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Dependences of the dispersion laws and damping of wavesin aninitially sinusoidal superlattice on the dimen-
sionality of inhomogeneities modulating the period of the superlattice are studied. The cases of one- and three-
dimensional modulations, as well as modulation by a mixture of inhomogeneities of both of these dimension-
alities, are considered. The correlation function of the superlattice K(r) has the form of a product of the same
periodic function and a decreasing function that is significantly different for these different cases. The decreas-
ing part of the correlation function for the mixture of inhomogeneities of different dimensionalities hastheform
of aproduct of the decreasing parts of the correlation functions of the components of the mixture. Thisleadsto
the nonadditivity of the contributions of the components of different dimensionalitiesto the resulting modifica
tion of the parameters of the wave spectrum that are due to the inhomogeneities (the damping of waves for the
mixture of these componentsis smaller than the sum of the dampings of the components, the maximum gap in
the spectrum corresponds to the simultaneous presence of both components of the mixture, not only of the

three-dimensional inhomogeneities). © 2003 MAIK “ Nauka/Interperiodica” .

PACS numbers: 68.65.Cd

1. Investigations of the spectrum of waves in par-
tially randomized superlattices (SLs) have been carried
out very intensively in recent years. Thisis due to the
wide use of these materialsin various high-technology
devices, as well as to the fact that they are convenient
models for developing new methods of theoretical
physicsfor studying mediawithout translation symme-
try. Several methods now exist for developing a theory
of such SLs: the modeling of the randomization by
altering the order of successive layers of two different
materias [1-7]; the numerical modeling of the random
derivations of the interfaces between layers from their
initial periodic arrangement [8-10]; the postulation of
the form of the correlation function of a SL with inho-
mogeneities[11, 12]; the application of the geometrical
optics approximation [13]; and the development of the
dynamic composite elastic medium theory [14].

One more method for the investigation of the influ-
ence of inhomogeneities on the wave spectrum of a SL
was suggested in [15]: the method of the random spatial
modulation (RSM) of the period of the SL. Thismethod
isan extension of the well-known theory of the random
frequency (phase) modulation of aradio signal [16, 17]
to the case of gpatial inhomogeneities in the SL. The
advantage of this method is that the form of the corre-
lation function (CF) of the SL is not postulated but is
devel oped from the most general assumptions about the
nature of arandom spatial modulation of the SL period.

TThis article was submitted by the authorsin English.

It appeared that in the general case this function had
quite a complicated form that depended on the dimen-
sionality of the inhomogeneities. Knowledge of the CF
corresponding to a particular type and dimensionality
of the inhomogeneities permitted us to apply methods
of investigation of averaged Green's functions to find
the energy spectrum and other characteristics of the
waves [15, 18-23]. The RSM method permitted us to
consider inhomogeneities of different dimensionalities
in the framework of the same model. Effects of one-
dimensional (1D) and three-dimensional (3D) inhomo-
geneities on the wave spectrum were studied for sinu-
soidal SLs, SLs with sharp interfaces, and SLs with
arbitrary thicknesses of interfaces. The influence of
inhomogeneities of each dimensionality was studied
separately. So, a significant aspect of the problem that
was not considered up to now is the situation when
inhomogeneities of different dimensionalities are
present simultaneously in a superlattice. The study of
this aspect is the objective of the present work.

2. Model and correlation function. A SL ischarac-
terized by the dependence of some material parameter
A on the coordinates x = {x, y, z}. The physical nature
of the parameter A(X) can be different. This parameter
can be a density of matter or a force constant for the
elastic system of a medium, the magnetization, anisot-
ropy, or exchange for amagnetic system, and so on. We
represent A(x) in the form

AlX) = Al1+yp()], (D)
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where A isthe average value of the parameter, yisitsrel-
ative rms variation, and p(x) is a centered ([p(x)U= 0)
and normalized ([p2(x)0= 1) function. The function
p(x) describes the periodic dependence of the parame-
ter along the SL axis z, as well as the random spatial
modulation of this parameter, which, in the genera
case, can be a function of al three coordinates x =

{xy.2.

We will consider in this paper a SL that has a sinu-
soidal dependence of the material parameter on the
coordinate z in the initial state when inhomogeneities
are absent. According to the RSM method, we represent
the function p(x) in the form

p() = J2cos[q(z-u@ -u) + W], (2
where g = 217l isthe SL wave number.

The function u,(2) describes 1D inhomogeneities of
the phase of the function p(x). The sensitivity of the
profile of the function p(x) to the action of the modula-
tion u,(2) isdifferent for different points of the function
p(x). The smallest changes of the profile occur in the
vicinities of the minima and maxima of the function
cos(g2). In contrast to this, the displacements of the
zero points of cos(gz) by the values of u,(2) lead to the
strongest changes in the profile. The zero points of the
function p(x) correspond to the interfaces of the SL.
Because of this, we assumein the RSM method that the
function u,(z) models 1D displacements of the inter-
facesfrom their initial periodic arrangement.

The function u,(x) isintroduced in Eg. (2) to model
arandom deformation of the surfaces of the interfaces.
At first glance, it would seem that this function must
depend only on the two coordinates, x and y. But the
function u(x, y) describes in the RSM method a 2D
deformation that isuniform for all interfaces of the SL,
i.e., that has an infinite value of the correlation radius
along the z coordinate. The directly opposed cases are
of interest in reality, namely, the cases where the defor-
mations of the two nearest interfaces are uncorrelated
(the correlation radius along zis much smaller than 1/2)
or only several interfaces are correlated. That is why
Us(X) must be arandom function of all three coordinates
X, Yy, and z

In the general case, this function has an anisotropy
of correlation properties, because the values of the cor-
relation radii in the xy plane and along the z axis are
determined by different physical reasons. But we
restrict ourselves here to the simplest case and assume
that u;(X) isa3D random function with isotropic corre-
lation properties. A coordinate-independent random
phase Y is introduced into EQ. (2) to ensure the fulfill-
ment of the condition of ergodicity for the function p(x)
(see [15]); it is characterized by a uniform distribution
in the interval (=, T). After averaging the product of
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the functions p(x) and p(x + r) over the phase ), we
obtain

Cp(x)p(x + 1), = cos(qr,—X1—Xa), (©)
where
X1 = qluy(z+r) —uy (2],
Xs = qlus(X + 1) —ug(x)] .

We assume that the random functions x; and x; are
mutually uncorrelated and that each of them is a Gaus-
sian random process. After averaging Eq. (3) over X,
and X3, we obtain ageneral expression for the CF of the
SL intheform

(4)

K(r) = cos(ar)K(rK(r), ©)
where
Ki(r) = e[ 5Qur) | ©)
K(r) = exp[5Q(n) | ™

and the structure functions Q;(r) are defined by the
equations

Qury) = i QN = O (8)

One can see from Egs. (6)—(8) that K,(r,) and K4(r) are
the decreasing parts of the CFs of the SLs with 1D or
3D inhomogeneities (recall that the complete CFs for
these cases have the form of the product of cos(qr,) and
K,(r) or K4(r), respectively [15]. So, the decreasing
part of the CF of a SL with a mixture of the mutually
uncorrelated phase inhomogeneities of different dimen-
sionalities hasthe form of the product of the decreasing
parts of the CFs of the components of this mixture.

To find the structure functions Q,(r,) and Qs(r), we
must model the correlation properties of the modulat-
ing functions u,(2) and u,(x) or, more precisely, the cor-
relation properties of their gradients. Both Q,(r,) and
Q4(r) were found in [15] (see aso some refinements of
the coefficientsin these expressionsin [21]) by the use
of different forms of the model CFs for the random
modulation. It was shown that the forms of the func-
tions Q; do not depend asymptotically (for both small
and large values of r) on the form of the model CF but
strictly depend on the dimensionalities of the inhomo-
geneities. For the exponential model CFs for u,(2) and
us(x), the structure functions were obtained in theforms

Qury) = 2vilexp(—kr,) +kr,—1], (9)
Qur) = 693 15 + H+ 2Hexn(-kan) |, (10)

wherey, and k; are the rel ative rms fluctuation and cor-
relation wave number of the random modulation u,(2),
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Vs and k, are the corresponding characteristics of the
random maodulation us(X).

After the substitution of Egs. (9) and (10) into them,
Egs. (6) and (7) become quite complicated. That iswhy
approximate expressions for K;(r,) and Ks(r) were sug-
gested for the 1D and 3D inhomogeneities (see[15, 23],
respectively):

Ky(r) = exp(=yikr,),

Ka(r) = (1-L)exp(=y3kor) +L,

(11)
(12)

where L = exp(—3y§) is the asymptotic form of Ky(r)
whenr —» oo,

According to these equations, effective correlation
radii of the SL can be introduced for the 1D and 3D
cases, respectively:

-1 -1
ry= (vik) 13 = (Yako) (13)
One can see that the effective correlation radii of the SL

depend not only on the correlation radii ki* or kg of
the corresponding modulating functions u; or us but
also on the rms fluctuations of these functions, y; or ys.

3. Dispersion law and damping of waves. We con-
sider the equation for waves in the superlattice in the
form

D%+ (v—ep(x))v = 0, (14)
where the expressions for the parameters € and v and
the variable p are different for waves of different
natures. For spin waves, when the parameter of the
superlattice A(X) in Eq. (1) isthe value of the magnetic
anisotropy B(x), we have [15] v = (w — wy)/agM, € =
yBa, where wisthefrequency, w,=g(H + M), gisthe
gyro-magnetic ratio, a is the exchange parameter, H is
the magnetic field strength, M is the value of the mag-
netization, 3 isthe average value of the anisotropy, and
y is its relative rms variation. For elastic waves in the
scalar approximation, we havev = (w/v)?, € = yv, where
yisthermsfluctuation of the density of the material and
v isthe wave velocity. For an electromagnetic wave in
the same approximation, we have v = e, (w/c)?, € = yv,
where €, is the average value of the dielectric perme-
ability, yisitsrmsdeviation, and c isthe speed of light.

Laws of the dispersion and damping of the averaged
waves are determined by the equation for the complex
frequency v = V' +i§, which follows from the vanishing
of the denominator of the Green’'s function of Eq. (14).
In the Bourret approximation [24], this equation hasthe
form [15]

2 Sk —ky)dk,

v-k =¢ , 15
I v—k; 4
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where §k) isthe spectral density of the function p(x):

1 _ikr
k) = K(r)e "'dr.
k) ( 2n)3I (r)
Substituting Eq. (5) into Eq. (16), then Eq. (16) into
Eqg. (15), and approximating Ki(r) and Ks(r) by
Egs. (11) and (12), we obtain an exactly integrable
expression. Upon integrating this expression with
respect to k; and r, we obtain an explicit form of the
equation for v:

(16)

v -k

e

g
= 501-U)

P ]
Palpl—(k—0)° PL-(k+a)* (17

P 1 1 Ol
+L_l|: 2 2+ 2 2:|D
MLPI—(k=q)? Pi—(k+q)*!O

where
P, = N —ikyl, Ps= JV—ikeys,

Pis = JV =i (kjy1+ koYs)-
We consider this equation at the Brillouin zone bound-
ary k = k, = g/2. Under the conditions that &, (k”yf)z,

and (K,Y5 )2 are much smaller than v, = k, we obtain

Eq. (17) inthe form of a cubic equation in v:
VK2 = s_z[ 1-L

o 2lv-2ik(yi +kovi) - K

(18)

(19)

+ L 2 2i|'
v =2ik.ky1—k;
Both limiting cases of this equation, corresponding to
1D (y; #0, y;=0) and 3D (y; = 0, y; # 0) inhomogene-
ities, were considered in our previous works.

The equation (19) for the mixture of 1D and 3D
inhomogeneities has been investigated by numerical
methods. The results of this investigation are shown in
Figs. 1 and 2 by solid curves. Dotted and dashed curves
in these figures correspond to the limiting cases of the
presence of only 1D or 3D inhomogeneities, respec-
tively. All figures correspond to the same correlation
wave numbers for 1D (n, = K /A = 4, where A = /2¢)
and 3D (n; = k,o//A = 4) inhomogeneities. Different sit-
uations are shown in these figures.

Figure 1ashowsthe decrease of thegap Av = v —v"
with the increase of yi or yg. If y; =0, theincreasein

v2 leads to the closing of the gap at y; = 0.25 (dotted
curve). Simultaneously the damping of both eigenfre-

guenciesincreaseslinearly till the point yi =0.25 (dot-
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Fig. 1. The width of the (a) gap and (b) damping as func-
tions of the sum yi + yg for different situations: yf 70,
yg = 0 (dotted curves); yi =0, yg # 0 (dashed curves);

yi =0.2, yg # 0 (solid curves). The explanation of the dot-
ted-dashed curve in Fig. 1bis given in the text.

ted curve in Fig. 1b). For y; > 0.25, two degenerate
eigenfrequencies v, = v_ exist with different damp-

ings, &, # &_. If y5 = Otheincrease of y5 also leads to
the decrease of the gap (dashed curve in Fig. 1a) but
significantly more slowly than under the action of the
1D inhomogeneities. For example, alarge gap existsfor
y5 = 0.25, while the gap closes when y; has the same
value. In line with this, the damping increases very
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Av/A

g/A

Fig. 2. The width of the (a) gap and (b) damping under the
condition yi + yg =0.3(solid curves) and for the situations

when yg increases for yi = 0 (dashed curves, the scaleis

under the picture), and when yi decreases for yg = 0 (dot-
ted curves, the scale is above the picture).

slightly with the increase in y: (dashed curve in
Fig. 1b).

To show the effects of the mixture of inhomogene-
ities of different dimensionalities, the following situa-
tionisdepictedin Figs. 1. Let ushave only 1D inhomo-
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geneities with y; = 0.2 and, correspondingly, let the
spectrum gap be Av/A = 0.6. Then we add 3D inhomo-

geneitiesincreasing yg and keeping yf =0.2. Onecan
see that the gap decreases slowly and closes at yf +

y5 = 0.45 (solid curve in Fig. 1a). Simultaneously, the
increase in the damping slows down (solid curve in
Fig. 1b). The dashed-dotted curve in Fig. 1b corre-
sponds to the unreal situation that would have been
realized if the damping of the mixture of 1D inhomoge-
neities with yf = 0.2 and 3D inhomogeneities with yg
were equal to the simple sum of the damping of the
components of the mixture. One can see that in reality
the additional contribution to the damping due to 3D
inhomogeneities in the presence of the 1D inhomoge-
neities is approximately two times smaller than in the
absence of the latter.

Quite another situation is shown in Figs. 2 by the

solid curves. We assume here that the sum y; + v3
remains constant (and equal to 0.3 in these graphs)

when yf and y§ arevaried. In other words, we consider
a gradual replacement of the 1D inhomogeneities by
3D inhomogeneities with the same values of rms fluc-
tuations. For comparison, the functions Av and & are
shownin Figs. 2 separately for the 1D and 3D inhomo-
geneities. The origin of the coordinates corresponds to

y§ =0 (the scale isunder the picture) and yf =0.3 (the
scale is above the picture). The width Av of the gap is
equal to zero for the 1D inhomogeneities and to A for
the 3D inhomogeneities. The dashed curve in Fig. 2a
showsthe decrease in Av when yg increasesfor yf =0.
The dotted curve in this figure shows the opening and

increase of Av when yi decreasesfor y§ =0. Thesolid
curve shows the dependence of Av on y§ under the con-

dition yf + yg = 0.3. One can see that the maximum of
Av corresponds to some point corresponding to the

presence of both components of the mixture (yi # 0,
y§ # 0) but not to the absence of the 1D inhomogene-

ities (y2 = 0, y5 = 0.3), as might be expected from the
general point of view.

4. The method of the random spatial modulation of
the superlattice period [15] permits developing the CF
of a SL with 1D random modulation (which models
random displacements of the interfaces from their ini-
tial periodic arrangement), 3D modulation (which
models random deformations of theinterfaces), and the
simultaneous presence of both kinds of modulation
(which models the mixture of the 1D and 3D inhomo-
geneities of the SL structure).
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The decreasing part of the CF of the SL in the pres-
ence of the mixture of the 1D and 3D inhomogeneities
has the form of the product of the decreasing parts of
the CFs of the components of the mixture Ky(r,) and
Ks(r).

The widths of the gap in the spectrum and damping
of waves at the boundary of thefirst Brillouin zone have
the following behavior depending on the relationship
between rms fluctuations y; and y; of the 1D and 3D
inhomogeneities. On addition of the 3D inhomogene-
itiesto the SL containing only 1D inhomogeneities, the
damping of waves increases. But this additional damp-
ing isapproximately half aslarge asthe damping that is
due to the inhomogeneities with the same value of y§
in the absence of the 1D inhomogeneities. The situation
has also been considered when a gradual replacement

of inhomogeneities of one dimensionality by inhomo-
geneities of the other dimensionality subject to the con-

dition y5 + y5 = const occurs. It has been shown that
the maximum value of the gap corresponds to some

relationship between v and y5 but not to y; = 0, as
one could expect from general considerations. This
phenomenon, as well as the phenomenon of the reduc-
tion of the damping induced by the 3D inhomogeneities
inthe presence of 1D inhomogeneities, isdueto thefact
that the decreasing parts of the CFs of the components
of the mixture K,(r)and Ks(r), asfor the mixture of any
phase inhomogeneities, enter into the CF of the SL in
the form of a product, not a sum.
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