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Abstract—The spins of Ru5+ ions in Sr2YRuO6 form a face-centered cubic lattice with antiferromagnetic near-
est neighbor interaction J ≈ 25 meV. The antiferromagnetic structure of the first type experimentally observed
below the Néel temperature TN = 26 K corresponds to four frustrated spins of 12 nearest neighbors. In the
Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferro-
magnetic state at T = 0 K. This state is stabilized by weak anisotropy D or exchange interaction I with the next-
nearest neighbors. Low D/J ~ I/J ~ 10–3 values correspond to the experimental TN and sublattice magnetic
moment values. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Like cuprates and manganates, perovskite-like ruth-
enates have been attracting much interest of researchers
in recent years. Initially, this interest was caused by the
discovery of exotic superconductivity in Sr2RuO4 [1].
This is the only oxide superconductor isostructural to
cuprates that does not contain copper. Later, it was
found that other ruthenates have very interesting mag-
netic and electric properties. Increasing x in the
Sr2 − xCaxRuO4 system results in a complex sequence of
structural phase transitions, competition between ferro-
magnetic and antiferromagnetic exchange interactions,
and the Mott–Hubbard metal–dielectric transition in
Ca2RuO4 [2, 3]. Another ruthenate, SrRuO3, is the only
metallic ferromagnet with TC ≈ 165 K and magnetiza-
tion m ≈ 1.6µB per Ru ion among 4d metal oxides [4, 5].
The Sr2YRuO6 double perovskite has an elpasolite
structure, which can be obtained from SrRuO3 by
replacing each second Ru ion with nonmagnetic Y;
below TN = 26 K, the face-centered cubic (FCC) lattice
of Ru5+ spins experiences ordering to produce an anti-
ferromagnetic structure of the first type [6, 7]. In this
structure, (001) ferromagnetic planes exhibit antiparal-
lel ordering along the c axis.

One of the reasons for our interest in the magnetic
properties of Sr2YRuO6 is its low TN temperature and
small value of the sublattice magnetic moment per
ruthenium ion, m = 1.85µB , compared with the
exchange integral J ≈ 25 meV and the nominal m(S =
3/2) = 3µB per Ru ion for the d3 configuration of Ru5+.
The m value was measured by neutron diffraction [6, 7],
and the J value was calculated theoretically [8].
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Another reason for our interest in the double perovskite
is the appearance of superconductivity with Tc ≈ 50 K
after doping it with copper [9, 10]. A study of a possible
magnetic mechanism of superconductivity in this sys-
tem requires understanding the magnetic properties of
undoped Sr2YRuO6.

Earlier, an attempt was made to explain the small-
ness of TN by frustration effects in the Ising model, but
the suppression of TN in the Ising model proved to be
too weak [8]. In this paper, we show that the major con-
tribution is made by fluctuations of transverse spin
components in the Heisenberg model. If only the near-
est neighbors are taken into account, the antiferromag-
netic state is unstable in the spin-wave approximation.
Its stabilization requires including exchange with the
next-nearest neighbors I or anisotropy D. Our calcula-
tions show that very small I/J ~ D/J ~ 10–3 values are
sufficient for obtaining the observed TN and magnetic
moment values.

2. THE SPECIAL FEATURES
OF THE STRUCTURE 

AND EXCHANGE INTERACTION IN Sr2YRuO6

As distinct from other ruthenates and cuprates,
neighboring RuO6 octahedra in Sr2YRuO6 do not share
anions (Fig. 1). This justifies applying the cluster
approach to the description of its magnetic structure.
Similarly, the electronic structure of Sr2YRuO6 is well
modeled in first-principles band calculations by a sys-
tem of RuO6 clusters, which form an FCC lattice [8].
From the magnetic point of view, the replacement of
Ru5+ magnetic by Y3+ nonmagnetic ions is diamagnetic
003 MAIK “Nauka/Interperiodica”
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substitution. The FCC lattice of spins in Sr2YRuO6 can
therefore be treated as produced by diamagnetic dilu-
tion of spins in the SrRuO3 perovskite to a 0.5 concen-
tration of nonmagnetic vacancies, which are spatially
ordered (Fig. 1b). The presence of vacancies consider-
ably changes the exchange interaction between neigh-
boring Ru spins. Whereas ferromagnetic exchange
interaction is characteristic of SrRuO3, strong competi-
tion between ferromagnetic and antiferromagnetic inter-
actions is observed in Sr2RuO4 [11], Sr2 – xCaxRuO4

exhibits a trend toward antiferromagnetism as x
increases (see discussion in review [12]), and
Sr2YRuO6 is characterized by strong antiferromagnetic
interaction. It follows that exchange interactions in var-
ious ruthenates vary to a greater extent than in cuprates,
where these interactions are always antiferromagnetic.

The reason for the diversity of exchange interactions
in ruthenates is the special features of their electronic
structure formed by the (t2g – p)–π bonds. The orbital
degeneracy of the t2g states results in the presence of
three intersecting bands at the Fermi level and the
metallic state of undoped SrRuO3 and Sr2RuO4. The
estimation of correlation effects in SrRuO3 and
Sr2RuO4 shows that intermediate correlations U ≤ W,
where U is the Hubbard Coulomb parameter and W =
z|t | is the band half-width, occur in these compounds
[12]. Because of the diamagnetic dilution in Sr2YRuO6,
the nearest neighbor Ru–Ru hopping integral t is
strongly suppressed, and the substance is in the mode of
strong electron correlations with the dielectric ground
state. In the zeroth approximation with respect to hop-
ping t, we have a system of independent RuO6 clusters.

Consider the electronic structure of the RuO6 clus-
ter. The crystal field splits the Ru 4d level into the t2g

and eg sublevels. The p orbitals of oxygen participate in
the pdπ and pdσ bonds with Ru. A detailed calculation
of molecular orbitals and their comparison with first-
principles calculations by the linearized augmented
plane wave method were performed in [8]; in this work,
we only give the results necessary for analyzing
exchange interactions. After the inclusion of intraclus-
ter p–d Ru–O hoppings, we obtain the following cluster
molecular orbitals: 13 nonbonding molecular orbitals
4 × E0(pσ) + 9 × E0(pπ), 5 bonding orbitals 2 × E–(Eg) +
3 × E–(T2g), and 5 antibonding molecular orbitals 2 ×
E+(Eg) + 3 × E+(T2g). Here, E0 are the ionic levels, and
the energies of the bonding and antibonding terms are

(1)

E± Eg( ) 0.5 E0 pσ( ) E0 eg( )+{=

± E0 pσ( ) E0 eg( )–( )2 16tσ
2+[ ] 1/2 } ,

E± T2g( ) 0.5 E0 pπ( ) E0 t2g( )+{=

± E0 pπ( ) E0 t2g( )–( )2 16tπ
2+[ ] 1/2 } .
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The order of the levels is determined by the conditions

and their filling with 39 valence electrons is such that
36 electrons completely fill the E–(T2g), E–(Eg), E0(pσ),
and E0(pπ) molecular orbitals. The remaining three
electrons fill three E+(T2g) orbitals with parallel spins to
form the S = 3/2 high-spin state. T2g symmetry of
molecular orbitals coincides with t2g symmetry of Ru
atomic orbitals.

The true crystal lattice of Sr2YRuO6 is somewhat
more complex than that shown in Fig. 1; RuO6 clusters
are rotated through ϕ ≈ 12°, which results in P21/n
monoclinic symmetry. We will, however, analyze
exchange interactions in terms of the undistorted struc-
ture (Fig. 1). Including distortions gives corrections
which prove to be small according to the estimates
made in [8]. From the point of view of the indirect
exchange mechanism, exchange between the nearest
neighbors J is formed by the Ru–O–O–Ru coupling.
However, in terms of molecular orbitals, the same cou-
pling of neighboring RuO6 clusters is effected by the
xy–xy hopping with the amplitude τσ = 0.75tddσ.

The arising exchange energy per cluster can be esti-

mated as 2J0 ~ /∆, where ∆ is the exchange splitting
of the T2g molecular orbitals. The estimation of the τσ
and ∆ parameters by linearized augmented plane wave
calculations in [8] gives 2J0 ≈ 0.05 eV; this J value also
corresponds to the energy difference between the ferro-
magnetic and antiferromagnetic states per cluster in
spin polarization calculations [8], which equals
0.095 eV with and 0.12 eV without allowance for octa-
hedron turns.

The magnetic properties of a system of localized
spins will be described in terms of the isotropic Heisen-
berg model with the Hamiltonian

(2)

E– T2g( ) E– Eg( ) E0 pσ( ) E0 pπ( ) E+ T2g( ) E+ Eg( ),< < < <≈

τσ
2

H
1
2
--- J R( )S f S f R+ ,⋅

f R,
∑–=

J R( ) J R–( ), J 0( ) 0.= =

(a) (b)

Fig. 1. Ordered diamagnetic replacement of every second
Ru ion by Y ion in (a) SrRuO3 leads to (b) the Sr2YRuO6
lattice: (×) Ru; (s) O; (h) Y.
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The FCC lattice contains z = 12 nearest neighbors
with the exchange J(R1) = –J. We also take into account
exchange with the next-nearest spins J(R2) = I on the
assumption of ferromagnetic exchange. Exchange for
the next-nearest spins arises as the Ru–O–O–Ru–O–O–
Ru coupling; it can be estimated as

In order to describe the antiferromagnetic state, we
introduce sublattices A (sites a) with spins upward

and B (sites b) with spins downward,  = –  ≡
S, where the magnetization of the sublattices depends
on temperature. For the antiferromagnetic state of the
first type, we have ferromagnetically ordered xy planes
with an antiferromagnetic alternation of the planes. Set
lattice parameter a = 1; the length of the R1 ≡ D vectors

connecting the nearest neighbors is then ∆ = 1/ , and
that of the R2 ≡ a vectors, a = 1. Let us divide the D vec-
tors into two groups, those lying in the xy planes d and
interplanar vectors d,

The distribution of the  means in this model is as
follows:

(3)

Because of the ferromagnetic order in the xy plane, all
four antiferromagnetic bonds in this plane are frus-
trated (energetically unfavorable). Eight interplanar
antiferromagnetic bonds, however, give energy gain for
the antiferromagnetic state. For this reason, frustrations
decrease the mean field acting on a spin even in the
molecular field approximation. Without frustrations,
the mean field is  = 2J  = 12J ; taking frustrations

into account makes it  = 4J . Without frustrations in

the mean-field approximation,  = zJS(S + 1)/3,
which is much higher than the experimental TN value. A
decrease in TN by a factor of 3 caused by frustrations in
the mean-field approximation does not solve the prob-
lem. A similar result is obtained for the Ising model,
where frustrations decrease TN [13]. The TN value (700–
900 K [8]) is, however, as previously, high compared
with the experimental one. In the next section, we con-
sider the spin-wave theory of a frustrated antiferromag-
net to take into account transverse spin component fluc-
tuations.

I τσ
4 /∆3 10 2– J0.≤∼

SA
z〈 〉 SB

z〈 〉

2

d
1
2
---± 1

2
---± 0, , 

  xy( ),=

d1 0
1
2
---± 1

2
---±, , 

  yz( ), d2
1
2
---± 0

1
2
---±, , 

  xz( ).= =

S f
z〈 〉

Sa
z〈 〉 S, Sa d+

z〈 〉 S, Sa d+
z〈 〉 S,–= = =

Sa a+
z〈 〉 S, Sβ

z〈 〉 S, Sb d+
z〈 〉– S,–= = =

Sb d+
z〈 〉 S, Sb a+

z〈 〉 S.–= =

h S S

h S

T N
MF
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3. THE SPIN-WAVE THEORY 
OF A FRUSTRATED ANTIFERROMAGNET

ON AN FCC LATTICE

The exact equation of motion (" = 1) for  is lin-
earized in the Tyablikov approximation:

(4)

The h = H/zJ dimensionless Hamiltonian can conve-
niently be used. For the antiferromagnetic state of the
first type, taking into account (3) then allows (4) to be
written as (λ = I/J)

(5)

Performing the Fourier transform over the sublattices

we obtain

(6)

where

The thermodynamic properties will be calculated using
two-time retarded commutator Green’s functions at
finite temperatures

Here, sublattice indices F and G take on two values, A
and B. For simplicity, we will only consider the spin

S f
+

iṠf
+

J R( ) Sf R+
z〈 〉 Sf

+ Sf
z〈 〉 Sf R+

+–( ).
R

∑≈

iṠa
+ S

z
--- Sa d+

+ Sa
+–( )

d

∑ Sa d+
+ Sa

++( )
d
∑+=

+
λS
2z2
------- Sa

+ Sa a+
+–( ),

a

∑

iṠb
+

–
S
z
--- Sb d+

+ Sb
++( )

d

∑ Sb d+
+ Sb

++( )
d
∑+=

–
λS
2z2
------- Sb

+ Sb a+
+–( ).

a

∑

SA
+ q( ) 2/N Sa

+ iq a⋅( ),exp
a
∑=

SB
+ q( ) 2/N Sb

+ iq b⋅( ),exp
b
∑=

iṠA
+

q( ) S αqSA
+ q( ) βqSB

+ q( )+( ),=

iṠB
+

q( ) –S αqSB
+ q( ) βqSA

+ q( )+( ),=

αq 0.33 1 cxcy+( ) 0.5λ 1 γq–( ),+=

βq 0.33 cx cy+( )cz,=

ci qi/2( ), icos x y z,, ,= =

γq 0.33 qxcos qycos qzcos+ +( ).=

SF
+ q( ) SG

– q–( )〈 〉〈 〉 ω GFG q ω,( ).=
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S = 1/2. Of course, spin-wave theory also can be con-
structed for an arbitrary spin S, including S = 3/2 for
Sr2YRuO6. Such a theory will, however, be fairly cum-

bersome, whereas the main results for  and TN will
differ by unimportant multipliers of the S(S + 1) type.
Equations of motion (6) allow us to easily obtain the
corresponding Green’s functions

(7)

(8)

Applying the standard procedure yields the spectral
density

and the transverse spin correlator

(9)

Here, τ = T/zJ is the dimensionless temperature. For
S = 1/2,

(10)

and the equation for the order parameter  therefore
reads

(11)

At τ = 0, the hyperbolic cotangent equals one, and

(12)

In the other limit τ  τN ,   0 (   1/x as

S

GAA

2S ω Sαq+( )
D q ω,( )

-------------------------------, GBB

2S ω Sαq–( )
D q ω,( )

------------------------------,= =

GAB GBA

2S
2βq

D q ω,( )
--------------------,–= =

D q ω,( ) ω2 Ωq
2, Ωq– Sεq,= =

εq αq
2 λ( ) βq

2–( )1/2
.=

nAA q ω,( )
1
π
---ImGAA q ω,( )–=

=  S 1
αq

εq

-----+ 
  δ ω Ωq–( )

CAA q( ) SA
+ q( )SA

– q–( )〈 〉=

=  
ω/τ( )exp

ω/τ( )exp 1–
--------------------------------nAA q ω,( ) ωd

∞–

∞

∫

=  S 1
αq

εq

-----
Ωq

2τ
------coth+ 

  .

2
N
---- CAA q( )

q

∑ 2
N
---- Sα

+Sα
–〈 〉

α
∑ 1

2
--- S,+= =

S

S τ( )
1/2
I τ( )
--------, I τ( )

2
N
----

αq

εq

-----
S τ( )εq

2τ
--------------.coth

q

∑= =

S 0( )
0.5

I1 λ( )
-----------, I1 λ( ) 2N 1– αq λ( )

εq λ( )
-------------.

q

∑= =

S xcoth
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x  0), Eq. (11) yields the Néel temperature

(13)

Consider the integrands in the expressions for I1 and I2
in the neighborhood of the Brillouin zone points Γ =
(0, 0, 0) and X = (0, 0, 2π). In the neighborhood of Γ,
we have

and the integrand in I1 takes the form

(14)

If only exchange J between the nearest neighbors is
taken into account, the λ = 0 spectrum in the vicinity of
Γ becomes one-dimensional with the special direction
z, along which A and B layer spins alternate. At λ = 0,
the integral I1 logarithmically diverges, which means

that (0)  0; that is, the antiferromagnetic state is
already unstable at T = 0. The integral I2 in the vicinity

of Γ behaves as  ∝  1/q, that is, diverges by a

power law. As a result, TN  0. In the vicinity of X,
the I1 and I2 integrals exhibit similar behaviors. It fol-
lows that, if only nearest neighbor exchange J is taken
into account, the effect of frustrations is strong to the
extent that the antiferromagnetic state is completely
suppressed. Precisely this is, in our view, the main rea-
son why TN and  are small in Sr2YRuO6. The antifer-
romagnetic state can be stabilized both by exchange
with the next-nearest spins I and by anisotropy.

4. THE STABILIZATION
OF ANTIFERROMAGNETIC STATES

BY NEXT-NEAREST-NEIGHBOR EXCHANGE

The instability of the antiferromagnetic state in FCC
lattices has long been known and treated within the
frameworks of both the spin-wave approach and the
Bete–Peierls–Weiss cluster approximation [14–16].
The stabilization of the antiferromagnetic state by next-
nearest-neighbor exchange has been considered in
detail in [17, 18]. Ferromagnetic exchange I stabilizes
the antiferromagnetic phase of the first type, which is
observed in Sr2YRuO6, and antiferromagnetic
exchange I stabilizes the phase of the third type. The
Néel temperature as a function of the λ = I/J ratio was
calculated in [17, 18] only numerically, and the TN(λ)
plots with a characteristic nonanalytic dependence for

τN
1
4
--- I2 λ( ), I2 λ( ) 2N 1– αq λ( )

εq
2 λ( )

-------------.
q

∑= =

αq
1
3
--- 2

qx
2 qy

2+
8

---------------- λq2

4
--------+– , q2≈ qx

2 qy
2 qz

2,+ +=

βq
1
3
--- 2

qx
2 qy

2+
8

----------------
qz

2

4
-----–– , εq

2≈
qz

2 λq2+
9

--------------------=

αq λ( )
εq λ( )
-------------

2 qx
2 qy

2+( )/8 λq2/4+–

qz
2 λq2+( )1/2

-------------------------------------------------------.=

S

qz/qz
2d∫

S
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λ  0 were similar to the TN(D) plot (see Fig. 4
below). At the same time, it was claimed in [17, 18] that
anisotropy of exchange interactions per se, without tak-
ing exchange I into account, could not stabilize the anti-

kx ky

kz

Fig. 2. Brillouin zone of a face-centered cubic lattice.
Squares indicate dangerous directions leading to magnetic
moment and Néel temperature divergences.

S
–

0.5

0.4

0.3
0 0.02 0.04 0.06 0.08 0.10

D

Fig. 3. Dependence of sublattice magnetic moment  on
exchange anisotropy D.

S

TN/J

0.4

0.1
0 0.02 0.04 0.06 0.08 0.10

D

0.3

0.2

0.5

0.6

Fig. 4. Dependence of the Néel temperature on exchange
anisotropy D.
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ferromagnetic state of the first type. This conclusion is
at variance with our results. Indeed, anisotropy creates
a gap in the spectrum of magnons that cuts off the diver-
gences as λ tends to 0. This problem is considered in
more detail in the next section.

5. THE STABILIZATION 
OF THE ANTIFERROMAGNETIC STATE

BY ANISOTROPY

The turns of the octahedra and the monoclinic dis-
tortion of the Sr2YRuO6 lattice can cause anisotropy of

two types, namely, single-ion anisotropy of the D
type or exchange coupling anisotropy. In our simplified
model with S = 1/2, the single-ion anisotropy is absent;
therefore, consider the exchange anisotropy. The
Hamiltonian of the system can then be written as

Equation (4) now transforms into

In the simplest situation, it suffices to take into account
exchange anisotropy for the nearest neighbors ignoring
exchange anisotropy for the next-nearest spins. This
implies that

where D is the dimensionless anisotropy parameter. As
the lattice distortions are small, we can assume that
D ! 1. The spin-wave theory described in Section 3 can
easily be generalized to systems with anisotropy. After
the αq  αq(D) renormalization,

(15)

all the other equations obtained in Section 3 remain
valid. The order parameter at T = 0 is

(16)

For the Néel temperature, we obtain

(17)

Sz
2

H
1
2
--- J R( ) S f

+S f R+
– ξRS f

z S f R+
z+( ), ξR 1.≠

f ,  R ∑
 

–=

iṠf
+

J R( ) ξR Sf R+
z〈 〉 Sf

z Sf
z〈 〉 Sf R+

+–( ).
R

∑≈

ξ∆ 1 D, ξa+ 1,= =

αq λ D,( ) 0.33 1 D cxcy+ +( ) 0.5λ 1 γd–( ),+=

εq D( ) αq
2 λ D,( ) βq

2–( )1/2
,=

S λ D,( )
0.5

I1 λ D,( )
-------------------,=

I1 λ D,( )
2
N
----

αq λ D,( )
εq λ D,( )
---------------------.

q

∑=

τN λ D,( )
0.25

I2 λ D,( )
-------------------,=

I2 λ D,( )
2
N
----

αq λ D,( )

εq
2 λ D,( )

--------------------.
q

∑=
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If λ = 0 and D  0, both integrals I1 and I2 diverge,

which yields  = 0 and τN = 0. It follows that anisotropy
per se, in the absence of next-nearest-neighbor spin
exchange, stabilizes the antiferromagnetic state in an
FCC lattice.

To single out the diverging asymptotic functions, we
analytically calculated the contributions to the integrals
in the neighborhood of the dangerous Brillouin zone
points Γ and X (see Fig. 2). The high-symmetry points
will be denoted as follows:

Along several Brillouin zone directions shown by
squares in Fig. 2, εq = 0 at D = λ = 0. Some points of
this set are dangerous in the sense that the I1 and I2 inte-
grals diverge at D = λ = 0. Further, we will study the
role played by anisotropy D on the assumption λ = 0.

Consider the small volume v  = (π/4)3 in the neigh-
borhood of Γ (recall that the total Brillouin zone vol-
ume is 32π3). All integrals normalized with respect to v

will be denoted by . Expanding all cosines into series
and performing fairly simple calculations, we can ana-
lytically find the contributions that diverge as D  0.
For instance, for I1, we obtain

For the integral , analytic calculations give

Similar asymptotic behaviors (lnD for I1 and  for I2)
can also be obtained for the other dangerous Brillouin
zone points. As a result, we find  and TN(D)/J.

The  and TN(D)/J dependences at λ = 0 are
shown in Figs. 3 and 4. The curves labeled by squares
are described by the approximations

(18)

(19)

6. RESULTS AND DISCUSSION

Our results are based on a study of the Tyablikov
approximation, which is, in essence, a mean-field

S

Γ 0 0 0, ,( ), L π π π, ,( ), K 3π/2 3π/2 0, ,( )= =

Z 0 0 2π, ,( ), W1 π 0 2π, ,( ), W2 0 π 2π, ,( ),=

X  = 2π 0 0, ,( ), W̃1 = 2π π 0, ,( ), W̃2 = 2π 0 π, ,( ),

Y  = 0 2π 0,,( ), W1* = π 2π 0,,( ), W2* = 0 2π π,,( ).

Ĩ

Ĩ1 D( ) 0.5 D 1.9.–ln≈

Ĩ2

Ĩ2 D( ) 12/ D.≈

D

S D( )

S D( )

S D( )
1/2

0.043 Dln 1.256+
-------------------------------------------,≈

T N D( ) J
4 D/ 1 4 D+( ), 0 D 0.05,< <
0.342 2.6D, 0.05 D 0.1.< <+




=

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
approximation variant. However, as distinct from the

trivial Weiss mean field with JijSiSj  Jij ,
which does not depend on the space dimension, the
Tyablikov approximation takes into account transverse
spin density fluctuations in the form of collective exci-
tations, that is, spin waves. As a result, the Tyablikov
approximation reveals the absence of long-range order
at finite temperatures in agreement with the exact Mer-
min–Wagner theorem [17, 18]. As long as there is long-
range magnetic order in the system and spin fluctua-
tions at low temperatures can be described in terms of
spin waves, we can hope that the results obtained using
the Tyablikov approximation will be in at least qualita-
tive agreement with experiment.

Note that the stabilization of the antiferromagnetic
state of the first type takes place not at arbitrary signs of
exchange and anisotropy, but only at ferromagnetic
next-nearest-neighbor exchange I and anisotropy D > 0.
Indeed, ferromagnetic exchange I prevents frustrations
and is intrasublattice. Conversely, antiferromagnetic
next-nearest-neighbor exchange would only strengthen
the effect of frustrations. As far as anisotropy is con-
cerned, D > 0 is evidence of Ising-type anisotropy, J|| >
J⊥ . In the limit D  ∞, we can ignore transverse spin
components and obtain the Ising model, for which frus-
trations partially suppress the antiferromagnetic phase,
but TN and  remain finite [13]. At all D > 0 values, a
gap appears in the spectrum of magnons, which is the
factor that stabilizes the antiferromagnetic phase. At
D < 0, the εq(D) spectrum of magnons becomes imagi-
nary at certain wave vectors, which is evidence of anti-
ferromagnetic phase instability. At D = 0, the antiferro-
magnetic state with a long-range order is unstable and
is replaced by a state with a spin-liquid-type short-
range order [19, 20].

A comparison of our results with the experimental
data on Sr2YRuO6 should be performed bearing in
mind that the monoclinic distortion of the lattice and
the spin  = 3/2 can lead not only to exchange but also
to single-ion anisotropy. The Dzyaloshinski–Moriya
anisotropic exchange is also possible. Clearly, all aniso-
tropic interactions are weak compared with J, which
allows us to qualitatively compare our results with
experiment taking into account exchange anisotropy
with D ! J only. It follows from (18) and (19) that, to
obtain TN = 30 K and J = 300 K, we must set D = 8 ×
10–4. This means that the exchange anisotropy J|| – J⊥  =
DJ = 0.24 K is exceedingly small. At such an anisotropy
value,

which amounts to 64% of the nominal spin and very
closely agrees with the neutron data on the magnetic
moment of ruthenium.

Note in conclusion that frustrations in an FCC sys-
tem with nearest neighbor exchange lead to soft mag-

Si
z〈 〉 S j

z

S

S

S 8 10 4–×( ) 0.32,=
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non modes along several Brillouin zone directions. In
particular, in the vicinity of the Γ point, the spectrum
becomes one-dimensional. For this reason, divergences
in spin-wave theory similar to divergences in low-
dimensional systems are not surprising. Very weak per-
turbations in the form of ferromagnetic next-nearest-
neighbor exchange or an Ising-type exchange anisot-
ropy are sufficient for the antiferromagnetic state to be
stabilized.
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