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Abstract—On the basis of a vector model, the propagation of laser pulses under the conditions of a two-photon
quasiresonance in the case of Stark-chirped rapid adiabatic passage through the resonance is studied with allow-
ance for a diabatic character of the interaction. It is shown that the shape of a pulse propagating in a medium
changes, the sweeping of its carrier frequency occurring concurrently. Special features of the spacetime evolu-
tion of the population difference in a two-photon transition and of the two-photon coherence during pulse
propagation are analyzed. It is established that a complete population inversion and a maximum coherence may
exist over a long length of the medium if the corresponding conditions are satisfied at the boundary. A new pos-
sibility for achieving a high coherence (close to a maximum value) is proposed. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In recent years, new concepts based on atomic
coherence and effects of quantum interference have
given a strong impetus to the development of the reso-
nance nonlinear optics of gaseous media. Various effects
in these realms, such as induced transparency [1], the
coherent trapping of populations [2, 3], and the adia-
batic transfer of populations [4] (or stimulated Raman
adiabatic passage [5]), have found widespread use. The
above phenomena make it possible to control linear and
nonlinear optical properties of matter. Concurrently,
laws that govern the propagation of laser pulses under
resonance conditions change significantly (there arise
matched pulses [1], adiabatons [6], a decrease in the
group velocity of a pulse by a factor of 107 to 108 [7],
and some other effects [8–10]). New possibilities open
up here, including that for a high-efficiency implemen-
tation of nonlinear-optics interaction even for very
weak light fields [11, 12] and for the generation of sub-
femtosecond light pulses [13].

The new effect of Stark-chirped rapid adiabatic pas-
sage (referred to in the following as SCRAP) was
recently demonstrated in [14]. It is closely related to a
rapid adiabatic passage due to sweeping the pumping-
laser frequency (see, for example, [15]) or due to the
intrinsic Stark shift of levels in two-photon interaction
[16]. In contrast to what occurs in the phenomena
described in those studies, the passage through a reso-
nance in the case of SCRAP is accomplished owing to
the dynamic Stark shift caused by an additional strong
laser pulse that is delayed in time with respect to the
1063-7761/03/9704- $24.00 © 20711
pumping-laser pulse. Specific conditions must be satis-
fied for the observation of SCRAP to be possible. The
SCRAP phenomenon also differs from the coherent
two-quantum interaction of ultrashort pulses of light
under the conditions of self-induced transparency [17].

SCRAP makes it possible to coherently control both
populations and coherence in atomic and molecular
systems. It enables one to obtain the inversion of popu-
lations between high-lying levels and the ground-state
level [14] or to prepare atoms in states that are charac-
terized by a maximum two-photon coherence [18–20].
It was proposed that the latter be employed to ensure an
efficient generation of coherently tuned radiation—in
the vacuum-ultraviolet region inclusive—in the process
of nonlinear-optics mixing of short pulses [19, 20]. In
all probability, this effect may be used to control chem-
ical reactions and to treat quantum information; also, it
may find applications in atomic optics.

Only the time dynamics of population inversion
between levels and of the maximum two-photon coher-
ence in the SCRAP process was investigated in [14, 18]
in terms of adiabatic states. In the present study, we
examine the propagation of a pumping-laser pulse
under the SCRAP conditions and analyze the spacetime
dynamics of level population and of two-photon coher-
ence with allowance for the propagation of this pulse.
The analysis is performed on the basis of a vector
model that is quite clear and which makes it possible to
obtain analytic expressions both for populations and for
the off-diagonal density-matrix element describing
atomic coherence with allowance for the first nonadia-
batic correction. Below, we show that this correction
003 MAIK “Nauka/Interperiodica”
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must be taken into account in considering the propaga-
tion of a pulse in a medium. We also show that, under
the SCRAP conditions, population inversion in a reso-
nance transition and the induced maximum coherence
may occur over a long distance in a medium.

This article is organized as follows. In Section 2, we
discuss the SCRAP phenomenon on the basis of a vec-
tor model, disregarding pulse propagation. There, we
present basic equations and their solutions, describe the
pattern of the SCRAP effect in terms of the vector
model, and discuss conditions necessary for its obser-
vation. In Section 3, we derive equations that describe
the propagation of a pumping-laser pulse under the
SCRAP conditions, give their solution, and discuss the
spacetime dynamics of population inversion and atomic
coherence with allowance for pulse propagation. In the
Conclusions, we consider the possible applications of
our results.

2. EFFECT OF RAPID ADIABATIC PASSAGE 
THROUGH A TWO-PHOTON RESONANCE 

DUE TO A LASER-INDUCED STARK SHIFT:
VECTOR REPRESENTATION

A simplified energy-level diagram corresponding to
the process under consideration is shown in Fig. 1. In
order to observe the SCRAP effect, use is made of two
laser pulses following each other with a specific time
delay. One of them (triggering or pumping pulse) inter-
acts with the 1–2 two-photon transition (see Fig. 1), its
frequency being initially detuned from the two-photon
resonance; the other, strong, off-resonance (Stark),
pulse leads to a change in the two-photon frequency,
inducing a time-dependent dynamic Stark shift. As the
two-photon detuning changes from large negative to

n

1

2

ω1

Ω21

m
ω1

ωst

Fig. 1. Simplified diagram of energy levels for Stark-
chirped rapid adiabatic passage.
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large positive values (or vice versa), the population of
the ground-state (lower) level (1) can be transferred
almost entirely, by the end of the triggering pulse, to the
excited (upper) state (level 2); that is, a complete popu-
lation inversion may arise in the 1–2 transition, the life-
time of this inversion being determined by the relax-
ation time for state 2. The pulse durations are assumed
here to be shorter than all atomic relaxation times.

This process is usually explained in terms of dressed
(adiabatic) states [14], but it can also be described in
terms of the vector model proposed in [16]. Within this
model not only can one visualize the time dynamics of
the process, but also obtain analytic expressions for
population inversion and for two-photon coherence.

2.1. Equations for Interacting Fields 
and for the Density Matrix in the Approximation

of a Generalized Two-Level System 

We will first consider the time evolution of the pop-
ulation inversion ρ2–ρ1 in the 1–2 two-photon transition
and of the off-diagonal density-matrix element ρ21,
which describes two-photon coherence under the
SCRAP conditions. For ρ21, we hereafter use the term
“two-photon coherence” or merely “coherence.” The
triggering pulse %1(z, t) and the Stark pulse %s(z, t)
propagate along the z axis in an isotropic medium,

(1)

where k1, s = ω1, s/c is the wave number at the frequency
ω1, s , c is the speed of light, and E1, s(z, t) stands for
complex-valued slowly varying amplitudes (enve-
lopes). Since the Stark pulse undergoes off-resonance
interaction with the medium, we assume that it is preset
in the process of propagation and that the amplitude is
a real-valued quantity.

The propagation of the triggering pulse is described
by the reduced wave equation

(2)

where P1(z, t) is the complex-valued amplitude that
characterizes polarization induced by the triggering
pulse. It can be calculated on the basis of the equation
for the density matrix,

(3)

where N is the density of atoms, dij stands for the tran-
sition electric dipole moments, and ρij are the compo-
nents of the density matrix.

%1 s, z t,( )
1
2
---E1 s, z t,( ) i ω1 s, t k1 s, z–( )–[ ] c.c.,+exp=

∂E1 z t,( )
∂z

--------------------
1
c
---

∂E1 z t,( )
∂t

--------------------+ i2πk1P1 z t,( ),–=

P1 ω1( ) N d1mρm1 dm2ρ2m+( ),
m

∑=
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In the following, we assume, for the frequency of
the two-photon quasiresonance, that

we also assume that the one-photon detuning satisfies
the conditions

(4)

where Gji = Ekdji/2" is the Rabi frequency and Tk is the
pulse duration. In the approximation specified by
Eq. (4), one can pass from a multilevel system to a gen-
eralized two-level scheme (see, for example, [21]).
Level 1 is the ground-state level; the group of levels
labeled with m makes a leading contribution to the two-
photon quantum transition and to the Stark shift due to
the triggering field; and the group of levels labeled with
n contributes to the Stark shift due to the Stark field.

If use is made of the rotating-wave approximation,
the equations describing the density matrix for the gen-
eralized two-level system in the interaction representa-
tion have the form

(5)

In Eq. (5), we introduced the following notation:

where A1 and ϕ1 are, respectively, the real-valued
amplitude and phase, which are functions of coordi-
nates and time;

is the initial (static) detuning, with ω21 and  = ω1 +
∂ϕ1/∂t being, respectively, the resonance transition fre-
quency and the instantaneous frequency; and Ωs = S1 +
S is the Stark shift of the two-photon resonance due to

Ω21 2ω1 ω21 ! ωij,–=

Ω ji ωk ωji @ G ji  @ Tk
1– ,–=

∂ ρ2 ρ1–( )
∂t

------------------------ 2qA1
2
Imρ21,–=

∂ρ21

∂t
---------- i Ω21' Ωs–( )ρ21–

i
2
---qA1

2 ρ2 ρ1–( ).=

E1 A1 iϕ1–( ),exp=

q
1

2"
2

--------
d2mdm1

Ωm1
----------------, Ωm1

m

∑ ω1 ωm1,–= =

Ω21' Ω21
2∂ϕ1

∂t
------------+ 2ω1' ω21, Ω21– 2ω1 ω21–= = =

ω1'
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the triggering (S1 = a1 ) and the Stark (S = )
pulse, with

(6)

being parameters that describe the Stark shifts.

In the above approximation, the polarization given
by Eq. (3) can be represented in the form

(7)

where χ1, 2(ω1) are linear susceptibilities,

(8)

2.2. Vector Representation 

It is convenient to rewrite Eq. (5) by using the vector
model proposed in [15, 16] and by introducing the nota-
tion

The quantities rj (j = 1, 2, 3) can be treated as the com-
ponents of the vector

(e1, 2, 3 are unit vectors) in some vector space (vector r
is sometimes referred to as a pseudospin). The pseu-
dospin satisfies the equation of motion

(9)

where g is a vector whose components are given by

These parameters have a clear physical meaning: γ1 is
the effective two-photon Rabi frequency and γ3 is the
instantaneous detuning away the two-photon reso-
nance.

A1
2 asEs

2

a1
1

4"
2

--------
dm1

2

ω1 ωm1–
---------------------

d2m
2

ω1 ω2m–
---------------------+ 

  ,
m

∑=

as
1

4"
2

--------
dn1

2

ωs ωn1–
--------------------

n

∑=

P1 ω1( ) χ1 ω1( )ρ1 χ2 ω1( )ρ2–[ ] N A1 iϕ1( )exp=

– 2N"qA1ρ21 iϕ1( ),exp

χ i ω1( )
1

2"
------

dmi
2

ω1 ωmi–
--------------------, i

m

∑ 1 2.,= =

r1 ρ21 ρ12, r2+ i ρ21 ρ12–( ), r3 ρ2 ρ1.–= = =

r e1r1 e2r2 e3r3+ +=

∂r
∂t
----- g r,×=

γ1 qA1
2, γ2 0, γ3 Ω21' Ωs–( ).= = =
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Fig. 2. Evolution of vector r during Stark-chirped rapid adiabatic passage: (a) the case where the two-photon frequency of the trig-
gering pulse is less than the resonance frequency and where vector r precesses over the cone surface about vector g; (b) the case
where, as the sweeping of the frequency of the passage through the resonance due to the Stark shift occurs, the angle θ between the
vector g and the negative direction of the e3 axis increases, while vector r continues precessing about the vector g; and (c) the case
where the doubled frequency of the triggering pulse is greater than the resonance transition frequency and where, upon the comple-
tion of motion, vector g is oriented in a direction close to the positive direction of the e3 axis.
The equations of motion for the components of vec-
tor r have the form

(10)

In this approximation, the solution to Eqs. (10) with
the allowance for the first nonadiabatic correction has
the form (see, for example, [15])

(11)

where

In expressions (11) and in those that follow, the upper
(lower) signs are chosen for the case of γ3(z = 0, t 
–∞) < 0 [γ3(z = 0, t  –∞) > 0].

We note that, upon the inclusion of the nonadiabatic
correction, the coherence

becomes complex-valued. As will be shown below, this
must be taken into account in considering the propaga-
tion of a pulse in a medium.

It is convenient to introduce the parameter θ =
, which is the angle between vector g and

the negative direction of the e3 axis aligned with unit

∂r1

∂t
------- γ3r2,

∂r2

∂t
------- –γ3r1 γ1r3,+= =

∂r3

∂t
------- γ1r2.–=

r1

γ1

γ
-----, r3+−

γ3

γ
-----, r2+−

1
γ3
-----

∂r1

∂t
-------,–= = =

γ γ γ1
2 γ3

2+ .= =

ρ21
r1 ir2–

2
----------------=

γ1/γ3( )arctan
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vector e3 (see Fig. 2). In this notation, we have r1 =
±sinθ and r3 = .

The adiabaticity condition implies that the angular
velocity ∂θ/∂t of vector g is much less than the fre-
quency γ of precession of vector r; that is,

(12)

By using expression (12), it can easily be shown that

r2 = – /γ. This means that the angle between r and g is
much smaller than the angle between g and e3 (see
Fig. 2); that is,  ! .

Adiabaticity condition (12) can be represented in
the form

(13)

This condition is similar to that obtained in [5] in terms
of adiabatic states.

Let us show that solution (11), together with condi-
tion (13), describes the SCRAP phenomenon well. We
consider the case where the two-photon Rabi frequency
γ1(t) and the Stark shift S(t) of the frequency of the tran-
sition induced by the second pulse have Gaussian
shape; that is,

(14)

θcos+−

∂θ
∂t
------ θ̇  ! γ γ1

2 γ3
2+ .= =

θ̇

r2 r1

γ̇1γ3 γ̇3γ1–

γ1
2 γ3

2+( )3/2
--------------------------  ! 1.

γ1 t( ) γ10
t2

T1
2

-----–
 
 
 

,exp=

S t( ) S0
t δt–( )2

Ts
2

-------------------– ,exp=
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where T1 and Ts are the durations of, respectively, the
triggering and the Stark pulse and δt is the time delay
between them. In the ensuing analysis, we disregard,
for the sake of simplicity, the shift due to the triggering
pulse. In order to achieve SCRAP, it is necessary to
meet certain requirements. Fulfillment of the adiabatic-
ity condition (13) can be ensured if the initial detuning
Ω21, the maximum Rabi frequency γ10, and the delay
time δt satisfy a specific relation. For passage through a
two-photon resonance to occur, it is necessary, first of
all, that the maximum Stark shift S0 exceed the initial
detuning Ω21 (  > ) and that the two quantities
in question have the same sign. It is obvious that, under
these conditions, the resonance is swept twice, at the
instants of time

In this case, the triggering pulse must be rather strong
in order to ensure an adiabatic transition during the first
passage through the resonance, but it must be at the
same time rather weak in order to prevent an adiabatic
transition during the second passage. Under the
assumption that the triggering pulse attains a maximum
at the instant of time t1 = 0, these requirements lead to
the conditions [14]

(15)

Relation (15) yields an upper and a lower limit on the
detuning Ω21 and the maximum value γ10 of the Rabi
frequency. From the formula for r3 in (11), it follows
that, for the population transfer to be maximal at the
end of the triggering pulse, fulfillment of the condition
γ1 ! |γ3| must be ensured, which is most easily achieved
at the instant t = δt, when the Stark shift S is maximal.
This condition can be recast in the form

(16)

At a specific instant of time when the population differ-
ence vanishes, r3 = 0, the two-photon coherence attains
the maximum value of  = 1/2. These conditions
can be satisfied in a rather wide region.

For numerical illustrations, we have chosen the dia-
gram that represents transitions in the Kr atom and
which was used in experiments aimed at generating
vacuum-ultraviolet radiation under the conditions of
electromagnetically induced transparency [22]: there, a
triggering pulse of a wavelength of λ1 ≈ 212.55 nm

S0 Ω21

t1 2, δt Ts

S0

Ω21
--------ln .+−=

1 ! 
γ10

2 Ts
2

Ω21δt
-------------- ! 

8δt2

T1
2

----------.exp

γ10
δt2

T1
2

-------–
 
 
 

exp  ! Ω21 S0– .

ρ21
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undergoes two-photon interaction with the 4p6 1S–
4p55p transition. Since relaxation times characteristic
of the transitions being considered are about a few tens
of nanoseconds, the duration of the laser pulses used
must not exceed a few nanoseconds.

The population difference r3 and the modulus of the
atomic coherence,  = , versus time are
shown in Fig. 3, whence it can be seen that the popula-
tion inversion and the maximum coherence in the two-
photon transition are realized under the above condi-
tions.

In terms of the vector model, the SCRAP process
can be visualized as follows. Suppose that, at the initial
instant of time (t  –∞), all atoms are in the ground
state 1 (r3 = –1) and that the double frequency of the
triggering pulse is tuned rather far away from the reso-
nance and is, for definiteness, less than the resonance
frequency of the 1–2 transition. This means that the
vector g is directed nearly along the negative direction
of the e3 axis and is virtually parallel to vector r (that is,
θ ≈ 0). In this case, vector r moves over the surface of
a cone (precesses about vector g) having a small apex
angle proportional to r2 (see Fig. 2). As a Stark pulse is
applied, the sweeping of the frequency toward the res-
onance begins, which is accompanied by the growth of

ρ21 r1 ir2–( )/2

–0.6

–2
–1.0

0 2
t/T1

–0.2

0.2

0.6

1.0
|ρ21|, r3

S

γ1

Fig. 3. Time dependences of (solid curve) the two-photon
coherence  and (dashed curve) the population differ-

ence r3 = ρ2 – ρ1 for the pulse sequence shown in the inset
(the triggering pulse precedes the Stark pulse). The follow-
ing parameter values were used here: δt/T1 = 1.7 for the
delay between the pulses; Ts/T1 = 1.6 for the duration of the
Stark pulse; S0T1 = 50 for the maximum Stark shift;
γ10T1 = 15 for the amplitude of the two-photon Rabi fre-
quency; and Ω21T1 = –16 for the initial detuning.

ρ21
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angle θ. If angle θ varies more slowly than the preces-
sion frequency γ [condition (13) is satisfied], vector r
will follow the vector g as the angle θ varies, its pre-
cession persisting. The amplitude of the Stark pulse
must be such that, upon passage through the reso-
nance, the frequency of the triggering pulse appears to
be considerably higher than the resonance transition
frequency (see Fig. 2). At the end of the pulse, vector
r will form a small angle with the positive direction of
the e3 axis. Thus, the inversion of the level populations
is realized owing to sweeping through the resonance.
The inclusion of r2 does not change the pattern quali-
tatively, but one can show that, in this case, the preces-

sion of vector r occurs about vector g + , where

g = (0, 0, –γ1) and  = (0, – , 0) are the vectors writ-
ten in the doubly rotating coordinate frame (see, for
example, [15]).

By using this technique, one can prepare atoms in a
coherent superposition of states 1 and 2 that is charac-
terized by a maximum coherence [18]. This effect,
known as the half-SCRAP effect [18], can also be
described in terms of the vector model. In contrast to
SCRAP, it arises under different conditions. From the
formula for r1 in (11), it follows that r1   if γ1 @

 (near the instant of time at which the trigger-
ing field takes a maximum value). At the initial instant

q̇

q̇ θ̇

1+−
Ω21 S–

–2
–1.0

0 2

t/T1

–0.5

0

0.5
|ρ21|, r3

S

γ1

Fig. 4. Time dependences of (solid curve) the two-photon
coherence  and (dashed curve) the population differ-

ence r3 = ρ2 – ρ1 for the case where the Stark pulse precedes
the triggering pulse, as is shown in the inset. The following
parameter values were used here: δt/T1 = –1.6, Ts/T1 = 1,
S0T1 = 50, γ10T1 = 15, and Ω21 = 0.

ρ21
JOURNAL OF EXPERIMENTAL 
of time, we have r3 = –1; therefore, it is obvious that the
inequality γ1 !  must hold at this instant.
These conditions are satisfied most readily at Ω21 = 0.
Moreover, they must be consistent with adiabaticity
condition (13). Analysis shows that these conditions
may be satisfied for the sequence of pulses shown in the
inset to Fig. 4, in which case the Stark pulse is switched
on earlier than the triggering pulse. The case of the
opposite sequence of pulses—that is, the case in which
the triggering pulse is switched on earlier than the Stark
pulse [18]—is not considered in the present approxi-
mation.

Figure 4 shows the time dependences of r3 and
 =  for the chosen sequence of pulses.

It can be seen that, in contrast to what occurs in the case
of SCRAP, there arises here a plateau of maximum
coherence. As the Stark and the triggering field change,
vector r initially oriented nearly along the negative
direction of the e3 axis then rotates through angle π/2,
becoming aligned with the e1 axis.

3. PROPAGATION OF TRIGGERING PULSE 
AND SPACE DYNAMICS 

OF THE POPULATION INVERSION 
AND OF THE COHERENCE

Let us now consider the propagation of a triggering
pulse under the SCRAP conditions. We express the
complex-valued polarization P1(ω1), which is defined
by formula (7), in terms of quantities r1, 2, 3 as

(17)

where N is the density of atoms. It should be empha-
sized that the imaginary part V of the polarization owes
its existence to the nonadiabatic correction r2 and leads,
despite its smallness, to a change in the shape of a pulse
as it propagates in a medium.

Substituting expression (17) into Eq. (2), we obtain
equations for the real-valued amplitude and phase;
that is,

(18)

(19)

Ω21 S–

ρ21 r1 ir2–( )/2

P1 ω1( )
1
2
--- χ1 1 r3–( ) χ2 1 r3+( )–[ ] N A1 iϕ1( )exp{ }=

– "q r1 ir2–( )N A1 iϕ1( )exp U iV+( ) iϕ1( ),exp=

∂A1

∂z
---------

1
c
---

∂A1

∂t
---------+ 2πk1V ,±=

∂ϕ1

∂z
---------

1
c
---

∂ϕ1

∂t
---------+ 2πk1

U
A1
------,+−=
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where

(20)

Here, the upper (lower) signs correspond to a negative
(positive) initial detuning away the two-photon reso-
nance, Ω21 = 2ω1 – ω21 < 0).

If we discard the nonadiabatic correction (V = 0 cor-
responds to the ideal adiabatic limit), the right-hand
side of Eq. (18) vanishes, in which case one can see that
the pulse propagates in a medium without any distor-
tion of its shape. As to the phase of the pulse, it will
change anyway according to Eq. (19)—that is, sweep-
ing of the instantaneous frequency occurs as the pulse
propagates. Upon inclusion of the nonadiabatic correc-
tion, the two-photon coherence becomes complex-val-
ued, with the result that the medium-induced macro-
scopic polarization develops an imaginary part propor-

tional to the derivative ∂( /γ)/∂t. Its sign may be
either positive (static detuning is negative, Ω21 < 0) or
negative; that is, the generated field can either enhance
or suppress a pulse propagating in a medium. Below,
we will show that this is determined by the sign of the
derivative of the instantaneous detuning away from the
two-photon resonance with allowance for the Stark
shift.

Evaluating the derivative ∂( /γ)/∂t and substitut-
ing the expression for V into Eq. (18), we find that the
real-valued amplitude obeys the equation

(21)

where

is the instantaneous detuning away from the two-pho-
ton resonance with allowance for the shift induced by
the external Stark pulse.

U
1
2
--- χ1 ω1( ) 1

γ3

γ
-----– 

  χ2 ω1( ) 1
γ3

γ
-----+ 

 – N A1=

–
"q2N A1

3

γ
-------------------,

V
"q2N A1

γ3
-------------------

t∂
∂ A1

2

γ
------.–=

A1
2

A1
2

∂A1

∂z
---------

1
c
---

∂A1

∂t
---------+

=  
2πω1"q2N

cγ3
--------------------------- –A1

3∂∆
∂t
------ 2∆A1

2∂A1

∂t
---------+ 

  ,±

∆ 2ω1' ω21 Ωs
2( )––=
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It is convenient to pass from the equation for the
phase to the equation for the instantaneous frequency
ω' = ω + ∂ϕ/∂t; that is,

(22)

Equations (21) and (22) describe the propagation of
a light pulse under the SCRAP conditions as long as
adiabaticity condition (13) is satisfied. One can see that
the right-hand sides of these equations differ only by
the factor ∆/A1. This indicates that the changes in the
frequency and in the pulse shape occur simultaneously
and that there is a relation between them. The first terms
on the right-hand sides of the equations in question are
due to the high-frequency Kerr effect, which leads both
to a change in the shape of a pulse as it propagates in a
medium and to phase self-modulation during the prop-
agation process. The second terms lead to a change in
the velocity of pulse propagation.

We note that, if there occurs a passage through the
resonance (∆ = 0) in scanning the frequency, the sign of
the derivative does not change, as in the SCRAP case,
since ∆ is either an increasing (for a negative initial
detuning, Ω21 < 0) or a decreasing (Ω21 > 0) function of
time. The field generated by the imaginary part of the
polarization is then in antiphase with the incident pulse,
suppressing it. The situation is different if the scanned
frequency does not reach the resonance. The derivative
will be positive within one part of the pulse and nega-
tive within the remaining part, so that one part of the
pulse will be suppressed, while the remaining part will
be enhanced.

Going over to the coordinates ξ = z and τ = t – z/c
and taking into account Eq. (21), one can recast
Eq. (22) in the form

(23)

Integrating Eq. (23), we obtain

(24)

This is a general relation that is valid in the adiabatic
approximation. It reflects the interplay of the change in
the instantaneous frequency of a pulse and the change
in its envelope during the propagation of the pulse in a
medium under the conditions of a two-photon reso-
nance. Relation (24) also shows that the effects of the
change in the pulse shape and of self-modulation are
related to each other and cannot be considered sepa-
rately.

∂ω1'

∂z
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1
c
---
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Fig. 5. Spacetime evolution of a pulse under the SCRAP conditions: (a) envelope of the pulse as a function of time at Z = (solid
curve) 0 and (dashed curve) 10; (b) instantaneous frequency  of the triggering pulse as a function of time at Z = 10 (it is normalized
to α0 = 8πk1Nχ1(ω1)). The parameters of the pulse were set to the values identical to those used for Fig. 3.
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conditions. The pulse parameters were set to the values identical to those used for Fig. 3.

ρ21
Let us rewrite Eq. (21) as

(25)

where

(26)

The results obtained by numerically solving
Eq. (25) are illustrated in Fig. 5, where the time dynam-
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ics of the normalized intensity of the triggering pulse is
shown at the input and output of the medium. At the
input, the triggering and the Stark pulse have a Gauss-
ian shape, their parameters and the time of delay
between them being chosen in such a way as to ensure
fulfillment of conditions (15) and (16), which are nec-
essary for implementing SCRAP and a complete popu-
lation transfer. One can see that the amplitude of a prop-
agating pulse decreases smoothly, while its shape
changes slowly. We can identify two effects that are
responsible for the change in the pulse shape: (i) that
which is due to a diabatic character of interaction [for-
mula (26)] and (ii) that which is due to phase self-mod-
AND THEORETICAL PHYSICS      Vol. 97      No. 4      2003
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ρ21

ρ21
ulation because of the high-frequency Kerr effect. The
instantaneous frequency of the pulse varies with time as
is shown in Fig. 5b. In order to calculate , we used
Eq. (24).

Figures 6 and 7 show the spacetime evolution of the
population difference and of the two-photon coherence
under the SCRAP and half-SCRAP conditions, respec-
tively. We can see that the population inversion and the
maximum coherence induced in the two-photon transi-
tion persist over a long length of the medium.

ϕ̇
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We would like to emphasize that, in order to achieve
a high two-photon coherence (close to a maximum
value), it is not necessary to pass through the resonance.
As can be seen from the formula for r1 in (11), fulfill-
ment of condition  @ , along with adiabaticity
condition (13), is sufficient for this. This condition
means that the two-photon Rabi frequency must exceed
the detuning away the resonance at the instant of time
when the difference of the populations is close to zero,
ρ2 – ρ1 = r3 ≈ 0. Figure 8a shows how the envelope of
the triggering pulse that propagates in a medium varies

γ1 γ3
SICS      Vol. 97      No. 4      2003



720 ARKHIPKIN et al.
in this case. A moderate increase in the pulse amplitude
is associated with the redistribution of energy in the
pulse due to the nonadiabatic correction, which leads to
the weakening of the forward front of the pulse and to
the strengthening of the backward front [see discussion
after formula (22)], the total pulse energy (the area
under the intensity curve) remaining virtually
unchanged. Figure 8b shows that, under the quasireso-
nance conditions, a two-photon coherence close to a
maximum value is induced over a long length of the
medium. This can be used to implement an efficient
generation of the third harmonic in the short-wave-
length region of the spectrum.

4. CONCLUSIONS

On the basis of the vector model for a two-photon
resonance, the SCRAP phenomenon, which can lead to
a complete population transfer and a maximum coher-
ence in the resonance transition, has been considered in
the two-level approximation. This approach has
enabled us to derive analytic expressions for popula-
tions and two-photon coherence with allowance for a
diabatic character of the interaction, to analyze them
over a broad region of parameter values, and to specify
the adiabaticity conditions, as well as to develop a sim-
ple geometric interpretation of the effect. On this basis,
we have investigated special features of the propagation
of short laser pulses under various conditions. We have
also proposed a new possibility for achieving a high
coherence (close to a maximum value).

It has been shown that, because of a diabatic charac-
ter of the interaction, the off-diagonal density-matrix
element describing the two-photon coherence is com-
plex-valued. Its imaginary part induces a second-order
nonlinear Kerr polarization, which is responsible for
the change in energy transfer between the propagating
pulse and the medium, while the real part of the Kerr
polarization leads to phase self-modulation. As the
pulse propagates, these factors lead to a decrease in its
amplitude and to a change in its shape (over small prop-
agation lengths, the pulse shape remains virtually
unchanged). In addition, the carrier frequency of the
pulse changes with time, the region of linear sweeping
existing over a large part of the pulse duration. We note
that the change in the pulse frequency is related to the
change in the pulse shape since they are both due to
self-interaction via the high-frequency Kerr effect in a
time-dependent laser field. It seems that the duration
of such a pulse can be reduced by transmitting it
through a dispersive delay line by using the compres-
sion effect [23].

We have also investigated the spacetime evolution
of the population difference and of the two-photon
coherence during pulse propagation. We have shown
that the population inversion and the maximum coher-
ence persist over a long medium length under specific
conditions at the boundary. This method makes it pos-
sible to obtain a nearly complete inversion between the
JOURNAL OF EXPERIMENTAL 
ground state and a high-lying excited level or to force a
medium into a coherent state by using visible-range
lasers that produce pulses of duration shorter than the
relaxation time of the excited state. In view of this, the
proposed method can find various applications in creat-
ing new sources of pulsed coherent radiation. By way
of example, we indicate that, on the basis of the anti-
Stokes Raman scattering, a medium inverted in this
way can be used to generate, in the short-wavelength
region of the spectrum, including the vacuum-ultravio-
let region, short pulses tunable with respect to the
wavelength. In all probability, cooperative anti-Stokes
scattering can also be investigated by using this
scheme. We would also like to note the possibility of
generating the third harmonic in the short-wavelength
region of the spectrum under the conditions of maxi-
mum coherence.
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