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Abstract—The hypothesis concerning the existence of singular points on the imaginary time axis for a corre-
lation function of a system with the dipole–dipole interaction of nuclear spins of a crystal is verified. Within the
framework of the self-consistent fluctuating field theory taking into account the principal corrections related to
the correlation of local fields, a result for this coordinate is obtained in terms of the ratios of lattice sums.
Experimental values of this coordinate are calculated from the wings of the nuclear magnetic resonance
absorption spectrum of a BaF2 crystal for the magnetic field directions along the three crystallographic axes.
Good agreement of the theoretical and experimental results justifies this hypothesis. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear magnetic systems of crystals are convenient
objects for studying nonequilibrium statistical physics
of many-particle systems. The point is that, first, the
exact form of the interaction (dipole–dipole) is known;
second, the magnetic system is well isolated from the
lattice; and third, one can control the system state with
the help of a resonant radio-frequency field and observe
it using nuclear magnetic resonance (NMR) methods.
An important characteristic of these systems is the rate
of attaining equilibrium between the subsystems in the
presence of a large mismatch of resonant frequencies
determined by the wings of the spectra of the correla-
tion functions. This fact stimulated the study of such
systems. In a number of experimental studies, it was
found that the frequency dependence of the wings of
the spectra can be described by a simple exponential
function (see, e.g., [1–3] and the analysis of other
experiments in [4]) instead of the expected Gaussian
function [5]. The peculiarity of this shape of the spec-
trum wing is that the corresponding correlation func-
tion must have a singular point on the imaginary time
axis. In turn, this may indicate a new type of collective
effects in such systems. Unfortunately, low accuracy of
the registration of a weak signal on the spectrum wing
makes the interpretation of its shape ambiguous.

Theoretical investigations [6] confirmed the possi-
bility of the existence of singular points on the imagi-
nary time axis for correlation functions of rigid spin lat-
tices at high temperatures, at least for lattices of large
dimension d. The divergence of the form of the spec-
1063-7761/03/9701- $24.00 © 20078
trum wing from the Gauss distribution is caused by the
time fluctuations of the local magnetic field on the spin
due to the flips of the neighboring spins creating this
field. In turn, these flips are caused by the internal inter-
action between the spins (dipole–dipole or exchange
interaction). The coordinate of a singular point can be
easily calculated [6–9] in the approximation of a self-
consistent fluctuating local field for lattices of large
dimension, i.e., in the case when the correlation of local
fields can be neglected. The problem on the variation of
this coordinate with decreasing space dimension
remains so far unsolved.

In our earlier publications [10, 11], we found the
first terms of the expansion in the inverse dimensional-
ity of space for the coordinate of a singular point of the
autocorrelation function (ACF) of the Heisenberg
model with an isotropic interaction of nearest neigh-
bors. The experimental data [1–3] were obtained for
nuclear magnetic systems of crystals with the dipole–
dipole interaction. This interaction is characterized by
the anisotropy and necessitates the inclusion of distant
neighbors. Both these factors are taken into account in
this paper when determining the coordinate of a singu-
lar point.

In the approximation of a self-consistent fluctuating
field described in Section 2, a simple nonlinear equa-
tion for the ACF taking into account the axial symmetry
of the dipole–dipole interaction in the spin space is
written out the coordinate of a singular point of the
solution to this equation is determined, and a formula
for the variation of this coordinate with a small varia-
tion in the coefficients of the power series in the time
003 MAIK “Nauka/Interperiodica”



        

ON THE COORDINATE OF A SINGULAR POINT OF TIME CORRELATION FUNCTIONS 79

                                                                                 
for the ACF is derived. In Section 3, we calculate the
first corrections to the singular point coordinate due to
the local field correlation arising when the space
dimension is decreased. In Section 4, theoretical results
are compared with experimental data.

2. EQUATIONS
FOR AUTOCORRELATION FUNCTIONS

We consider a system of nuclear magnetic moments
with spin I = 1/2 that form a perfect lattice of dimen-
sion d. The spin dynamics in a strong constant magnetic
field is determined by the secular part of the dipole–
dipole interaction with the Hamiltonian [5]

(1)

where

θij is angle between the internuclear vector rij and the

constant magnetic field, and  is the α component
(α = x, y, z) of the vector spin operator at the ith site. For
a high temperature, the time-dependent correlation
functions of two spins located at the ith and jth lattice
sites are defined by the expression [5]

(2)

We obtain the cross correlation function for i ≠ j and the
autocorrelation function for i = j. By virtue of the trans-
lation symmetry of the lattice, we omit subscript ii on
the ACF. Taking into account the axial symmetry of the
Hamiltonian with respect to spin components, we use
the notation Γx(t) = Γy(t) = X(t). Autocorrelation func-
tions (2) can be expanded into power series,

(3)

where the nth coefficient of the expansion is determined
via the 2n-fold commutator

(4)

It is known [5] that M2nα is the 2n-order moment of the
spectral density of the corresponding ACF.

Up to now, exact equations for ACFs have not been
obtained because of the complexity of description of a
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many-particle system with strong interactions. Many
approximate versions of the equations have been pro-
posed. In particular, the following system of nonlinear
integral equations for ACF was derived in [12, 13]:

(5)

The kernels of these equations are represented in the
form of a series in irreducible dressed skeleton dia-
grams with an increasing number of vertices. Each term
of the series can be expressed in terms of the multiple
time integral of the product of functions Γx(t) and Γz(t).
All contributions corresponding to the diagrams with
two and four vertices are determined.

System of equations (5) has been investigated in [6]
in the approximation of lattices of an infinite dimension
that corresponds to the approximation of a self-consis-
tent fluctuating local field. In this limit, the equations
for ACF correspond to the averaged precession of the
magnetic moment in a three-dimensional Gaussian ran-
dom local field whose correlation functions are
expressed via the spin ACFs as

(6)

where

For series Gα0(t), majorizing series are found and the
existence of singular points of the ACFs on the imagi-
nary time axis is established. In the neighborhood of the
nearest singular point with coordinate τ0, the principal
part has the form

(7)

The coordinate of the singular point estimated by the
spectral moments on the order from two to ten is

(8)

where M2x = 5S1/4 is the second moment of the spec-
trum of function Γx(t).

If the space has a finite dimension, in the series for
the kernel, one should take into account the additional
terms

that contain coupling loops and multiple interactions of
neighboring spins. These corrections reflecting the cor-

d
dt
-----Γα t( ) Gα t t1–( )Γα t1( )dt.

0

t

∫–=

ωα t( )ωα 0( )〈 〉 ωα
2〈 〉Γ α t( ),=

ωx
2〈 〉 ω y

2〈 〉
S1

4
-----, ωz

1〈 〉 S1, S1 bij
2 .

j

∑= = = =

Γα t( ) Aα τ0 it+( ) 2– .≈

τ0
2.77

M2x
1/2

----------,=

δGα t( ) Gα t( ) Gα0 t( )–=
SICS      Vol. 97      No. 1      2003



80 ZOBOV, POPOV
relation of the local fields vanish in the limit as d 
∞. It is natural to expect that, if the dimension of the
space is sufficiently large, the relative variations of
moments M2nα of the ACFs and the coordinates of the
singular point τc with additional terms taken into
account are small (on the order of ε ~ 1/d); i.e.,

The coordinate τc of the singular point (equal to the
convergence radius of the power series in time) can be
determined as the limit of the ratio between the
moments,

which gives

(9)

Due to the complexity of series Gα 0(t), even the first

corrections  (linear in ε) can hardly be found.
Therefore, to estimate δτc , we take the approximate
version of the equation for Γα(t) that allows one to
determine high-order moments. In the case of dipole–
dipole interaction (1), as a result of the efforts of many
authors [3, 4, 8, 9, 14–18], it has been established that
a good approximation is obtained if the (longitudinal)
interaction between the z components of the spin is
fully taken into account and the xx and yy (transverse)
interactions are taken into account to the minimal
required extent. For the ACF of the x component of the
spin, we take the Anderson–Weiss equation [19]
describing the spin precession in a Gaussian longitudi-
nal field, renormalize this field to ensure the correct
value of the second moment M2x , and determine its cor-
relation function (6) via the ACF of the z component of
the spin [4, 8. 9]:

(10)

Here and below, in the formulas we pass to the imagi-
nary dimensionless time t  it(5S1/4)–1/2, preserving
its previous notation. After this substitution, the argu-
ment of the exponential function in expression (10)
becomes positive and the coefficient M2x of the integral
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becomes equal to unity. For the ACF of the z compo-
nent, we use the equation

(11)

It will be shown below that, for the location of the sin-
gular point on the imaginary time axis, this equation
gives an insignificant difference as compared with the
equation used before [4, 8, 9],

(12)

but simplifies the calculations.

Since the kernel of Eq. (11) is X2(t), we denote the
latter by Y(t) and obtain, using formula (10), the differ-
ential equation

(13)

Substituting Y(t) in the form of the series

(14)

into Eq. (13) and equating the coefficients of the same
powers of time, we obtain the recurrence equation

(15)

The coordinate of the singular point (equal to the
convergence radius of series (14)) can be determined
(taking into account the order of pole (7)) as the limit of
the ratio

(16)

Solving recurrence equation (15) and using for-
mula (16), we find

Γ z t( ) 1
2
5
--- X2 t2( ) t1 t2.dd

0

t1

∫
0

t

∫+=

Γ z t( ) 1
2
5
--- X2 t2( )Γ z t1 t2–( ) t1 t2,dd

0

t1

∫
0

t

∫+=

d
dt
-----Y t( ) 2Y t( ) Γ z t1( ) t1d

0

t

∫=

=  2Y t( ) t
2
5
--- Y

0

t2

∫ t3( ) t1 t2 t3ddd

0

t1

∫
0

t

∫+
 
 
 

.

Y t( ) t2nY2n

n 0=

∞

∑=

Y2n
1
n
---Y2n 2–

2
5n
------

Y2kY2 n k– 2–( )

2k 1+( ) 2k 2+( ) 2k 3+( )
-------------------------------------------------------------.

k 0=

n 2–

∑+=

τ0
2 Y2n 2– 2n 2+( ) 2n 3+( )

Y2n 2n 1–( )2n
-------------------------------------------------------.

n ∞→
lim=

τ0
2.69

M2x
1/2

----------,=
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003



ON THE COORDINATE OF A SINGULAR POINT OF TIME CORRELATION FUNCTIONS 81
whereas, using Eq. (12) with the convolution, we obtain

Both these values differ from a more precise value (8)
by 3%. This difference exerts no substantial influence
on the values of corrections δτc; therefore, for the calcu-
lation of these corrections, we will use the simplest
equation.

3. CALCULATION OF THE CORRECTIONS 
TO THE COORDINATE 

OF THE SINGULAR POINT 
OF THE CORRELATION FUNCTION

Let us consider function Γx(t) as the generating
function of the lattice patterns formed by bonds bij .
This can be justified by the structure of expression (4)
for moments, where each commutator with * adds a
bond bij to the constructed pattern. In more detail, the
rules of constructing the patterns are considered
in [6, 10, 11]. The solution to the system of equa-
tions (10) and (11) of the zeroth-order approximation
is the generating function of the root trees constructed
from the double bonds. On these trees, the double
bonds caused by the zz interactions (z fields in Eq. (10))
alternate with the bonds caused by the xx and yy inter-
actions (the variations of z fields described by Eq. (11)).
An arbitrary number of branches which have no inter-
sections can emerge from any node of this tree. This can
hold as d  ∞. When constructing the patterns on
finite-dimensional lattices, there is a probability that the
branches intersect either directly near the node from
which they emerge, which results in a multiple interac-
tion of the neighbors, or near a far node, forming a loop
of bonds. For a tree with such a fragment, the weighting
factor obtained during the construction of the tree by
calculating the initial multiple commutators (4) does
not coincide with the factor obtained in the case of
intersection due to the mechanical overlap of branches
constructed independently by Eqs. (10) and (11) and
located on a real lattice. Therefore, the latter should be
eliminated and replaced by trees with a correct weight.

To theoretically estimate the variation of the coordi-
nate of the singular point of the ACF caused by the
described variations of the moments, we consider the
dimension d of the space as a variable. If d is taken suf-
ficiently large, then the intersection probability is low
and we can consider only the simplest intersections,
namely, the quadruple interaction of neighbors and
loops in the form of a triangle formed by four bonds.
Such contributions are contained even in the fourth
moment of the ACF. The intersections in which more
bonds are involved give a higher order of smallness in
1/d [9, 10]. In the case of the dipole–dipole interaction

τ0
2.68

M2x
1/2

----------.=
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and d = 3, their smallness is confirmed by the ratio of
the values of the lattice sums [2, 20, 21].

3.1. Quadruple Interaction of Neighbors 

As is shown in [3], in the case when the number of
neighbors is not very large, to improve the accuracy of
the main approximate equation, one should replace the
Anderson–Weiss function (10) by the product

(17)

(18)

where Γzj/i(t) is the ACF of z component of the jth spin
disregarding the interaction with the ith spin on which
the field is considered,

(19)

In addition, recurrence of the interaction of the jth
and kth spins is excluded in the kernel of this integral
equation.

We differentiate the square of function Pij(t) (17)
with respect to time:

(20)

Taking into account relations (17)–(20), one can easily
verify that, neglecting the contribution of separate

interaction  in comparison with sum S1, we return to
the equation of zeroth-order approximation (13). To
within the first correction from these contributions, we
find that

Here,
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(21)
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where Γz(t) is determined via Y0(t) with the help of
Eq. (11). The coefficients A, B, C, and D are introduced
into Eq. (21) in order to separate the contributions of
different kinds. For A = 3/2, C = 1, D = 1, and B = 0, we
obtain the contribution corresponding to the exclusion
of the quadruple interaction of neighbors due to the
intersection of the tree branches emerging from the
same node. For A = 0, C = 0, D = 0, and B = 1, we obtain
the contribution of the quadruple interaction with the
correct weight, which, therefore, appears with the
opposite sign. This contribution stems from the second
iteration in Eq. (18).

3.2. Triangle Composed of Four Bonds 

There are two reasons for the formation of the sim-
plest triangle-like loops: first, the contribution of the
cross correlation function Γzjk(t) to the correlator of the
local field on the separated spin in expressions (10) and
(17) and, second, the result of the simultaneous action
of the field of the third spin on the two spins bonded by
the transverse (flip–flop) interaction in the kernels of
integral equations (11) and (19) for Γz(t). In the one-
loop approximation, we obtain

where
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Y0(t) is the zeroth-order approximation (13), and, for
the first-order correction Y1(t), we obtain equations of
the form (21) with the following values of the parame-
ters: A = 1, B = 0, C = 0, and D = 1.

The structure of Eq. (21) becomes clear when inter-
preted in terms of generating functions of root trees
having an embedded fragment with a branch intersec-
tion. The summands on the right-hand side with coef-
ficients A, B, C, and D represent the contribution of the
corresponding fragment with the intersection joined to
the tree root. If, however, the intersection occurs at a far
node of the tree, then the necessary chain of bonds from
the root to the fragment is composed via iterations with
the help of the first two terms on the right-hand side of
the equation. Recall that we operate in the approxima-
tion linear in intersections; i.e., we assume that there is
at most one intersection on the tree. By virtue of this
assumption and the translation invariance of the lattice
sites, the form of the expression for the fragment is
independent of its location in the tree. However, its con-
tribution to Y1(t) obviously depends on the length of the
chain leading to this site.

3.3. Calculation of Corrections 

Substituting series (14) for functions Y0(t) and Y1(t)
into Eq. (21), we obtain the following recurrence equa-

tion for coefficients  of function Y1(t):Y2n
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Using this equation, we determine coefficients 
for different contributions; then, by formula (9), we find
the corresponding corrections to the coordinate of the
singular point. The correction corresponding to the
exclusion of the forbidden quadruple interaction of
neighbors (A = 3/2, B = 0, C = 1, D = 1) is equal to

(23)

the correction corresponding to the addition of the
allowed quadruple interaction of neighbors (A = 0, B =
1, C = 0, D = 0) is

(24)

and the correction corresponding to the inclusion of
correlation of fields in the form of a triangle composed
of four bonds (A = 1, B = 0, C = 0, D = 1) is

(25)

4. COMPARISON WITH EXPERIMENT

In a neighborhood of the nearest singular point,
principal part (7) determines the wing of the ACF spec-
trum,

(26)

Moreover, since the singularities of all time correlation
functions of the spin system under consideration must
be located at the same point, the argument of the expo-
nential function in formula (26) is the same (including
the NMR absorption spectrum, i.e., the Fourier trans-
form of the correlation function of the total spin of the
system [5]).

The wing of the NMR absorption spectrum was
experimentally investigated in [3] for a single crystal of
BaF2 with a magnetic field directed along the crystallo-
graphic axes [111], [110], and [100]. The frequency
dependence of the spectrum for detuning from the spec-

trum center exceeding 2.2  (for [100], even

2.1 ), where M2 = 9S1/4, is well described by expo-
nential function (26) (this is justified by the fact that the
experimental points shown in Fig. 3 in [3] in the semi-
logarithmic coordinates lie on a straight line). The val-
ues of argument τe of the exponential function in for-
mula (26), at which the best agreement with the exper-

iment is achieved in the detuning interval from 2.2
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to 3 , are given in the table in the form of the ratio
to the limiting theoretical value of τ0 (8). The mean
square error increases from 0.5% in orientation [111] to
2% in orientation [100] due to a decrease of the signal-
to-noise ratio with increasing NMR line width. How-
ever, the actual accuracy of determining τe is lower,
first, because of the systematic distortions in the wing
introduced by the spectrometer, and second, since the
simple dependence (26) is attained in the limit as ω 
∞, i.e., in the spectral region that is inaccessible
because of the noise. As the center of the spectrum is
approached, the deviation of its shape from depen-
dence (26) becomes noticeable.

Let us return to theoretical results. Collecting cor-
rections (23)–(25), we obtain

(27)

Substituting the values of the lattice sums for a simple
cubic lattice from [2], we find the values of this ratio for
the three main orientations of the magnetic field which
are presented in the table. It is difficult to estimate the
accuracy of these values, because expansion (27) is
asymptotic in 1/d. We estimate the error caused by the
replacement of complete equation (5) with simplified
equations (10) and (11), as well as the error in deter-
mining the convergence radius of the series by its coef-
ficients, in the range of 2–3%.

The results presented in the table show good agree-
ment between the theoretical and experimental values
of the coordinates of singular points of the correlation
functions for all three orientations of the field. It should
be emphasized that the orientation dependence of the
second moment, which is the frequency scale of the
spectrum, does not affect the ratios presented in the
table. Their values depend not on the mean square of
local fields, but on the extent of correlation of these
fields, which is expressed in formula (27) in terms of
the ratio of different lattice sums. On the one hand, the
coincidence of two independent estimates for the coor-
dinate shows that the errors whose values were difficult

M2

τc

τ0
---- 1 1.38

S2

S1
2

----- 0.55
S3

S1
2

-----.+ +=

The ratios of the experimental τe and theoretical τc values of
coordinates of the singular points of the correlation functions to
limiting value τ0 (8) for three directions of the magnetic field

Field direction τe/τ0 τc/τ0

[111] 1.10 1.14

[110] 1.24 1.25

[100] 1.33 1.34
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to estimate are small. On the other hand, the values of
the coordinate ratios obtained may indicate that, with
the decrease in the space dimension from d = ∞ to
d = 3, the singular point moves but does not go to infin-
ity. A final conclusion can be made after increasing the
accuracy of theoretical calculations and experimental
measurements.

Note in conclusion that result (27) can be applied to
experiments performed on other crystals and for other
field orientations after substituting the corresponding
values of the lattice sums.
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