fluctuations of the
order parameter Sfor uniaxial moleculesin the vicinity
of the N-I transition was developed in [14-16]. How-
ever, the influence of the molecular biaxiality on the
amplitude and temperature dependence of the fluctua-

tions 35, 3G, and 5S3G in the nematic and isotro-
pic phases remains unclear.

For calamitic and discotic nematic liquid crystals
with uniaxial molecules, the relation of the function

S(T) to the fluctuations 5S> and the linear and nonlin-
ear susceptibilities of the nematic phase to externa
fields, which are thermodynamically conjugate to the
magnitude of S was established in [17, 18]. For nem-
atic liquid crystals with biaxial molecules, the relation
of the dependences ST) and G(T) to the fluctuations

3S, 8G°, and 3SBG is of even greater interest,
because the dependence G(T) in the nematic phase
exhibits a nonmonotonic behavior [3, 5, 8]. Further-
more, the order parameter G (like the order parameter S
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[1]) in the isotropic phase with molecular ordering
induced by external fields anomalously increases asthe
temperature Ty, of the N-I transition is approached
[19-21]. Inthisrespect, itisimportant to reveal how the
susceptibilities Xs = (090h)r.p_.o and X =
(0G/oh)+.1, _. o of the nematic and isotropic phasesto the
external fieldsh arerelated to the dependences S(T) and

G(T) and dlsoto thefluctuations 85, 3G, and 5S3G..

In this work, the above problems were analyzed in
terms of the molecular—statistical theory. Expressions
were derived for the free energy of nonequilibrium and
equilibrium states of the nematic phase, and the influ-
ence of the biaxiality on the N-I transition was investi-

gated. Moreover, the fluctuations gz , 6_62 , and

3SBG in the nematic and isotropic phases were exam-
ined. Consideration was given to the response of anem-
atic liquid crystal with biaxial molecules to external
fields, which leads to a change in the parameters Sand
G. The reation of the susceptihilities X5 and X to the
temperature dependences of the parameters S and G
and their fluctuations was revealed. An interpretation
was offered for the experimental data obtained in
[19-21].

2. FREE ENERGIES OF A NEMATIC LIQUID
CRYSTAL IN NONEQUILIBRIUM
AND EQUILIBRIUM STATES

In a uniaxial calamitic nematic liquid crystal con-
sisting of molecules with the aforementioned symme-
try, the orientation of the molecular coordinate system
Xyz with respect to the director coordinate system XYZ
(n || 2) is characterized by the Euler angles Q(¢, 6, ).
Here, @ and 0 are the azimuthal and polar angles of the
long molecular axis z in the coordinate system XYZ,
respectively; and ) istherotation angle of the molecule
about the z axis. With the use of the orientational distri-
bution function of molecules f(Q), we can write

S=[P,= IPz(cose)f(Q)dQ,
2
G=[D(6, )= I(l— P,)cos2yf (Q)dQ,

where P,(cosB) is the Legendre polynomial. The quan-
tity G characterizes the degree of hindranceto the rota-
tion of molecules about their long axes z. For given
parameters Sand G, reasoning from the principle of the
maximum informational entropy [22] with due regard
for formulas (2) and the normalizing condition for f(Q),
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the function f(Q) can be represented in the following
form [23]:

1
8UTZ

f(Q) = exp(ApP, +ApD),
1 ()
8m

The parameters Sand G can be defined by the expres-
sions
S = 0InzZ/oAs, G = 0InZ/oA,, 4

which form asystem of equationsfor determining Ap(S
G) and Ap(S G).

We will consider the nematic and isotropic phase at
a constant volume. The difference between the free
energies of the nematic and isotropic phases per mole-
cule can be written in the form

AF = E(S G)+kTJ’In[8n2f(Q)]f(Q)dQ, (5)

where E(S, G) is the anisotropic part of the internal
energy. In the mean-field approximation, with allow-
ance made for the results of analyzing the intermolecu-
lar interactionsin nematic liquid crystals[5, 8, 23, 24],
we can write

E(S G) = —~(u/2)(S+\,G)’, (6)

where u > 0 and the parameter A; is determined by the
molecular properties. For anisotropic dispersion inter-
molecular interactionsin the mesophase, this parameter
has the form

)\l = (yxx - yyy)/(zyzz —Yxx— Vyy) . (7)

Here, y;; are the molecular polarizability tensor compo-
nents averaged over the entire spectral range. At 0 <
A1 < 1, molecules have polarizability ellipsoids that are
either prolate (A, < 1/3) or oblate (A, > 1/3) along the z
axis and, correspondingly, form either calamitic or dis-
cotic nematic phases. Within the approaches devel oped
in [11, 25], the parameter A, for the same form of
E(S G) [expression (6)] can be associated with the
sizes of molecules characterized by an ellipsoidal or
more complex shape.

Substitution of formulas (3) and (6) into expres-
sion (5) givesthe functional of the nonequilibrium free
energy:

u 2
AF = —5(S+A\,G
+kT[}\PS+ )\DG_an()\p,}\D)],
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where Ap and Ay are the functions of the parameters S
and G. Then, taking into account relationships (4), we
have

(9F/0S); = —u(S+A,G) +KTAp,
(F/0G)r = —UA,(S+A,G) +KTAp.

The conditions of the thermodynamic equilibrium
(0F/09)+ = (0F/0G)+ = 0 alow usto obtain the relation-
ships

(9)

Ae(S G) = (=(S+A,6),

(10)
UA;
Ap(S G) = ﬁ(s"')\lG)
for determining the dependences ST) and G(T) corre-
sponding to extrema of functional (8). Substitution of
relationships (10) into expressions (3) givesthe equilib-
rium distribution function

1

o(Q) = —5=exp| (Z(S+ MG) (P, +A:D) |
8mZ,

(11)
2 = L [exp| S+ ME)(P,+ MD) |d,
at which functional (5) has an extremum. With the use
of relationships (10) in functional (8), we find the equi-
librium free energy

AF, = (u/2)(S+A,G)* —KTInZ, (12)

at the extreme points of functional (8). Expression (12)
cannot be treated (as was done in monographs [1, 26]
and aso in [2, 14]) as a functional valid at arbitrary
(nonequilibrium) values of Sand G and cannot be used

for calculating the fluctuations Egz , 6_62 , and 0S0G.
This misinterpretation of expression (12) will be dem-

onstrated below using cal cul ations of 5S” for anematic
liquid crystal with uniaxial molecules as an example.
The difference between the Landau seriesin the expan-
sions of AF [formula (8)] and AF, [formula (12)] in
powers of the parameters Sand G is shown in Appen-
dix 1, in which the obtained data are also compared
with those for uniaxial molecules [26, 27].

3. THE INFLUENCE OF MOLECULAR
BIAXIALITY ON THE CHARACTER
OF THE N-I TRANSITION

The specific features of the N-I transition with a
changein A, intherange O < A, < 1/3 can be revealed
using numerical calculations. The relationships

S= IPz(cose)fe(Q)dQ,
(13)
G = J’D(e, P) fo(Q)dQ

AVER'YANOV

represent the system of self-consistent equations,
which possesses severa solutions. Among them, AF
exhibits a minimum for the dependences S.(T) and
G¢(T), which satisfy the following conditions:

(FSS)T’e >0, (FGG)T’ .20,
(Fso)r o(Fae)r.e—(Fsa)t ¢ 20.

Here, the subscript e refers to the derivatives Fg =

0°F/0, ... at thermodynamic equilibrium. For subse-
guent analysis, we introduce the variances

(14)

Ap = (PI-S, App = [P,DO-SG, as)
A, = DT-G,

which characterize the nonuniformity of the orienta-
tional distribution of molecules in a sample. The vari-
ances can be written in the form

Ao = 3SIONp, Dpp = 3S/ONg = AG/AA, )
A = 0G/AA,.

With the use of these expressions, we obtain the Jaco-
bian
J = 0(S G)a(Ap Ap) = BpBp—A%,,  (17)

which is positive in the stability region of the calamitic
nematic phase. Therefore, with due regard for relation-
ships (16) and (17), we can write the following expres-
sions:

0Ap/0S = Ap/d, 0Ap/0G = Ap/J, (18)

Therepeated differentiation of relationships (9) and the
use of expressions (18) give
(Fsdr.e = KT(8p/3-111),
(Foo)re = KT(BplI=ALI),
(Fso)t,e = —KT(Qpp/J +A4/1),

(19)

where t = KT/u and variances (15) are calculated with
the distribution function (11) at S= S, and G = G,. The
limiting temperatures of the stability of the isotropic
and nematic phases can be obtained from the condition
that the left-hand side of the last inequality in relation-
ships (14) becomes zero. These temperatures obey the
equation

t = Dp+ 200y + AA = A, (20)
in which we used the designations
A, = DAT- A, A = P,+A,D. (21)
PHYSICS OF THE SOLID STATE Vol.45 No.5 2003
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In the isotropic phase, we have A, = 1/5, Ay = 3/5, and
App = 0 and formula (20) can be rearranged to give the
expression

t*(A,) = (1L+3A\2)/5 (22)
for the limiting temperature of the stability of the iso-
tropic phase. By substituting this expression into rela-
tionships (11) and (13) at fixed A,, we find the parame-
ters S* = §(t*, A;) and G* = G.(t*, A;). The simulta-
neous solution of the system of equations (13) and (20)
at fixed A, gives the limiting temperature t;(A,) of the
stability of the nematic phase and the parameters S, =
S(ty, Ay and G; = G(t3, A,). The simultaneous solution
of the system of equations (13) and the equation AF, =
Oinexpression (12) at fixed A; enables us to obtain the
temperature ty, () and the parameters S, = S.(tni, Ay
and Gy, = Gg(ty;, Ay). The dependences of the above
parameterson A, are plotted in Figs. 1 and 2.

As can be seen from Fig. 1, an increase in A, leads
to an increase in the ratio (S* — §))/(Sy — $) from
1.762 at A, = 0to 2 in the range corresponding to linear
dependences of S*, S, and S; on A;. In thisrange, the
ratios between S*, §;, and S; do not depend on A; and
are determined by formulas (A1.6)—-(A1.10) given in
Appendix 1. The dependences of the parameters S,
and Gy, on A, arequalitatively similar to those obtained
in[4, 6, 7, 10] within other variants of the molecular—
statistical theory and different models of biaxial mole-
cules. A characteristic feature of the influence of A, on
the N-l transition is that a decrease in the two-phase
region (t; —t*) with an increase in A, is attended by a
weak changeintheratio (ty, —t*)/(t; —ty,) from 7.65 at
A, =0to8at A\, = 1/3. It should be noted that the inclu-
sion of the anisotropy of the orientational distribution
of molecules over the angle @ results in the appearance
of the low-temperature biaxial nematic phase N,. An
increase in A, leads to a decrease in the temperature
range of the calamitic nematic phase, and the I-N, con-
tinuous transition occursat A, = /3 [1-3, 9].

The dependences of the parameters G*, Gy, and G,
on A, exhibit a nonmonotonic behavior. The change in
the ratios between G*, Gy, and G, as a function of A,
is associated with the nonmonotonic dependence of
G(T) in the nematic phase. The differentiation of
expressions (13) with respect to temperature and the
solution of the obtained system of equations with
respect to the derivatives0S/0T and 0G/0T givetherela
tionships

0S _ [ALA p + A App)
oT T(t-A '
(t—4A,) 23)
0G _ [AdApp +AiA)
aT T(t—Ay)
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Fig. 1. Dependences of the parameters (1-3) Sand (1'-3) G
on )\1 at=(1,1)t,(2,2) [NTH and (3, 3) ty.
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Fig. 2. Dependences of the temperatures (1) t*, (2) ty,
©)] ty, (4 to, (5) ts, (6) t4, and (7) ts on )\l. Points (with the
abscissas Ay = 0.075, 0.111, 0.122, and 0.184) indicate the
intersections of the curve ty (A1) with the curves ty(Aq),

ta(Aq), ts(A1), and t4(A4), respectively.

A comparison of these relationships with formula (20)
shows that the derivatives 0S0T and 0G/0T diverge at
t = t;. The derivative 0G/dT is equal to zero when the
following condition is satisfied:
DNpp = A Ap. (24)
Since the inequality Ay = 0 is valid irrespective of the
sign of A4, the sign of App is opposite to the sign of A;.
The solution of the system of equations (13) and (24) at
fixed A, gives the quantities ty(A,), S, = S(t,, A,), and
G, = Gg(t,, Ay) corresponding to the maximum in the
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Fig. 4. Dependences of the fluctuations (1-3) NG5S ,(1-3)

N3G, and (2", 3") NBSBG on T/Ty a A = (1, 1) 0,
(2,2"0.1,and (3,3") 0.2.

dependence G(t) at given A ;. The dependences of these
guantities are displayed in Figs. 2 and 3.

It can be seen from Fig. 2that, at A, < 0.075, theine-
quality ty, (A < t(A,) is satisfied and the function G(t)
monotonically increases with an increase in t over the
entire range t < ty,. For molecules with A, > 0.075, we
have ty,(A,) > t,(A,) and an increase in t leads to a non-
monotonic variation in the function G(t). This function
increases in the range t < t, from zero at t = O to the

AVER'YANOV

maximum value G, at t = t, and then decreases in the
ranget, <t<ty,. Theinequality t* <t,isvaidat A, <
0.212, and the inequality t, < t* holds at 0.212 < A; <
1/3. The value of S, depends weakly on A; and varies
from 0.413 to 0.402, which agrees with the experimen-
tal datafor pure nematic liquid crystals in the absence
of low-temperature smectic phases. The dependence
G,(A,) is nearly linear over the entire range of A; and
can be used for estimating the value of A, from the max-
imum of the experimental dependence G(t) for real lig-
uid crystals.

4. FLUCTUATIONS OF THE ORDER
PARAMETERS SAND G

In a nematic liquid-crystal sample containing N
molecules, the homogeneous thermal fluctuations 8S =
S-S and &G = G — G, lead to the change in the total
free energy of the sample oF = N(AF — AF,), which can
be written, correct to terms quadratic in dS and dG, in
the form

5F -

= DUFss, 88 + 2(Fso)y, 556 + (Feo)r, 3671

Thedistribution function w ~ exp(—OF/KT) for the quan-
tities x, = (N)¥20S and x, = (N)¥23G has the following
form:

/B

1
W(Xy, Xp) = ETeXpE—EBikXiX%’

(26)
ik =12

where the matrix elements 3, and the matrix determi-
nant 3 are defined by the relationships

By = Ap/I=1/t, B = By = —(Bpp/I +Ay/1),
By = AplJ—=AIt, B = (t—A)/Jt. (27)

According to[28], averaging with the use of function (26)
gives

m = IJ.XiXkW(le XZ)XmdXZ = Bﬂ(lv

—00 —00

(28)

where Bﬁ(l isthe element of the matrix that isinverseto
the matrix (. Asaresult, we obtain

= the-AJ T thp—
NBS' = x, - N8G' = TR
—A A AJd ' @)
_ Wpp+ Ay
NOSOG = —,
PHYSICS OF THE SOLID STATE Vol. 45 No.5 2003



FLUCTUATIONS OF ORIENTATIONAL ORDER

The temperature dependences of these fluctuations are
depicted in Fig. 4. Let us consider the cases of uniaxia
and biaxial molecules.

4.1. Uniaxial Molecules

At A, = App =0, the fluctuations 8S and G are sta-
tistically independent and 6S3G = 0. For both phases,

we have N3G’ = Ap. Inthe nematic phase, the follow-
ing relationships are valid:

(30)
[P, = (7+5S—35t)/12,

where P,(cosB) isthe Legendre polynomial. With allow-
ance made for these relationships, from formulas (29),
we obtain

NOG? = Ap(St) = 3(1—S—t)/d. 31)

As can be seen from Fig. 4, this quantity increases only
dlightly with an increase in t and remains finite at t =
t; =0.2228 and S; = 0.3236, whereas the derivative

d6_G2 /dt diverges at this point. Upon the N- transi-

tion, the quantity N6_C52 jumpwise increases from
0.2631 to avalue of 3/5, which is independent of tem-
perature. The temperature dependences of the fluctua-
tions

tAp

in the nematic and isotropic phases are asymmetric
with respect to Ty, In theisotropic phase, we have 5%
~ (T =T*)2in the vicinity of the temperature T, and
the value of 8S” approaches /(BN) att > A, = 1/5. In
the nematic phase, we obtain

Ap(St) = (1+S-25-3t)/2 (33)

and S° more rapidly decreases away from the temper-
ature Ty,. This is in qualitative agreement with the
experimental data on the temperature dependence of
the longitudinal susceptibility for the nematic phasey ~

Egz [17, 29]. Thevalue of NEEZ for both phasesat T =

Ty IS considerably larger than NSG® and decreases
from 2.1991 to 2.1812 upon the N- transition.

From analyzing the results obtained for the uniaxial
molecules, it is clearly seen that the calculation of the

fluctuations 6_82 with the use of AF, [defined by
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expression (12)] instead of AF given by formula (8) (as
was donein [14]) leads to the relationship

. 2 1 2
3g = K Fe _ _t

N9, N-Bs)

Thisrelationship differsfrom expression (32) and gives

(34)

correct parameters 58 only at t = A, which corre-
sponds to the temperaturest = t* (t = t,) that cannot be
experimentally obtained in the isotropic (nhematic)
phase. Even at t = ty,, from formula (34), we obtain

N3S” = 2.4202 and 2.4010 for the nematic and isotro-
pic phases, respectively. These values differ signifi-
cantly from the above values calculated from expres-
sion (32). In view of the difference between formulas
(32) and (34), expression (32) can be derived without
recourse to relationship (8) (see Appendix 2).

4.2. Biaxial Molecules

At A, # 0 and afixed ratio T/Ty,, the quantities 55

and 8G® increase with an increase in A, due to a
decrease in the two-phase region T; — T*. In this case,

jumpsin 6_82 and 6_(32 at T=T,, increasein magnitude.
The specific features of the dependence G(T) consider-
ably affect the temperature dependences of the fluctua-

tions 8G° and 8S3G . Inthe nematic phase, att =t, and
under condition (24), from relationships (29), we
obtain

NSG2 = As(A.t,), 8S5G = A5G (35
p(A1 t2) 1 (39)

As aresult, we have 833G <0Ointherange0<t<t,
regardless of thevalueof A;. Att>t,and 0G/0T <0, the

values of 6_6-2 and 6S6G increase rapidly. The numer-

ator in formula (29) for 8S3G involves two terms with
different signs and becomes zero under the condition

tApp = —A,J. (36)
For fixed A4, the solution to the system of equations (13)
and (36) gives the quantities tg(A;), S; = S(t3, Ay), and
G; = Gg(ts, A,) corresponding to the equality 6S6G =
0. The dependences of the quantitiest;, S;, and G;on A4

are represented in Figs. 2 and 3. It can be seen from
Fig. 2 that, at A; < 0.111, the inequality ty,; (A1) < t3(A,)

is satisfied and 8SOG < 0 over the entire range t < ty,
(curve 2" in the inset in Fig. 4). In the range 0.075 <

A1 < 0.111, the inequality 6Sd0G < O is valid and the
function G(t) decreases with an increase in t > ty(A,).
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At A, > 0.111, the values of dSdG are positive in the
vicinity of Ty,. The dependence S;(A,) isweak, whereas
the dependence G5(A,) exhibitsanearly linear behavior
and is very similar to the dependence G,(A,).

From formulas (29), it followsthat, in the case when
the condition

t(Ap—App) = J(1+A,) (37)
is satisfied, the equality 3S3G = (3G)” holds. In the
nematic phase, at fixed A,, the solution of the system of
equations (13) and (37) leadsto the dependencest,(A,),
S, = Sty Ay), and G, = Gy(t4, Aq), which are shown in
Figs. 2and 3. It can be seen from Fig. 2 that, inthe nem-
atic phase, at A\; < 0184 and T = T, we have

0S0G (Ty) < 3G’ (Ty)- Thissituation isillustrated by
curves 3' and 3" in Fig. 4. As can be seen from Fig. 3,
the dependence S,(A,) is nonmonotonic and differs sig-
nificantly from the dependences S; 5(A1). On the other
hand, the dependence G4(A,) exhibits a nearly linear
behavior and differs from the dependences G, 3(A,)
only at A, < 1/3.

For the isotropic phase, Eq. (37) has the solution
ts = (L+A,)/5. (38)
The corresponding dependenceisplotted in Fig. 2. The
inequality 5S3G (Ty,) < 3G (Ty,) holds at A, < 0.122.

AtA; > 0.184, theinequality d0G (Ty,) > 3G’ (Tn) is
satisfied for both phases (see Fig. 4). In the isotropic
phase, relationships (29) are reduced to the following
formulas:

NOS =

5t—3\?

— _ 3(5t-1)
BT OC

C2B[t—-t*(A )]’
3\, (39
25[t—t*(A)]’

where t*(A,) is given by expression (22). Then, at t =

t*(A,) and N3G’ > 3/5, we obtain

NOSOG =

=2 1 2 2e 2
NoS = ———— 3G° = 9A%5S,
3S3G = 3,35

Note that the last two formulas directly follow from
relationship (A1.5) [valid in the vicinity of t = t*(Ay)]
and the expression 0G = (dG/dS)g - ¢dS = 3A;0S In

thistemperature range, theinequalities 6_G2 < dS3G <
5S are satisfied at A, < 1/3. As the difference [t —
t*(A\y)] increases, the quantities N3S" and N3G’
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approach their limiting values of 1/5 and 3/5 and the

quantity 6S3G ~ [t—t*(A\,)] tendsto zero. A compar-
ison of formulas (39) and (32) at Ax(S=0) = 1/5indi-
cates that, at a fixed difference t — t*, the molecular
biaxiality leads only to a small decrease in the value of

Egz , Whereas the temperature dependences of the

guantities 6_62 and 0SO0G and their divergence at t =
t*(A,) in theisotropic phase are completely determined
by the molecular biaxiality.

The fluctuation effects in the nematic and isotropic
phases in the vicinity of the N-I transition differ con-
siderably in character. In the nematic phase, at A; = 0.2

and T = Ty, the values of Ngz, Né_Gz, and NOSdG
are equal to 5.7214, 0.4431, and 0.6272, respectively.

As aresult, we obtain the inequalities 3S > 3G” and

6_82 > 00G. At A; < 0.2, anincrease in 6_52 in the
vicinity of Ty, due to molecular biaxiality is not large
enough to change the inequality

(395 < S, (41)
which follows from the experimental data for typical
calamitic nematic liquid crystals, such as MBBA and

alkylcyanobiphenyls[17, 29]. Ininequality (41), (68)\2,
isthe homogeneous long-wavel ength fluctuation of Sin
thevolumeV = 4nt&/3, where & isthe correlation length
of fluctuations of S By virtue of inequality (41), the
effect of fluctuations of Sand G on the physical proper-
ties dependent on Sis weak in the calamitic nematic
phase of typical mesogenic compounds. On the other
hand, condition (41) isthe criterion for the applicability
of the mean-field approach to the description of the N—
| transition [28]. For mesogenic compounds with
parameters A, close to 1/3, condition (41) is violated

and the values of 6_(32 and 3S3G become comparable
to those of gz . In this case, the N-| transition should
be described taking into account the fluctuations 6_62
and 553G in addition to the fluctuations 5.

In theisotropic phase, at the transition point Ty, the

vauesof N&S°, N8G*, and N3SSG (evenat A, =0.2)
are equal to 4.9059, 2.2941, and 2.8235, respectively;
i.e., they areclosein order of magnitude. Therefore, the
pretransitional effects should be analyzed with due

regard for the fluctuations gz , EEZ ,and 0S6G. This
is particularly truefor the description of the response of
nematic liquid crystals to external actions.
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5. RESPONSE OF A NEMATIC LIQUID CRY STAL
TO EXTERNAL FIELDS

Let us consider the response of a calamitic nematic
liquid crystal to an external field h, which leads to a
change in the order parameters Sand G at afixed orien-
tation of the director n. The susceptibilities serve as a
measure of the linear response and are defined by the
relationships

Xs = (0S0h)r.h .0, Xe = (0G/0h)1.\, 0. (42)

For magnetic (H) and high-frequency electric [E(w)]
fields parallel to the director, the expressionsfor h have
the form

E*(w),

_Ay(w)fi(w) 2
= SR (43

where Ak =k, — (K + Kyy)/2 and Ay(w) = Y,,(0) — [Yi(w)
+ Y,,(w)]/2 are the anisotropies of the diamagnetic and
electric molecular polarizabilities, respectively; f(w) is
the component of the tensor of the local field acting on
amoleculein the liquid crystal; and E(w) is the ampli-
tude of the macroscopic electric field intheliquid crys-
tal. In the presence of the field h, formula (8) takes the
form

u 2
AF = 2(S+ MG) —h(S+A,G) (a4
+KT[ApS+ApG—=InZ(Ap, Ap)].
Here, the second term on the right-hand side character-
izes the energy of interaction between the liquid crystal
and the field per molecule and the parameter A, is
defined by expression (7), inwhichy;; is replaced either
by k;; at h=hy or by v, (w) at h=hg. Inthe general case,
the values of A, and A, are different, even though they
can coincide for particular compounds. The parameters
Ap(S G) and Ap(S G) are determined from the system
of equations (4), inwhich S=Sh) and G = G(h). Under
thermodynamic equilibrium conditions (0F/0S)t,, =
(OF/0G)1 , = 0, with the use of relationships (44), we
obtain the system of equationsof statefor anematiclig-
uid crystal in the external field h, that is,

Ae(S G) = —“—(S+ MO) + %,

h @

Mo(SG) = (54 1,6) + 12

Substitution of these expressions into formula (3) gives
the equilibrium distribution function of molecules in
the presence of the externa field:
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fon(@) = ——
8T Z,

u h
x P (S + MG)(P, + AiD) + (P, +A;D) |

1 (46)

J’exp[ (S+M,G)(P,+ A, D)+—(P2+)\ D)]dQ

Differentiation of the equations of state (45) with
respect to h at a constant temperature with alowance
made for expressions (18) leads to the system of equa
tionsin (0S0h); and (0G/dh)+. By solving this system,
we obtain

P37 - 1

oL m[mp—m + Ao(tApp + A1 )],
(47)
Bgﬁ% ﬁ[mm F A+ Ay(tho — ).

Here, the parameters described by formulas (15), (17),
and (21) are cal culated with the distribution function (46)
and depend on h. The derivatives (0S0h); and (0G/oh)
diverge at the temperaturest* (A4, h) and t;(A,, h) obey-
ing the equation

t = Ap(h). (49)

The parameter A, [expression (21)] is the second-order
cumulant, which can be written in the following form:

62ane
Dn(h) = —S2F

= [NAG (49)

A

where A, = u(S+ A;G)/KT. The dependence A,(h) can be
represented as a series:

AsD* " "InZ,
Z n'gaaZong O, -

g=0

An(h) =
o (50)
=> S [NABI...[BY,
n=0
where Ag = /KT and B = P, + A,D. Here, all the cumu-
lant averages [@y|a,|...|a,[d are calculated at h = 0 with

the distribution function (11). In the approximation lin-
ear in h, Eq. (48) for the isotropic phase takes the form

2[1— 3)\1()\1+2)\2)]h] (51)
7KT*(1+3\) O

T* (1+3)\1)[ﬂ.

For uniaxial molecules at A; = A, = 0, with due regard
for expressions (43) at h = hy, thisexpression coincides
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with the rel ationship obtained earlier in [30] in adiffer-
entway. At A\; =\, = 1/3, T* becomesindependent of h.

In the limit h — 0, the rearrangement of relation-
ships (47) with allowance made for expressions (29)
permits us to obtain susceptibilities (42) in the follow-
ing form:

Xs = ¥[5S’+1,5556]
N - (52)

X = (7 [0S8G +2,8G7].
A comparison of formulas (23) and (47) at h = 0 makes
it possible to derive the relationships between the sus-
ceptibilities and the temperature dependences of the
order parameters Sand G in the absence of afield. At

A1 = Ay, these relationships are simplified and take the
form

- ____T 0 - ___T 06
Xs = 45+ A,G)aT X6 T TU(S+A,G)oT
From these relationships, we have xg <0Oatt<t, and
0G/dT > 0. The contributions of the fluctuations 6S0G

(53)

to the susceptibility x5 and the fluctuations 6_62 to the
susceptibility X are determined by the value of A,
which is different for the electric and magnetic fields.

Att=t;and 0SOG = 0, the susceptibilities x5 and Xg
are governed only by the fluctuations 5S and 8G,
respectively.
In theisotropic phase, substitution of expressions (39)
into formulas (52) gives
i _ St=3M\i(A1—Ar)
S 25kT[t—t*(A)]’
W0 = 3(5tA, + A —Ay) (i)
¢ 5t_3)\1()\1_)\2) S

Since 5t > 1 and A; — A, < 1, from formulas (54), we
find

(54)

X8 =3xS 1+ L (A -Ap(L+ Bhh;) | =
5tA, (55)

3,x Y.

In the linear-field approximation, the order parameters
Sh) and G(h) induced by the field h in the isotropic
phase of the nematic liquid crystal are given by the
expressions

sthy = x&h,  G(h) = xIh = 3n,S(h).  (56)

The parameters S(h) and G(h) increase proportionally
to [T —T*(\,)]™ as the temperature Ty, is approached.
Making allowance for formulas (43) and (54), expres-
sions (56) fit the experimental data obtained in [19-21]
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for pure nematic liquid crystals fairly well. The inter-
pretation of the dependences G(h) ~ Sh) ~ (T - T*)*
observed in the constant field h for the order parameters
of impurity biaxial molecules with a small concentra-
tion in the isotropic phase of the nematic matrix [21]
calls for specia examination, because the constant A,
inthe expression G(h) = 3\, S(h) inthiscaseis predom-
inantly determined by the interaction between the
impurity and the matrix.

Now, we analyze the possihilities of using formu-
las (56) to interpret the experimental data on the qua-
drupole splitting Av, of the °D NMR lines associated
with the C-D, bonds. The quadrupole splitting Av,
depends on the orientation of the C-D, bond with
respect to the axes of the molecular coordinate system
xyz and orientational order of moleculesand can berep-
resented as

Avy = const(SS; + GGg,/3). (57)

Here, §; = (3cos?B — 1)/2, Ggy, = (3/2)sin?Bcos2¢ B is
the angle between the C-D, bond and the z axis of the
molecular coordinate system xyz, and ¢ is the angle
between the x axis and the projection of the C-D, bond
onto the xy plane. The quadrupole splitting Av, can
become zero for acontinuum of C-D, directions. In the
molecular coordinate system, the equation Av, = 0 can
be rearranged to the following form:

X'Suty'Sy+7'S, = 0. (58)
Among the three parameters §;, two parameters have
the same sign. By designating their magnitudes as §,
and S, and allowing for the condition TrS = 0, from
Eqg. (58), we obtain the expression

0°s, + V'S, -W(S,+S,) = 0, (59)
which is an equation of an elliptic cone with avertex at
the origin of the coordinates and the axis W. In the sec-
tion that is perpendicular to the w axisand islocated at
the distance c = (S, + S,)™Y? from the origin of the
coordinates, the cone directrix is an ellipse with the
semiaxes a = (§) Y2 and b = (S,) V2. The angles B,

and 3, determining the half-aperture of the cone are
defined as

B, = arctan(1+5S,/S)",

B, = arctan(1+ SJ/SV)M.

The equality Av, = Ois satisfied for al the C-D, direc-
tions lying on this “magic” cone C(xyz). The diagonals
|u| =|v| = |W of the molecular coordinate system lie
on the cone C(xyz) and correspond to S; = G, = 0. For
uniaxial moleculeswiththeaxisz=w and §,= S, the

circular cone C(xy2) is characterized by the half-aper-
tureangle 3 =54.74°.

(60)
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The shape of the cone C(xyz) is specified by the
parameters Sand G and depends on the mesophase tem-
perature and the ratio between the parametersS,and S, .
AtS>Gand S, = «S-G)/2, §, =S+ G)/2, and
S,=Swehavel =%, V =y, W =z In the nematic
phase, at values of A; close to 1/3, the parameters S
and G in the vicinity of the N-l transition are small
and are related by the expression S= 3\,G [see rela
tionship (A1.5)]. Therefore, the angles
1/2 2

4

0 2 0 _
[3),-arctan[il

1/2
B, = arctanf— L (61)

+ 3\

are independent the temperature. As the value of A;
approaches 1/3, the semiaxis a increases and tends to
infinity at G = S. In this case, the cone C(xyz) degener-
ates into two mutually perpendicular planes which
intersect along the x axis and make the angles 3, = +45°
with the z axis. For particular compounds and C-D,
bonds, one of the parameters S; in Eq. (58) can change
sign with a variation in the mesophase temperature,
because the dependence G(S) in the nematic phase
exhibits a nonmonotonic behavior. As a conseguence,
the W axis changes its direction from one axis in the
system xyz to another axis. The changeover to the ine-
guality G > S which is valid only for biaxial impurity
molecules in the calamitic nematic liquid crystal, is
accompanied by the transformation of the above planes
into the cone C(xyz) withtheaxes t = x, Vv =z and

W =y and the semiaxes of the ellipsea > b.

In the isotropic phase, when expressions (56) hold
true, A, informulas (61) should be replaced by A, or A,
for impurity molecules) and the angles (3, , do not
depend on the parameters S(h) and G(h). This circum-
stance accountsfor the situation where the proportional
relationship Av, ~ Sh) is observed for a number of C—
D, bonds in the molecule, whereas the other C-D,
bonds in the same molecule are characterized by Av,, =
0[19, 21]. The orientation of the latter bondsis similar
to that of the directrix of the cone C(xyz) with parame-
ters (61). This provides the basis for the technique of
determining the orientation of C-D, bonds in the
molecular coordinate system.

6. CONCLUSIONS

Thus, the results obtained in the present work dem-
onstrated that the molecular biaxiality substantially
affects the dependences T) and G(T) and the magni-
tudes S, and Gy, upon the N— transition. An increase
in the molecular biaxiality parameter A, is attended by
adecrease in the values S, and G, and a harrowing of
the two-phase region. However, the ratio (Ty, —
T*)/(T, — Ty,) remains unchanged up to the parameter
A, = 1/3, whichisalimiting value for calamitic nematic
liquid crystals and corresponds to the I-N,, transition to
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the biaxial nematic phase. The specific features of the
dependence G(T) have a considerable effect on the
magnitude and temperature behavior of the fluctuations

EEZ and 090G . Thefluctuations dSdG in the nematic
phase vary nonmonotonically and can changesign from
negative to positive as the temperature Ty, is

approached. In the nematic phase, the fluctuations 6_62
and 0BG at values A, < 0.2 typical of mesogenic mol-

ecules are appreciably less than the fluctuations 3S
and do not affect the applicability of the mean-field
approach to the description of the N— transition. At val-
uesof A, closeto 1/3 and small parameters S, thefluc-

tuations 6_82 : 6_(32 , and 3SOG arelarge and compara-
ble to each other, so that the mean-field approximation
isinapplicable.

In the isotropic phase, the molecular biaxiality
determines the ratios between the fluctuations 8S° ,

6_62 , and d0SOG and their temperature behavior. At
A, = 0.2 for real mesogenic molecules, the fluctuations

5 , 6G2, and 0SOG are comparable to each other in
thevicinity of the temperature Ty,. Theinclusion of the
molecular biaxiality makes it possible to explain the
dependences G(h) ~ S(h) ~ (T —T*)L, which are exper-
imentally observed for the parameters G(h) and S(h)
that are induced by the field h in the isotropic phase of
the nematic. Moreover, the specific features of the qua-
drupole splitting of the NMR lines in the spectra of
selectively deuterated mesogenic and impurity mole-
cules in the isotropic phase of nematic liquid crystals
can also beinterpreted in terms of the molecular biaxi-
ality.

APPENDIX 1

Let us now demonstrate that the expansions of AF
[defined by formula (8)] and AF, [represented by for-
mula (12)] into aLandau seriesin powers of the param-
eters S and G up to fourth-order terms differ signifi-
cantly. The expansion of the function Z(Ap, Ap) [given
by expression (3)] into a power series of Ap p and sub-
dtitution of this series into relationships (4) give the
series S= YAp, Ap) and G = G(Ap, A\p) whose inversion
makes it possible to obtain the dependences Ap(S, G)
and Ap(S G). With the required precision up to third-
order terms, these dependences have the form

Ap = 55——-52+Z5 2,489, 15552
147
5 85 425 (AL1)
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The dependence Ap(S G) is the even function and the
dependence Ap(S, G) isthe odd function of the param-
eter G. Substitution of formulas (A1.1) into the series
INZ(Ap, Ap) gives

_5 2y 90 3 o2
|nz_6(3sz+c;) 57(S'-SG")

(A1.2)

425 2,2

This expansion is a power series of the invariants I, =
Tr(S) = (B3F + G?)/2and |; = Tr(S%) = 3(S — SG?)/4 of
the matrix S (1). In the diagonal form, this matrix has
the following elements: S, = (S-G)/2, §, = S+
G)/2, and S, = S Substitution of formulas (A1.1) and

(A1.2) into relationship (8) leads to the sought expan-
sion

BF = -U(S+),G)* + ng(ssz +G?)

Al3
425 ( )

25 2 2,2
-ﬁkT(s?-SG )+ ka(3sz+ GH".
The minimization of expression (A1.3) with respect to
the parameters S and G results in the system of equa-
tions (10). From this system of equations, we derivethe
relationship

Ap(S G) = MAp(S G). (Al4)

Substitution of series (A1.1) into relationship (A1.4)
gives the expression

G = 3)\18—475)\1(1—)\f)32+ ... (AL5)
With this expression, the function AF described by for-
mula (A1.3) can be reduced to aform AF(S) with coef-
ficients dependent on A ;. At G < S the third-order term
in formula (A1.3) is negative and the N-I transitionisa
first-order transition. Let us consider the situation at G
< Swhen the N-| transition is similar in character to a
continuous transition and the parameters Sand G are
small in its vicinity. Then, in relationship (AL1.5), it is
possibleto retain only thefirst term. Itssubstitution into
formula (A1.3) leads to the series

AF(S) = %a(T—T*)sz—%bs%ics“ (A1.6)

with the coefficients

a(A,) = 5k(1+3\%), b(A,T) = 27§kT(1—9)\f),
o (AL7)
cO\, T) = —Zg—SkT(1+3)\f)2.

At A; = 0, these coefficients are reduced to the coeffi-
cients (4.23) obtained in [27]. The coefficient b(A,, T)
becomes zero at A, = 1/3, which agrees with the results
following from formula (7). The limiting temperature
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of the stability of theisotropic phaset* = kT*/u and the
parameter S* = (t*) are defined by the expressions

7(1-97%)

t*(\,) = (L+3\)/5, S = -
17(1+3\9)

. (AL8)

Thetemperaturet,, of the N-I transition and the param-
eter S, can be written asfollows:

_ 153(1 + 322 °t*
tN| - 2.3 2. 2!
153(1+372)° —10(1-9A%)
Sy = 254/3.

(A1.9)

The limiting temperature of the stability of the nematic
phase t; and the parameter S, = ;) are related to
parameters (A 1.8) through the expression
. 68(1+ 319t
1= ’
68(1+ 312’ —5(1—9\2)
S, = §/2.

(A1.10)

In the A, range under consideration, the ratios between
the parameters S¢, S, and S; do not depend on A; and
the two-phase region t; — t* decreases with an increase
in A,. However, theratio (ty, —t*)/(t; —ty,) varies from
74a A =0to8inthelimitA; = 1/3.

Now, expansions similar to those represented by for-
mulas (A1.3) and (A1.6) will be derived for the func-
tion AF, given by formula(12). Let usintroduce thefol-
lowing designations:

n = S+ )\IG’

(A1.11)
A(O, 1) = P,(cos8) +A,D(8, V).

It can be shown that the two equations (0F./09; =
(0F./0G); = 0 are equivalent to one self-consistent
equation for the parameter n; that is,

n= D“DeEIA(e, P) fo(Q)dQ.

The expansion of the function AF, [formula (12)] in
powers of n hasthe form

(AL.12)

AF(N) = 5[ T-T* (A’

A113
_(@-adu’ 3+(1+3Af)2u“ ., ( )

105(KT)? 700(kT)®

where the expression for T*(A,) = u(1 + 3)\f )/5k coin-
cides with that in relationship (A1.8). Substitution of
the first term of expansion (A1.5) into formula (A1.13)
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gives the expansion of AF/(S) in the form of series
(A1.6) with the coefficients

a(A, T) = 2(1+3A])’,

(1-929)(1+3r)°
Pe(Ay, T) = >
35(kT)

1+329)°*
ey T) = S Y
175(kT)
These coefficients differ from coefficients (A1.7) and,
at A\, = 0, coincide with those given in [2, 26]. At T =
T*(A,), we have a, = a, b, = b, and ¢, = 7¢/17. There-
fore, the use of expansion (A1.13) issufficiently correct

only in the isotropic phase at temperatures close
to T*(Ay).

(A1.14)

APPENDIX 2

For anematic liquid crystal with uniaxial molecules
at a constant volume, formula (32) can be obtained
from the general thermodynamic relations [28]

N 2 JE— PR 2
56 = B3 572 517 = KL

DT 5120 Cv

under the assumption that the temperature fluctuations
are responsible for the fluctuations of YT). The heat
capacity at a constant volume with due regard for
expression (6) at A, = 0 can be written in the form

C, = [ a';—(TS)L - —NUSB?—TH.

Substitution of formula (A2.2) into relations (A2.1)
gives the relationship

6_52:

(A2.1)

(A2.2)

KT’InS]

NuOoT 0, (A23)
between the fluctuations gz in the nematic phase and
the dependence S(T). By substituting the first expres-
sion out of the two expressions in (23) at A, = 0 into
relationship (A2.3), we obtain formula (32).
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