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Abstract—By on the analyzing the general structure of the Green function of a strongly correlated electron
system, it is shown that, for the regime of strong correlations, Luttinger’s theorem should be generalized in the
following way: the volume of the Fermi surface of the system of noninteracting particles is equal to that of the
quasiparticles in the strongly correlated system with due regard for the spectral weight of the quasiparticles. An
investigation of the t–J model and of the Hubbard model, as applied to the paramagnetic nonsuperconducting
phase, shows that the generalized Luttinger theorem is valid for these models. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

At present, it is widely believed that Luttinger’s the-
orem [1] is violated for strongly correlated systems,
among which is, in particular, the broad class of super-
conducting cuprates. This theorem states that the vol-
ume of the Fermi surface of interacting particles is
equal to that of the noninteracting particles. The proof
of Luttinger’s theorem [1] is valid for the normal Fermi
liquid only. A topological proof of the theorem for
strongly correlated electron systems (without resort to
perturbation theory) was given in [2] on the assumption
that these systems are normal Fermi liquids. Since the
proof given in [2] is based on general considerations, it
is valid for the t–J model and the Hubbard model as
applied to the Fermi-liquid phase. In the strongly corre-
lated electron system, however, other phases can also
exist, whose properties differ from those of the Fermi
liquid. Deviations from the Fermi-liquid behavior
reveal themselves in the redistribution of the spectral
weight of a quasiparticle between different Hubbard
subbands and in the fact that the imaginary part of the
self-energy ImΣk(E) is nonzero on the Fermi surface.
Indeed, the relationship ImΣk(E) ~ (E – εF)2 is valid in
the vicinity of the Fermi level εF of the Fermi liquid.

Calculations carried out for the Hubbard model in
the dynamical mean-field theory, which is exact in the
limit of infinite dimensionality (d = ∞) [3–5], demon-
strated that the distribution function of the quasiparti-
cles has a jump in the vicinity of the Fermi level. This
jump continuously decreases down to zero with
increasing the parameter of the on-site Coulomb repul-
sion U. Nevertheless, the Fermi-liquid pattern persist
up to a certain critical value Uc in this case, after which
the system transfers to the insulating state. Edwards and
Hertz [6], however, demonstrated (using an interpola-
1063-7834/03/4508- $24.00 © 21415
tion scheme for the Hubbard model not based on the
limit d = ∞) that the imaginary part of the self-energy is
nonzero on the Fermi surface at U ~ Uc and near the
half-filling (x ! 1, where n = 1 – x is the electron con-
centration). But with a deviation from the half-filling,
the Fermi-liquid properties of the system are restored
fairly rapidly. That the Fermi liquid properties in the
Hubbard model with U = 8t (t is the hopping integral)
begin to be restored already at x > 0.1 was shown in [7]
in the framework of the dynamical cluster approxima-
tion without resorting to perturbation theory. At
present, the problem of the transition from the Fermi
liquid phase to a metallic non-Fermi-liquid state with
strong electron correlations (and of the behavior of the
system in the transition range) has only been stated and
is far from being solved (see, for example, [8]).

The most interesting range is x ! 1, because in real
materials the transition to the metal state is observed in
this range. At extremely small values of x, it would be
expected that the additional carriers will be localized in
the vicinity of the bottom of the band and the condition
ImΣk(εF) ≠ 0 will be valid for them. As x increases fur-
ther, however, the Fermi level falls within the range of
delocalized states, for which the imaginary part of the
self-energy is equal to zero, but the non-Fermi-liquid
effects are still present due to redistribution of the spec-
tral weight between the Hubbard subbands. Deviations
from Luttinger’s theorem for the Hubbard model in the
region where ImΣk(εF) ≠ 0 were discussed in [9] in the
framework of the FLEX approximation. In this paper,
we restrict ourselves to the concentration range over
which ImΣk(εF) = 0.

As for the case when the spectral weight of a quasi-
particle in a strongly correlated electron system is not
equal to unity, the properties of the system are different
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from those of the normal Fermi liquid and the original
Luttinger theorem is violated. Indeed, the Fermi
momentum kF of the Hubbard bands is larger than the

Fermi momentum  for free electrons at the same
Fermi energy εF (Fig. 1); therefore, the geometric vol-
ume of the Fermi surface is larger for the Hubbard
bands [10]. However, the system is in the metallic state
in this case and, since the distribution function of quasi-
particles undergoes a jump in the vicinity of the Fermi
level, Luttinger’s theorem can be generalized to quasi-
particles in the following way: the volume of the Fermi
surface of noninteracting particles is equal to that of the
interacting quasiparticles with allowance for the spec-
tral weight of the quasiparticles. In this paper, by ana-
lyzing the general structure of the Green function and
thoroughly investigating the Hubbard-I solution for the
t–J model and for the Hubbard model [11], we shown
that this generalized formulation of Luttinger’s theorem
is valid for metallic, strongly correlated electron sys-
tems. Actually, such a metallic system is not rather a
normal but a “compressible” Fermi liquid, which is due
to the spectral weight of the quasiparticles being differ-
ent from unity and to the Fermi surface being “loose”.
Such an idea of the system makes it possible to elimi-
nate the inconsistency between the concentration of the
excess carriers in the superconducting cuprates and the
unduly large volume of the Fermi surface calculated in
the framework of the model of the normal Fermi liquid.

2. GENERAL STRUCTURE 
OF THE GREEN FUNCTION

Luttinger has shown [1] that the equality between
the volumes of the Fermi surface in the momentum
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Fig. 1. Dispersion law of the Hubbard bands  and of the

one-particle spectrum εk. εF is the Fermi level, and kF and

 are the Fermi momenta for the Hubbard bands and free

electrons, respectively.
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(1)

follows from the fact that the average number of parti-
cles 〈N〉  for interacting and noninteracting fermions is
the same. Indeed, for a system without interaction, we
have

(2)

and, for the Fermi liquid system with interaction [1], we
have

(3)

Here, V is the volume of the system of fermions; µ and
µ0 are the chemical potentials of the system with and
without interaction, respectively; εk are one-particle
energies; ReΣk is the self-energy part of the Green func-
tion; and θ(x)is the Heaviside unit-step function.

For strongly correlated electron systems, however,
the definition of the average number of particles as the
sum of the Heaviside unit-step functions is invalid,
because the spectral weight of each quasiparticle in the
system is taken to be the unit in this definition. One of
the essential peculiarities of strongly correlated elec-
tron systems is a variation of the spectral weight from
unity in each band due to its redistribution between the
Hubbard subbands at U @ W (W is the half-width of the
band). For this reason, analogs of Eqs. (2) and (3)
should be derived for this case.

In what follows, we use the Hubbard X operators

[12] defined in the following way:  ≡ |p〉〈 q |, where
|p〉  and 〈q | are states at site f. Since the number of root
vectors α(p, q) is finite, they can be enumerated; thus,
we have

      . (4)

Here, index m  (p, q) enumerates quasiparticles
with the energies

(5)

where εp is the energy level with index p for the N-elec-
tron system.
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The Hubbard operators are related to one-electron
creation and annihilation operators in the following way:

(6)

where γλσ(m) is the partial weight of a quasiparticle m
with spin σ and orbital index λ.

The average occupation numbers 〈nkλσ〉  for the par-
ticles with momentum k and spin σ are expressed in
terms of the electron Green function written in the

energy representation, Gkλσ = 〈〈 akλσ | 〉〉E + iη, in the
following way:

(7)

where fF(E) is the Fermi function, η  0, and η > 0.
In the X representation, the Green function has the form

(8)

For the matrix Green function (E) =

, the generalized Dyson equation [13]
can be written as

(9)

Here, (E) and (E) are the self-energy and the
force operator, respectively. The presence of the force
operator is due to the redistribution of the spectral
weight and is an intrinsic feature of strongly correlated
electron systems. The concept of the force operator was
introduced earlier in a diagram technique for spin sys-

tems [14]. The Green function (E) in Eq. (9) is
defined by the formula

(10)

where  is the interaction matrix element (for the

Hubbard model,  = γσ(m) (p)tk).

In the Hubbard-I approximation at U @ W, the struc-
ture of the exact Green function (9) remains unchanged
but the self-energy is supposed to be zero and the force

operator (E) is replaced by (E)   =

, where  ≡ F(p, q) =  +  is the
occupation factor, which is referred to as the end factor
in the diagram technique for the X operators developed
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Ĝkσ
0( )

E( )[ ]
1–

Ĝ0
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in [15]. In terms of the Hubbard-I approximation, the
following formula is derived from Eq. (9):

(11)

In order to estimate the contributions to Eq. (11) in
higher order approximations (with respect to the Hub-
bard-I approximation), let us compare the exact equa-
tion (9) for the Green function with Eq. (11), written in
the Hubbard-I approximation. First, there is a differ-
ence due to the renormalization of the occupation fac-

tors  which arises when the exact equation for the

force operator (E) is used. However, taking into
account the corrections due to the force operator keeps
the structure of the Hubbard bands unchanged and,
therefore, does not lead to a qualitative difference of the
exact Green function from that in the Hubbard-I
approximation. A second essential difference is the
renormalization of the real part of the self-energy

(E) and the appearance of quasiparticle damping.
The latter implies non-Fermi-liquid behavior of the sys-
tem and, as mentioned above, the consideration of the
region where ImΣk(εF) = 0. In this region, the exact
Green function given by Eq. (9) can be rewritten as the
sum of one-pole contributions over the quasiparticle
bands labeled by index ξ (for the t–J model, ξ has one
value, ξ = 1; for the Hubbard model, ξ = 1, 2). In the
general multiband case, the exact Green function is

(12)

Here, the real part of the self-energy contributes not
only to the renormalization of the dispersion law but
also to the renormalization of the spectral weight. Such
a representation for the electron Green function has
been obtained earlier in the Hubbard model in terms of
the spectral density approach (SDA) [16]. This
approach is nonperturbative and assumes the absence
of the quasiparticle damping only. The spectral weights
Fkλσ(ξ) and the band energies Ωkσ(ξ) are calculated in
the SDA by using the method of moments (see the
review and comparison with other methods in [17]).

As for the renormalization of the real part of the
self-energy, this effect introduces corrections to the
energy spectrum Ωkσ(ξ) and qualitatively does not
change the further reasoning. The fact that the structure
of the Green function is correct even in the Hubbard-I
approximation (it is the structure of the Green function
that is essential for further derivation of Luttinger’s the-
orem) follows from a comparison of the Hubbard-I
solution and the exact solution in the infinite-dimen-
sionality limit obtained by using the method of the
dynamical mean-field theory [4, 5], as well as from a
comparison of the Hubbard-I solution and a numerical
solution obtained using the exact quantum Monte Carlo
method for the Hubbard model [18]. A comparison of
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the spectral densities obtained in the Hubbard-I approx-
imation at U @ W and those derived by the quantum
Monte Carlo method shows [18] numerical coincidence
between them in the region of the phase diagram, where
the long-range magnetic order is absent. In terms of the
diagram technique for the X operators, it has also been
demonstrated that this approximation gives simple and
pictorial relationships which correctly describe the
physics of the phenomena at U @ t [13, 19].

Substituting Eq. (12) into Eq. (7) and using the spec-
tral theorem, we obtain

(13)

Taking into account that the quantities in Eq. (13) do
not depend on spin in the paramagnetic phase, the aver-
age number of particles 〈N〉  at zero temperature can be
written in the compact form

(14)

(15)

For noninteracting particles, we have Fk(ξ) = 1; the
equation for 〈N〉  completely coincides with Eq. (2) in
this case. For the system of interacting quasiparticles,
Eq. (14) can be written as

(16)

By comparing Eq. (2) with Eq. (16), we obtain

(17)

where  is the volume of the energy subband ξ tak-
ing into account the spectral weight Fk(ξ) of this sub-
band,

(18)

Equation (17) is the generalized Luttinger theorem: the
right-hand side of the equality is a superposition of the

volumes  for the different energy subbands ξ rather
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PH
than the volume VFS and each state |k, σ〉 for band ξ
enters with a decreased spectral weight.

Therefore, the region bounded by the Fermi surface
in the k space becomes “less dense.” Indeed, let us use
the relationship mFS = ρFSVFS, where mFS is the “mass”
of the Fermi surface, ρFS is its “density,” and VFS is its
volume. It is obvious that the mass mFS is proportional
to the average number of particles 〈N〉  and ρFS is the
spectral weight of the quasiparticles in the region
bounded by the Fermi surface. For the system of nonin-

teracting particles, we have  = . Further,

from the equality mFS = , it follows that ρFSVFS =

 and

(19)

because, for the system without interaction, we have

 = 1. It is seen that, if the spectral weight of the qua-
siparticles differs from unity, we have the inequality

VFS ≠ . It is precisely this case (ρFS ≤ 1) that is real-
ized in strongly correlated electron systems. On the
other hand, the quantity given by Eq. (19) is invariant
under the interaction in the system; therefore, the gen-
eralization of Luttinger’s theorem for quasiparticles is
as follows: the volume of the Fermi surface of a system
of noninteracting particles is equal to that of interacting
quasiparticles with allowance for the spectral weight of
these quasiparticles. This formulation of the theorem is
valid for both the band electrons and the quasiparticles
in metallic, strongly correlated electron systems in the
limit U @ W.

The deviation of the spectral weight from unity can
be considered to be a transition to a space with a differ-
ent metric. This is demonstrated in Section 5, in which
it is shown that the quantity given by Eq. (19) rather
than by Eq. (1) is invariant under this transition.

3. t–J MODEL

The Hamiltonian of the Hubbard model in the X-
operator representation [11] has the form

(20)

The Hamiltonian of the t–J model can be derived form
Eq. (20) in the limit of the strong Coulomb interaction,
U @ t:
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∑
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(21)

where tfg is the hopping integral, J is the exchange inte-
gral, Sf is the spin operator, and nf is the operator of the
number of particles. Here, there is only one fermionic

root vector, { }  { }; therefore, the Green
function in the region ImΣk(E) = 0 has the form

(22)

where F(1)/2 = (1 – x)/2 is the spectral weight of the
only band ξ = 1 and Ek is the spectrum of the system in
the Hubbard-I approximation,

(23)

Here, tk = 2t(coskx + cosky) is the Fourier transform of
the hopping integral in the case of a square lattice. The
number of particles is

(24)
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At zero temperature, we have

(25)

This equation coincides with Eq. (14); thus, the volume

of the Fermi surface is  = F(1)V– = (1 – x)V–, where

V– = (µ – Ek). In multiband models, such as the

Hubbard model, the spectral weight of the quasiparti-
cles is redistributed between the bands due to strong
correlations. In our case, there is only one band, but its
spectral weight is smaller than unity [see Eq. (25)]
because part of the spectral weight goes to the upper
Hubbard band. In deriving the equations for the t–J
model from the Hubbard model, this band is taken into
account only in terms of the perturbation theory with
respect to the parameter t/U ! 1 and does not appear in
the Hamiltonian (21) because of the constraint of two-

particle excitations being absent,   0.

4. HUBBARD MODEL

The basis fermion operators for the Hubbard

model (20) are { , }  { , }, where
|S〉  = |↑, ↓〉  is a two-particle singlet, |0〉  is the vacuum
state, and |σ〉 and  are one-particle singlets. The
Green function has the form
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where det = (E –  + µ)(E –  + µ) and F(1)/2 = (1 –
x)/2, and F(2)/2 = (1 + x)/2 are the occupation factors of
the lower and upper Hubbard bands, respectively. The
energy spectrum of the system is

(27)

The number of particles can be easily found using the
Green function (26):

(28)

This equation coincides with Eq. (14). The expres-
sions in square brackets in Eq. (28) are the spectral
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.

weights of the upper and lower Hubbard bands, respec-
tively. Their sum (taking into account the spin) is equal
to the spectral weight of noninteracting electrons, as it
must be. Now, let us analyze Eq. (28) in the regime of
strong Coulomb repulsion U @ t. In this case, the
denominator  –  can be expanded in powers of
the small parameter t/U ! 1. Neglecting second-order
terms, we have

(29)

At zero temperature, this equation becomes
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The relation between the volumes of the Fermi sur-
faces is

(31)

where V± = (µ – ). It is clearly seen that the

strong Coulomb interaction redistributes the spectral
weight between the lower and upper subbands. It is this
effect that necessitates generalization of Luttinger’s
theorem for strongly correlated electron systems.

The splitting into two Hubbard bands is clearly seen
in Eqs. (29)–(31); therefore, it is easy to transform the
Hubbard model to the t–J model simply by neglecting
the influence of the upper (or lower) band, because the
bands are separated by a gap U (the interband hopping
was already eliminated by the expansion in powers of
t/U). The occupation numbers are immediately found
to be

(32)

This expression coincides with Eq. (24), obtained for
the number of particles in the t–J model. Thus, the
decrease in the spectral weight in the t–J model is a
result of the approximations used (t/U ! 1) rather than
of its spontaneous disappearance.

Figures 2 and 3 show the results of calculations for
zero temperature at U = 10 |t | and t = –0.2 eV. Calcula-
tions for finite temperatures were also carried out, but
they did not reveal any qualitative difference from the
case of zero temperature. The chemical potential µ cal-
culated self-consistently by using Eq. (28) is shown in
Fig. 2. Figure 3 shows the dependence of the density of
particles n = 〈N〉/N on x calculated by using Eq. (29). It
is clearly seen that this dependence is linear and, more-
over, n = 1 + x. Actually, the last equality means that the
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0

Fig. 2. Dependence of the chemical potential µ on x.
P

generalized Luttinger theorem is valid. Indeed, the left-
hand side of Eq. (29) is the number of particles calcu-
lated with due regard for the interaction in the system,
while the right-hand side of the equation is the number
of noninteracting particles. The equality of these two
quantities is a prerequisite for the equality of the Fermi
surface volumes multiplied by the corresponding spec-
tral weights, as given by Eq. (31).

5. QUASIPARTICLE DESCRIPTION
AS A TRANSFORMATION 
OF THE METRIC SPACE

Let eµ be natural reference vectors associated with
the system of curvilinear (in general) coordinates xµ. In
what follows, upper indices indicate contravariant
quantities and lower indices, covariant ones. The metric
tensor is defined as

(33)

In going to new coordinates yµ, we have

where  =  are the coefficients of the axis trans-

formation.
By definition, an elementary volume of the n-

dimensional space is

(34)

In this case, the value  rather than the volume
element dτ is invariant under transition to another sys-
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Fig. 3. Dependence of the density of particles n = 〈N〉/N on
x (N is the number of vectors in the momentum space).
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tem of coordinates. Here, g = detgµν is the determinant
of the components of the metric tensor; i.e.,

(35)

Now, let us consider two n-dimensional spaces: one
for quasiparticles with the spectral weight ρ' (quantities
referred to this space are labelled by prime) and one for
quasiparticles with the spectral weight ρ. Obviously, a
transition between these coordinate systems can be

made by simply changing the axis scales,  = .
The corresponding transformation of the metric tensor is

(36)

The relation between the elementary volumes can be
derived from Eqs. (35) and (36) to be

(37)

this equation coincides with Eq. (19) at ρ' = 1. A similar
relationship takes place in the hydrodynamic theory for
a compressible liquid. Thus, in the case of quasiparti-
cles with a spectral weight smaller than unity, we deal
with modification of the normal Fermi liquid instead of
the normal Fermi liquid; by analogy with hydrodynam-
ics, this modification can be called the compressible
Fermi liquid. The original Luttinger theorem is valid
only for quasiparticles with a spectral weight equal to
unity and, therefore, is of limited use. In systems with
different spectral weights of quasiparticles, the quantity
given by Eq. (35) rather than the volume of the Fermi
surface is conserved; thus, the scalar density of nonin-

teracting particles  is equal to the scalar density

of quasiparticles with interaction, . It is clearly
seen that Luttinger’s theorem [1] is a special case of this
statement.

6. CONCLUSION

One of the problems of the theory of strongly corre-
lated electron systems is whether Luttinger’s theorem is
valid for them. This question is of great importance in
describing high-temperature superconductors, because
they belong to the category of strongly correlated elec-
tron systems. It has been shown that, in the Hubbard
model, Luttinger’s theorem [1] is violated for under-
doped samples (x < xopt) because of the presence of
short-range magnetic order and the occurrence of spin
fluctuations associated with it [9, 10, 18]. However,
Luttinger’s theorem is valid in the overdoped regime
(x > xopt), where the paramagnetic metal state takes
place. Actually, the original Luttinger theorem in the
form of Eq. (1) is not valid for strongly correlated elec-
tron systems; the proof of theorem (1) is inapplicable to
such systems, because it does not take into account the
difference of the spectral weight of quasiparticles from

g'– dτ' g– dτ .=

aµ
ν ρ/ρ'n

gµν
ρ
ρ'
---- 

 
2/n

gµν' .=

dτ ρ'
ρ
----dτ',=

g'– dτ'

g– dτ
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unity, which is one of the most remarkable peculiarities
of strongly correlated systems [13]. In this paper, we
have formulated Luttinger’s theorem (17) generalized
to the case of quasiparticle description within the Hub-
bard-I approximation. Qualitative analysis of this gen-
eralization given by Eq. (19), as well as analytically
exact derivation of Eq. (37) for the scalar densities,
showed that the region of k space bounded by the Fermi
surface becomes less compact (or, in other words, less
dense) in quasiparticle systems: the contribution of
each state is renormalized because of a decrease in the
spectral weight of the corresponding quasiparticle.

The momentum space is divided into quantum cells,
each of which can contain one electron or, taking into
account the Pauli principle, two electrons with opposite
spins. Some states from the whole set of quantum states
in a cell move away to infinite energies due to strong
electron correlations. Therefore, the spectral weight F
of the remaining states is smaller than unity; quasipar-
ticle excitations in such a system become renormalized,
and their spectral weight F < 1. It is this effect that
causes the k space to be less compact.

From Eq. (37) for the scalar densities, it is seen that
we deal with a compressible Fermi liquid. A normal
Fermi liquid belongs to a subclass of the class of com-
pressible Fermi liquids; in this subclass, the spectral
weights of the quasiparticles are equal to unity. The
generalized Luttinger theorem is formulated for the
case of a compressible Fermi liquid in which the effects
of strong electron correlations necessitate deviation
from the description of the system as a normal Fermi
liquid.

In this paper, we have considered basic models of
strongly correlated systems, such as the t–J model and
the Hubbard model. It has been shown that, in the non-
superconducting paramagnetic phase, these models sat-
isfy a generalized Luttinger theorem. In the Hubbard
model, the spectral weight is redistributed between the
Hubbard subbands; in the t–J model, a decrease in the
spectral weight occurs, because part of the states moves
away to infinite energies due to the strong correlation
between the electrons (the upper Hubbard subband is
separated form the lower band by a gap U @ t).
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