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Abstract—The spectrum of Fermi excitations of a nondegenerate ferromagnetic semiconductor at T = 0 with
one electron present is investigated in order to describe the electronic structure of manganites with inclusion
of strong electron correlations within the Anderson periodic model with s–d exchange interaction. Exact dis-
persion relations and the Green functions for different spin projections are found. The density-of-states func-
tion is calculated for different positions of the d level relative to the band bottom. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

To investigate Kondo systems or systems with vari-
able valence, such as La1 – xCaxMnO3 and
La1 − xSrxMnO3, a periodical Anderson model with s–d
exchange is used in this work.

The interest in manganites stems from the fact that
in these compounds the effect of colossal magnetic
resistance is observed, whose maximum is reached at
x = 0.33. In this case, the system can be considered a
ferromagnetic [1] lattice of localized spins of Mn4+ ions
with the electron configuration 3d3 (spin S = 3/2), into
which some extra electrons of the corresponding con-
centration are added. These electrons can remain delo-
calized and interact with the lattice spins via exchange
interaction of the Heisenberg type. As a result of possi-
ble hybridization, the electrons can become localized,
forming a Mn3+ ion of 3d4 configuration at a lattice site.
These two types of the electron state and two interac-
tions are included in the Hamiltonian of the model,
which is the periodical Anderson model with s–d
exchange interactions.

This work is devoted to the specific case of a system
containing one itinerant electron at T = 0. It is very
important that, under these conditions, the problem
turned out to have an exact solution. Formally speak-
ing, this case corresponds to the lower limit of concen-
tration, for which x  0 and the ground state of the
localized spin subsystem of manganites is antiferro-
magnetic. Not aiming to describe this antiferromag-
netic case, we only note that this exact solution is
important for manganites in the range of parameters
where the ground state of the localized spin subsystem
is ferromagnetic (x = 0.15–0.40). If we take an approx-
imate solution in this range and consider the concentra-
tion of carriers as a parameter, then tending this param-
eter to zero (with the localized spin subsystem frozen in
the ferromagnetic ground state) will lead to our exact
1063-7834/03/4508- $24.00 © 21479
solution. Thus, this solution may be useful for con-
structing and checking approximate solutions for the
values of parameters corresponding to ferromagnetism
in the localized spin subsystem.

This case is also a generalization of the problem of
a magnetic polaron [2–4] with inclusion of hybridiza-
tion interaction. Let us write the wave function of the
dnsm configuration as |n, S, M; m, σ〉, where S and M are
the spin and its projection for a dn ion, respectively; m =
0 or 1 is the number of s electrons per unit cell; and σ is
the spin projection of an l electron. Then, in addition to
the processes caused by the s–d exchange,

|n, S, S; 1, ↓〉   |n, S, S – 1; 1, ↑〉 (1)

we will have the processes due to hybridization
|n, S, S; 1, ↓〉

 |n + 1, S ± 1/2, S – 1/2; 0〉 (2)

 |n, S, S – 1; 1, ↑〉 ,

|n, S, S; 1, ↑〉   |n + 1, S + 1/2, S + 1/2; 0〉 , (3)

which are included in this work. The plus and minus
signs in Eq. (2) correspond to two possible values of the
total spin on a site. In general, when the electron is
localized, the spin of the site can take on the values S ' =
S + 1/2 and S ' = S – 1/2. The corresponding cases are
called the high-spin and low-spin cases. A solution for
the low-spin case was obtained in [5]. In manganites,
when the itinerant electron is localized, we have the
high-spin case; the 3d4 configuration possesses spin
S ' = 2, which is used in this work. The excitations of
quasiparticles with a definite spin projection, which are
forbidden in the low-spin case, become allowed in the
high-spin case. As a result, the one-particle density of
states in the high-spin case radically differs from that in
the low-spin case.

In Section 2, the model Hamiltonian is written out,
necessary transformations are described, and the exact
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results (dispersion relations and Green functions) are
presented. In Section 3, we discuss the density of states
calculated using the exact solution.

2. EXACT ONE-PARTICLE GREEN FUNCTIONS

Taking interactions into account, we write down the
Hamiltonian of the model in the form

(4)

Here, H0a = describes delocalized states.
The Hamiltonian H0d describes localized states and
generally can be written as

(5)

In the second term, the index Γ includes the site
index f and the orbital index λ; ν is the Coulomb inter-
action.

Let us pass to the space of eigenstates of the Hamil-
tonian H0d. Each of them is defined by three quantum
numbers, namely, the number of electrons, the total
spin, and its projection (|n, S, M〉), and has energy
En, S, M. In this representation, H0d can be written as

(6)

where we used the Hubbard operators

(7)

In the case of manganites, for half-integer projec-
tions of the total spin, the values of the other two quan-
tum numbers are n = 3 and S = 3/2, while for integer
projections we have n = 4 and S ' = 2. Therefore, we will
indicate only the projection of the total spin for the
Hubbard operators:

(8)

Since we have only two configurations of localized
electrons on a site that differ in energy, the energy of the
state |n = 3, S = 3/2, M〉  can be taken to be zero; the
energy of the other state, |n = 4, S' = 2, M'〉 , will be des-
ignated as Ω .

H H0a H0d J S f σ f

f

∑–+=

+ V d fσ
†

a fσ H.c.+( ).
fσ
∑

εkakσ
†

akσkσ∑

H0d ελd fλσ
†

d fλσ

f λ σ, ,
∑=

+ Γ1 Γ2,〈 |ν Γ 3 Γ4,| 〉dΓ1σ
†

dΓ2σ'
†

dΓ4σ'
†

dΓ3σ
†

.
Γ1 Γ2 Γ3 Γ4, , ,

σ σ',

∑

H0d En S M, , X f
n S M ; n S M, , , ,

f n S M, , ,
∑=

X f

n1 S1 M1; n2 S2 M2, , , ,
n1 S1 M1, ,| 〉 n2 S2 M2, ,〈 | .=

X f

M1 M2,
n1 S1 M1, ,| 〉 n2 S2 M2, ,〈 | .=
P

As a result, H0d can be written as [6]

(9)

For further calculations, we express all operators
acting on the localized states in terms of the Hubbard
operators. In this case, the components of the operators
Sf have the form

(10)

(11)

(12)

The creation and annihilation operators for an elec-
tron on the localized d level can be written as

(13)

(14)

In calculating the densities of states of quasiparti-
cles, we used the two-time retarded Green functions,
while involve the creation and annihilation operators of
the corresponding quasiparticles and the ferromagnetic
ground state of the localized spin subsystem (thus, the
ferromagnetic ordering in the localized spin subsystem,
appearing due to spin exchange between manganese
ions, is taken into account):

(15)

Here,

(16)

The matrix element is taken for the ferromagnetic
ground state |FM〉  of the system in the absence of carri-
ers. In this state, the energy band is empty: afσ|FM〉  = 0
and each lattice site has spin S and the maximum spin

projection,  = S |FM〉 .

H0d Ω X f
M' M',

.
M' S'–=

S'

∑
f

∑=

S f
Z

MX f
M M,

M S–=

S

∑ M'X f
M' M',

,
M' S'–=

S'

∑+=

S f
+

S f
–( )

†
γS M( )X f

M 1 M,+

M S–=

S

∑= =

+ γS' M'( )X f
M' 1 M',+

,
M' S'–=

S'

∑

γS M( ) S M–( ) S M 1+ +( ).=

d f ↑
†

d f ↑( )† S 1 M+ +
2S 1+

-----------------------X f

M
1
2
--- M,+

,
M

∑= =

d f ↓
†

d f ↓( )† S 1 M–+
2S 1+

-----------------------X f

M
1
2
---– M,

.
M

∑= =

apσ t( ) apσ
†

t '( )〈 | 〉〈 〉

=  –iθ t t '–( ) FM〈 | apσ t( ) apσ
†

t '( ),[ ] + FM| 〉 .

θ t( )
1, t 0>
0, t 0.<




=

S f
Z

FM| 〉
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The equations of motion can be reduced to the set of
equations:

(17)

from which we obtain a dispersion equation and an
exact expression for the Green function (with spin up),

(18)

(19)

From Eqs. (17), it follows that the Green function

 corresponds to a localized quasipar-
ticle with spin up. Analogous calculations for this func-
tion give

(20)

(21)

For an itinerant and a localized quasiparticle with
spin down, the corresponding set of equations is more
complicated due to a larger variety of multiparticle pro-
cesses [see Eqs. (1)–(3)], but at T = 0 and for one car-
rier, this set is also closed and allows an exact solution.
It is significant that the ground state is assumed to be
ferromagnetic in this case. The dispersion relation and
the Green function (for an itinerant quasiparticle with
spin down) are calculated exactly to be

(22)

(23)

For a localized quasiparticle with spin down, we
have

(24)

(25)

E εp– JS
2

------+ V–

V– E Ω–

ap↑ ap↑
†〈 | 〉〈 〉

X p
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1
2
---+,
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†〈 | 〉〈 〉

1

0
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2

------– V
2

E Ω–
--------------– 0,= =

ap↑ ap↑
†〈 | 〉〈 〉 D1 E( ) 1–

.=

X p

S S
1
2
---+,

X p

S
1
2
--- S,+

〈 | 〉〈 〉

D2 E( ) E Ω– V
2

E εp– JS
2

------+
---------------------------– 0,= =

X p

S S
1
2
---+,
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S
1
2
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2

------–=

+
2V1

2
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2
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2
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-------------------------------------------------------------------------------------------------------- 0,=
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D4 E( ) E – Ω=

+

2V1
2
JS 2V1

2
S E εp– JS

2
------– 

 – V1
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2
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---------------------------------------------------------------------------------------------------------------- = 0,
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Here, the following notation is introduced:

(26)

It should be noted that if we neglect the hybridiza-
tion effects in Eqs. (19) and (23), by setting V = 0, then
these equations will coincide exactly with the corre-
sponding equations for a magnetic polaron [2–4]
obtained for the case of a ferromagnetic saturated semi-
conductor, in particular, for EuO at T = 0 [7].

3. ONE-PARTICLE DENSITIES OF STATES

In order to illustrate the exact solution obtained, the
density of states was calculated for each quasiparticle.
Making the change of variables εp = E', we write

(27)

In order to calculate the density of states for local-
ized electrons, the relation between the Green functions

 and the functions  needs
to be established. Making use of the definition of the
Green functions, Eqs. (13) and (14), and the fact that
the projection of any localized spin in the ground state
equals S, we obtain

(28)

The corresponding Green functions for a quasiparti-
cle with spin up are

(29)

Numerical calculations were performed using the
parameters characteristic of manganites: J = 0.5 eV,
V = 0.1 eV, W = 4 eV, and S = 3/2.

We note that the parameters obtained from the
adjustment to the experiment are dependent on the
model. For example, in our case, W is the width of the
bare band. The resulting band of quasiparticles, as will
be seen further on, contains two bands; the lower one is
narrow, with the narrow-band limit taking place for it
[8], while the upper one is wide, with its width exceed-
ing the exchange parameter J.
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π
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1
2
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S
1
2
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× X p
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1
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For calculations, we used a quadratic dispersion law
and the corresponding density of states

(30)εx
W x

2
, x 1– 1,[ ]∈

0, x 1– 1,[ ] ,∉
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Fig. 1. Densities of states for Ω equal to (a) –0.5, (b) 0, and
(c) 0.5 eV. The density of states with spin down is offset hor-
izontally to the left and the one with spin up, to the right.
Thin solid lines correspond to an itinerant quasiparticle,
dashed lines to a localized quasiparticle, and thick solid
lines to the total density for J = 0.5 eV, V = 0.1 eV, W = 4 eV,
and S = 3/2.
P

where x = p/pB,

(31)

The localization energy Ω was chosen such that it
fell in one of the three energy ranges into which the
energy axis is divided by points ±JS/2 = ±0.375 eV. For
each value of Ω, the densities of states were calculated
for itinerant and localized quasiparticles for both spin
projections. The results are shown in Fig. 1.

Figure 1a shows the densities of states for Ω =
−0.5 eV. In this case, the localized level lies below the
band. The band densities of states for both spin projec-
tions have the same form as in the s–d model. The elec-
trons with spin down exhibit a non-quasiparticle behav-
ior in the region (–JS/2, JS/2), which is a known effect
characteristic of the s–d model. The density of states of
a localized quasiparticle for both spin projections has a
narrow peak near the energy –0.5 eV. For both spin pro-
jections, there is a nonzero contribution near the con-
duction band bottom caused by hybridization.

This case (with the localized level lying below the
band) resembles the situation in the s–d model with a
negative s–d exchange parameter, where a deep discrete
level appears corresponding to the band of spin-polaron
states [3]. However, in this case, the localized level
under the band has only an insignificant addition of
polaron and band states, appearing due to hybridiza-
tion, and consists mainly of the localized d-electron
states.

Figure 1b presents the densities of states for Ω = 0.
Here, the situation is more complicated because the
localized level crosses the band in the region of the
Stoner gap (–JS/2, JS/2). Hybridization effects are
expressed in the blurring of the peaks of the densities of
localized states.

For the spin up, in the region of the d level, there is
a hybridization gap for an itinerant quasiparticle and a
peak for a localized one. It should be noted that this
does not happen in the low-spin case [5], because
hybridization is impossible for this initial spin-up band
state in this case. It is interesting to note that in the total
density of states both effects are present; the peak of
localized states dominates, but there are also dips
(pseudogap) due to the hybridization gap.

Superposition of the localized level on the region of
non-quasiparticle behavior (an itinerant quasiparticle
with spin down) leads to the appearance of a narrow
peak, above which a narrow pseudogap is observed.
Nevertheless, localized d states dominate in the total
density of states.

A qualitatively similar picture appears at Ω =
+0.5 eV (Fig. 1c). However, in this case, the localized
level lies above the Stoner gap. The band density of
states (with spin down) changes in the same way as at

n0 E( )
3

2W
-------- E

W
-----, E 0 W,[ ]∈

0, E 0 W,[ ] .∉





=
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Ω = 0. A narrow gap and a less expressed peak under it
are observed.

4. CONCLUSION
Thus, the exact dispersion relations and the Green

functions at T = 0 obtained in this work describe one
carrier moving on the background of the ferromagnetic
ground state of a lattice. Two types of interaction, s–d
exchange and hybridization, have been taken into
account in the strong-correlation regime. This case cor-
responds to the lower limit of the concentration x.
Although manganites are no longer ferromagnets at low
x, the results obtained in this work should be repro-
duced by all solutions found for the ferromagnetism
region (x = 0.15–0.40) in the limit of small concentra-
tions and low temperatures.

ACKNOWLEDGMENTS
This work was supported by the federal program

“Integration” (project no. B 0017) and the Russian
Foundation for Basic Research (project no. 02-02-
97705).
PHYSICS OF THE SOLID STATE      Vol. 45      No. 8      2003
REFERENCES

1. É. L. Nagaev, Usp. Fiz. Nauk 166 (8), 833 (1996) [Phys.
Usp. 39, 781 (1996)].

2. É. L. Nagaev, Zh. Éksp. Teor. Fiz. 56 (3), 1013 (1969)
[Sov. Phys. JETP 29, 545 (1969)].

3. Yu. A. Izyumov and M. V. Medvedev, Zh. Éksp. Teor.
Fiz. 59 (2), 553 (1970) [Sov. Phys. JETP 32, 302
(1971)].

4. B. S. Shastry and D. C. Mattis, Phys. Rev. B 24 (9), 5340
(1981).

5. M. Sh. Erukhimov, S. G. Ovchinnikov, and S. I. Yakhi-
movich, Fiz. Tverd. Tela (Leningrad) 31 (5), 52 (1989)
[Sov. Phys. Solid State 31, 749 (1989)].

6. V. V. Val’kov and S. G. Ovchinnikov, Quasiparticles in
Strongly Correlated Systems (Ross. Akad. Nauk,
Novosibirsk, 2001), p. 31.

7. W. Nolting, G. G. Reddy, A. Ramakanth, and D. Meyer,
Phys. Rev. B 64 (15), 155109 (2001).

8. E. L. Nagaev, Phys. Rep. 346 (6), 387 (2001).

Translated by A. Titov


