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Dependences of the dispersion laws and damping of waves in an initially sinusoidal superlattice on the dimen-
sionality of inhomogeneities modulating the period of the superlattice are studied. The cases of one- and three-
dimensional modulations, as well as modulation by a mixture of inhomogeneities of both of these dimension-
alities, are considered. The correlation function of the superlattice K(r) has the form of a product of the same
periodic function and a decreasing function that is significantly different for these different cases. The decreas-
ing part of the correlation function for the mixture of inhomogeneities of different dimensionalities has the form
of a product of the decreasing parts of the correlation functions of the components of the mixture. This leads to
the nonadditivity of the contributions of the components of different dimensionalities to the resulting modifica-
tion of the parameters of the wave spectrum that are due to the inhomogeneities (the damping of waves for the
mixture of these components is smaller than the sum of the dampings of the components, the maximum gap in
the spectrum corresponds to the simultaneous presence of both components of the mixture, not only of the
three-dimensional inhomogeneities). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.65.Cd
1. Investigations of the spectrum of waves in par-
tially randomized superlattices (SLs) have been carried
out very intensively in recent years. This is due to the
wide use of these materials in various high-technology
devices, as well as to the fact that they are convenient
models for developing new methods of theoretical
physics for studying media without translation symme-
try. Several methods now exist for developing a theory
of such SLs: the modeling of the randomization by
altering the order of successive layers of two different
materials [1–7]; the numerical modeling of the random
derivations of the interfaces between layers from their
initial periodic arrangement [8–10]; the postulation of
the form of the correlation function of a SL with inho-
mogeneities [11, 12]; the application of the geometrical
optics approximation [13]; and the development of the
dynamic composite elastic medium theory [14].

One more method for the investigation of the influ-
ence of inhomogeneities on the wave spectrum of a SL
was suggested in [15]: the method of the random spatial
modulation (RSM) of the period of the SL. This method
is an extension of the well-known theory of the random
frequency (phase) modulation of a radio signal [16, 17]
to the case of spatial inhomogeneities in the SL. The
advantage of this method is that the form of the corre-
lation function (CF) of the SL is not postulated but is
developed from the most general assumptions about the
nature of a random spatial modulation of the SL period.

¶ This article was submitted by the authors in English.
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It appeared that in the general case this function had
quite a complicated form that depended on the dimen-
sionality of the inhomogeneities. Knowledge of the CF
corresponding to a particular type and dimensionality
of the inhomogeneities permitted us to apply methods
of investigation of averaged Green’s functions to find
the energy spectrum and other characteristics of the
waves [15, 18–23]. The RSM method permitted us to
consider inhomogeneities of different dimensionalities
in the framework of the same model. Effects of one-
dimensional (1D) and three-dimensional (3D) inhomo-
geneities on the wave spectrum were studied for sinu-
soidal SLs, SLs with sharp interfaces, and SLs with
arbitrary thicknesses of interfaces. The influence of
inhomogeneities of each dimensionality was studied
separately. So, a significant aspect of the problem that
was not considered up to now is the situation when
inhomogeneities of different dimensionalities are
present simultaneously in a superlattice. The study of
this aspect is the objective of the present work.

2. Model and correlation function. A SL is charac-
terized by the dependence of some material parameter
A on the coordinates x = {x, y, z}. The physical nature
of the parameter A(x) can be different. This parameter
can be a density of matter or a force constant for the
elastic system of a medium, the magnetization, anisot-
ropy, or exchange for a magnetic system, and so on. We
represent A(x) in the form

(1)A x( ) A 1 γρ x( )+[ ] ,=
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where A is the average value of the parameter, γ is its rel-
ative rms variation, and ρ(x) is a centered (〈ρ(x)〉 = 0)
and normalized (〈ρ2(x)〉  = 1) function. The function
ρ(x) describes the periodic dependence of the parame-
ter along the SL axis z, as well as the random spatial
modulation of this parameter, which, in the general
case, can be a function of all three coordinates x =
{x, y, z}.

We will consider in this paper a SL that has a sinu-
soidal dependence of the material parameter on the
coordinate z in the initial state when inhomogeneities
are absent. According to the RSM method, we represent
the function ρ(x) in the form

(2)

where q = 2π/l is the SL wave number.

The function u1(z) describes 1D inhomogeneities of
the phase of the function ρ(x). The sensitivity of the
profile of the function ρ(x) to the action of the modula-
tion u1(z) is different for different points of the function
ρ(x). The smallest changes of the profile occur in the
vicinities of the minima and maxima of the function
cos(qz). In contrast to this, the displacements of the
zero points of cos(qz) by the values of u1(z) lead to the
strongest changes in the profile. The zero points of the
function ρ(x) correspond to the interfaces of the SL.
Because of this, we assume in the RSM method that the
function u1(z) models 1D displacements of the inter-
faces from their initial periodic arrangement.

The function u3(x) is introduced in Eq. (2) to model
a random deformation of the surfaces of the interfaces.
At first glance, it would seem that this function must
depend only on the two coordinates, x and y. But the
function u(x, y) describes in the RSM method a 2D
deformation that is uniform for all interfaces of the SL,
i.e., that has an infinite value of the correlation radius
along the z coordinate. The directly opposed cases are
of interest in reality, namely, the cases where the defor-
mations of the two nearest interfaces are uncorrelated
(the correlation radius along z is much smaller than l/2)
or only several interfaces are correlated. That is why
u3(x) must be a random function of all three coordinates
x, y, and z.

In the general case, this function has an anisotropy
of correlation properties, because the values of the cor-
relation radii in the xy plane and along the z axis are
determined by different physical reasons. But we
restrict ourselves here to the simplest case and assume
that u3(x) is a 3D random function with isotropic corre-
lation properties. A coordinate-independent random
phase ψ is introduced into Eq. (2) to ensure the fulfill-
ment of the condition of ergodicity for the function ρ(x)
(see [15]); it is characterized by a uniform distribution
in the interval (–π, π). After averaging the product of

ρ x( ) 2 q z u1 z( )– u3 x( )–( ) ψ+[ ] ,cos=
the functions ρ(x) and ρ(x + r) over the phase ψ, we
obtain

(3)

where

(4)

We assume that the random functions χ1 and χ3 are
mutually uncorrelated and that each of them is a Gaus-
sian random process. After averaging Eq. (3) over χ1
and χ3, we obtain a general expression for the CF of the
SL in the form

(5)

where

(6)

(7)

and the structure functions Qi(r) are defined by the
equations

(8)

One can see from Eqs. (6)–(8) that K1(rz) and K3(r) are
the decreasing parts of the CFs of the SLs with 1D or
3D inhomogeneities (recall that the complete CFs for
these cases have the form of the product of cos(qrz) and
K1(rz) or K3(r), respectively [15]. So, the decreasing
part of the CF of a SL with a mixture of the mutually
uncorrelated phase inhomogeneities of different dimen-
sionalities has the form of the product of the decreasing
parts of the CFs of the components of this mixture.

To find the structure functions Q1(rz) and Q3(r), we
must model the correlation properties of the modulat-
ing functions u1(z) and u3(x) or, more precisely, the cor-
relation properties of their gradients. Both Q1(rz) and
Q3(r) were found in [15] (see also some refinements of
the coefficients in these expressions in [21]) by the use
of different forms of the model CFs for the random
modulation. It was shown that the forms of the func-
tions Qi do not depend asymptotically (for both small
and large values of r) on the form of the model CF but
strictly depend on the dimensionalities of the inhomo-
geneities. For the exponential model CFs for u1(z) and
u3(x), the structure functions were obtained in the forms

(9)

(10)

where γ1 and k|| are the relative rms fluctuation and cor-
relation wave number of the random modulation u1(z),

ρ x( )ρ x r+( )〈 〉 ψ qrz χ1– χ3–( ),cos=

χ1 q u1 z rz+( ) u1 z( )–[ ] ,=

χ3 q u3 x r+( ) u3 x( )–[ ] .=

K r( ) qrz( )cos K1 rz( )K3 r( ),=

K1 rz( )
1
2
---Q1 rz( )– ,exp=

K3 r( )
1
2
---Q3 r( )– ,exp=

Q1 rz( ) χ1
2〈 〉 , Q3 r( ) χ3

2〈 〉 .= =

Q1 rz( ) 2γ1
2 k ||rz–( )exp k ||rz 1–+[ ] ,=

Q3 r( ) 6γ3
2 1 2

k0r
------- 1 2

k0r
-------+ 

  k0r–( )exp+– ,=
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γ3 and k0 are the corresponding characteristics of the
random modulation u3(x).

After the substitution of Eqs. (9) and (10) into them,
Eqs. (6) and (7) become quite complicated. That is why
approximate expressions for K1(rz) and K3(r) were sug-
gested for the 1D and 3D inhomogeneities (see [15, 23],
respectively):

(11)

(12)

where L = exp(–3 ) is the asymptotic form of K3(r)
when r  ∞.

According to these equations, effective correlation
radii of the SL can be introduced for the 1D and 3D
cases, respectively:

(13)

One can see that the effective correlation radii of the SL

depend not only on the correlation radii  or  of
the corresponding modulating functions u1 or u3 but
also on the rms fluctuations of these functions, γ1 or γ3.

3. Dispersion law and damping of waves. We con-
sider the equation for waves in the superlattice in the
form

(14)

where the expressions for the parameters ε and ν and
the variable µ are different for waves of different
natures. For spin waves, when the parameter of the
superlattice A(x) in Eq. (1) is the value of the magnetic
anisotropy β(x), we have [15] ν = (ω – ω0)/αgM, ε =
γβ/α, where ω is the frequency, ω0 = g(H + βM), g is the
gyro-magnetic ratio, α is the exchange parameter, H is
the magnetic field strength, M is the value of the mag-
netization, β is the average value of the anisotropy, and
γ is its relative rms variation. For elastic waves in the
scalar approximation, we have ν = (ω/v)2, ε = γν, where
γ is the rms fluctuation of the density of the material and
v  is the wave velocity. For an electromagnetic wave in
the same approximation, we have ν = ee(ω/c)2, ε = γν,
where ee is the average value of the dielectric perme-
ability, γ is its rms deviation, and c is the speed of light.

Laws of the dispersion and damping of the averaged
waves are determined by the equation for the complex
frequency ν = ν' + iξ, which follows from the vanishing
of the denominator of the Green’s function of Eq. (14).
In the Bourret approximation [24], this equation has the
form [15]

(15)

K1 rz( ) γ1
2k ||rz–( ),exp=

K3 r( ) 1 L–( ) γ3
2k0r–( ) L,+exp=

γ3
2

r1 γ1
2k ||( ) 1–

, r3 γ3
2k0( ) 1–

.= =

k ||
1– k0

1–

∇ 2µ ν ερ x( )–( )ν+ 0,=

ν k2– ε2 S k k1–( ) k1d

ν k1
2–

------------------------------,∫=
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where S(k) is the spectral density of the function ρ(x):

(16)

Substituting Eq. (5) into Eq. (16), then Eq. (16) into
Eq. (15), and approximating K1(rz) and K3(r) by
Eqs. (11) and (12), we obtain an exactly integrable
expression. Upon integrating this expression with
respect to k1 and r, we obtain an explicit form of the
equation for ν:

(17)

where

(18)

We consider this equation at the Brillouin zone bound-

ary k = kr ≡ q/2. Under the conditions that ε, (k|| )2,

and (k0 )2 are much smaller than νr = , we obtain
Eq. (17) in the form of a cubic equation in ν:

(19)

Both limiting cases of this equation, corresponding to
1D (γ1 ≠ 0, γ3 = 0) and 3D (γ1 = 0, γ3 ≠ 0) inhomogene-
ities, were considered in our previous works.

The equation (19) for the mixture of 1D and 3D
inhomogeneities has been investigated by numerical
methods. The results of this investigation are shown in
Figs. 1 and 2 by solid curves. Dotted and dashed curves
in these figures correspond to the limiting cases of the
presence of only 1D or 3D inhomogeneities, respec-
tively. All figures correspond to the same correlation

wave numbers for 1D (η1 ≡ k||q/Λ = 4, where Λ = ε)
and 3D (η3 ≡ k0q/Λ = 4) inhomogeneities. Different sit-
uations are shown in these figures.

Figure 1a shows the decrease of the gap ∆ν =  – 

with the increase of  or . If γ3 = 0, the increase in

 leads to the closing of the gap at  = 0.25 (dotted
curve). Simultaneously the damping of both eigenfre-

quencies increases linearly till the point  = 0.25 (dot-

S k( )
1

2π( )3
------------- K r( )e ikr– r.d∫=

ν k2–

=  
ε2

2
---- 1 L–( )

P13

P3
------- 1

P13
2 k q–( )2–

-------------------------------- 1

P13
2 k q+( )2–

--------------------------------+




+ L
P1

ν
------- 1

P1
2 k q–( )2–

------------------------------ 1

P1
2 k q+( )2–

------------------------------+




,

P1 ν ik ||γ1
2, P3– ν ik0γ3

2,–= =

P13 ν i k ||γ1
2 k0γ3

2+( ).–=

γ1
2

γ3
2

kr
2

ν kr
2

–
ε2

2
---- 1 L–

ν 2ikr k ||γ1
2 k0γ3

2+( )– kr
2–

-------------------------------------------------------------=

+
L

ν 2ikrk ||γ1
2– kr

2–
---------------------------------------- .

2

ν+' ν–'

γ1
2 γ3

2

γ1
2 γ1

2

γ1
2
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ted curve in Fig. 1b). For  > 0.25, two degenerate

eigenfrequencies  =  exist with different damp-

ings, ξ+ ≠ ξ–. If  = 0 the increase of  also leads to
the decrease of the gap (dashed curve in Fig. 1a) but
significantly more slowly than under the action of the
1D inhomogeneities. For example, a large gap exists for

 = 0.25, while the gap closes when  has the same
value. In line with this, the damping increases very

γ1
2

ν+' ν–'

γ1
2 γ3

2

γ3
2 γ1

2

Fig. 1. The width of the (a) gap and (b) damping as func-

tions of the sum  +  for different situations:  ≠ 0,

 = 0 (dotted curves);  = 0,  ≠ 0 (dashed curves);

 = 0.2,  ≠ 0 (solid curves). The explanation of the dot-

ted-dashed curve in Fig. 1b is given in the text.

γ1
2 γ3

2 γ1
2

γ3
2 γ1

2 γ3
2

γ1
2 γ3

2

γ1
2 γ3

2+
slightly with the increase in  (dashed curve in
Fig. 1b).

To show the effects of the mixture of inhomogene-
ities of different dimensionalities, the following situa-
tion is depicted in Figs. 1. Let us have only 1D inhomo-

γ3
2

Fig. 2. The width of the (a) gap and (b) damping under the

condition  +  = 0.3 (solid curves) and for the situations

when  increases for  = 0 (dashed curves, the scale is

under the picture), and when  decreases for  = 0 (dot-

ted curves, the scale is above the picture). 

γ1
2 γ3

2

γ3
2 γ1

2

γ1
2 γ3

2

γ3
2

γ1
2

γ1
2

γ3
2
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geneities with  = 0.2 and, correspondingly, let the
spectrum gap be ∆ν/Λ = 0.6. Then we add 3D inhomo-

geneities increasing  and keeping  = 0.2. One can

see that the gap decreases slowly and closes at  +

 = 0.45 (solid curve in Fig. 1a). Simultaneously, the
increase in the damping slows down (solid curve in
Fig. 1b). The dashed-dotted curve in Fig. 1b corre-
sponds to the unreal situation that would have been
realized if the damping of the mixture of 1D inhomoge-

neities with  = 0.2 and 3D inhomogeneities with 
were equal to the simple sum of the damping of the
components of the mixture. One can see that in reality
the additional contribution to the damping due to 3D
inhomogeneities in the presence of the 1D inhomoge-
neities is approximately two times smaller than in the
absence of the latter.

Quite another situation is shown in Figs. 2 by the

solid curves. We assume here that the sum  + 
remains constant (and equal to 0.3 in these graphs)

when  and  are varied. In other words, we consider
a gradual replacement of the 1D inhomogeneities by
3D inhomogeneities with the same values of rms fluc-
tuations. For comparison, the functions ∆ν and ξ are
shown in Figs. 2 separately for the 1D and 3D inhomo-
geneities. The origin of the coordinates corresponds to

 = 0 (the scale is under the picture) and  = 0.3 (the
scale is above the picture). The width ∆ν of the gap is
equal to zero for the 1D inhomogeneities and to Λ for
the 3D inhomogeneities. The dashed curve in Fig. 2a

shows the decrease in ∆ν when  increases for  = 0.
The dotted curve in this figure shows the opening and

increase of ∆ν when  decreases for  = 0. The solid

curve shows the dependence of ∆ν on  under the con-

dition  +  = 0.3. One can see that the maximum of
∆ν corresponds to some point corresponding to the

presence of both components of the mixture (  ≠ 0,

 ≠ 0) but not to the absence of the 1D inhomogene-

ities (  = 0,  = 0.3), as might be expected from the
general point of view.

4. The method of the random spatial modulation of
the superlattice period [15] permits developing the CF
of a SL with 1D random modulation (which models
random displacements of the interfaces from their ini-
tial periodic arrangement), 3D modulation (which
models random deformations of the interfaces), and the
simultaneous presence of both kinds of modulation
(which models the mixture of the 1D and 3D inhomo-
geneities of the SL structure).

γ1
2

γ3
2 γ1

2

γ1
2

γ3
2

γ1
2 γ3

2

γ1
2 γ3

2

γ1
2 γ3

2

γ3
2 γ1

2

γ3
2 γ1

2

γ1
2 γ3

2

γ3
2

γ1
2 γ3

2

γ1
2

γ3
2

γ1
2 γ3

2
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The decreasing part of the CF of the SL in the pres-
ence of the mixture of the 1D and 3D inhomogeneities
has the form of the product of the decreasing parts of
the CFs of the components of the mixture K1(rz) and
K3(r).

The widths of the gap in the spectrum and damping
of waves at the boundary of the first Brillouin zone have
the following behavior depending on the relationship
between rms fluctuations γ1 and γ3 of the 1D and 3D
inhomogeneities. On addition of the 3D inhomogene-
ities to the SL containing only 1D inhomogeneities, the
damping of waves increases. But this additional damp-
ing is approximately half as large as the damping that is

due to the inhomogeneities with the same value of 
in the absence of the 1D inhomogeneities. The situation
has also been considered when a gradual replacement
of inhomogeneities of one dimensionality by inhomo-
geneities of the other dimensionality subject to the con-

dition  +  = const occurs. It has been shown that
the maximum value of the gap corresponds to some

relationship between  and  but not to  = 0, as
one could expect from general considerations. This
phenomenon, as well as the phenomenon of the reduc-
tion of the damping induced by the 3D inhomogeneities
in the presence of 1D inhomogeneities, is due to the fact
that the decreasing parts of the CFs of the components
of the mixture K1(rz)and K3(r), as for the mixture of any
phase inhomogeneities, enter into the CF of the SL in
the form of a product, not a sum.

This work was supported by the NATO Science Pro-
gram and Collaborative Linkage (Grant no. 978090)
and the Russian Foundation for Basic Research (project
no. 00-02-16105).

REFERENCES
1. J. M. Luck, Phys. Rev. B 39, 5834 (1989).
2. S. Tamura and F. Nori, Phys. Rev. B 41, 7941 (1990).
3. N. Nishiguchi, S. Tamura, and F. Nori, Phys. Rev. B 48,

2515 (1993).
4. G. Pang and F. Pu, Phys. Rev. B 38, 12649 (1988).
5. J. Yang and G. Pang, J. Magn. Magn. Mater. 87, 157

(1994).
6. D. H. A. L. Anselmo, M. G. Cottam, and E. L. Albuquer-

que, J. Appl. Phys. 85, 5774 (1999).
7. L. I. Deych, D. Zaslavsky, and A. A. Lisyansky, Phys.

Rev. E 56, 4780 (1997).
8. B. A. Van Tiggelen and A. Tip, J. Phys. I 1, 1145 (1991).
9. A. R. McGurn, K. T. Christensen, F. M. Mueller, and

A. A. Maradudin, Phys. Rev. B 47, 13120 (1993).
10. M. M. Sigalas, C. M. Soukoulis, C.-T. Chan, and

D. Turner, Phys. Rev. B 53, 8340 (1996).
11. V. A. Ignatchenko, R. S. Iskhakov, and Yu. I. Mankov,

J. Magn. Magn. Mater. 140–144, 1947 (1995).
12. A. G. Fokin and T. D. Shermergor, Zh. Éksp. Teor. Fiz.

107, 111 (1995) [JETP 80, 58 (1995)].

γ3
2

γ1
2 γ3

2

γ1
2 γ3

2 γ1
2



290 IGNATCHENKO et al.
13. A. V. Belinskiœ, Usp. Fiz. Nauk 165, 691 (1995) [Phys.
Usp. 38, 653 (1995)].

14. B. Kaelin and L. R. Johnson, J. Appl. Phys. 84, 5451
(1998); J. Appl. Phys. 84, 5458 (1998).

15. V. A. Ignatchenko and Yu. I. Mankov, Phys. Rev. B 56,
194 (1997).

16. A. N. Malakhov, Zh. Éksp. Teor. Fiz. 30, 884 (1956)
[Sov. Phys. JETP 3, 701 (1956)].

17. S. M. Rytov, Introduction to Statistical Radiophysics,
2nd ed. (Nauka, Moscow, 1976), Part 1.

18. V. A. Ignatchenko, Yu. I. Mankov, and A. V. Pozdnaykov,
Zh. Éksp. Teor. Fiz. 116, 1335 (1999) [JETP 89, 717
(1999)].
19. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin,
Phys. Rev. B 59, 42 (1999).

20. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin,
J. Phys.: Condens. Matter 11, 2773 (1999).

21. V. A. Ignatchenko, A. A. Maradudin, and A. V. Pozd-
naykov, Phys. Met. Metallogr. 91 (S1), 69 (2001).

22. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin,
Phys. Rev. B 62, 2181 (2000).

23. V. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin,
Phys. Rev. B 65, 024207 (2002).

24. R. C. Bourret, Nuovo Cimento 26, 1 (1962); Can. J.
Phys. 40, 783 (1962).
JETP LETTERS      Vol. 77      No. 6      2003


