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Abstract—The ground state of a two-dimensional antiferromagnet having spins S = 1/2 and interacting with
acoustic phonons is investigated in the nonadiabatic approximation using the quantum-mechanical Monte Carlo
method. The critical parameters of the spin–phonon coupling, corresponding to the formation of bound spin–
phonon excitations, crystal symmetry lowering, and the emergence of a gap in the spin excitation spectrum, as
well as the antiferromagnet–quantum spin liquid transition, are determined. The orthorhombicity parameter, the
sublattice magnetization, the violation of the spherical symmetry of spin–spin correlation functions, and the
magnetic moment in Gd2CuO4 and Eu2CuO4 are calculated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intense studies of electronic, elastic, and magnetic
properties of high-temperature superconductors and
manganites with a colossal magnetoresistance have
lead to the conclusion that the electronic structure is
closely related to magnetic and lattice fluctuations. For
weakly doped superconducting cuprates, one of the
hypotheses is associated with the formation of a quasi-
gap due to the generation of coupled spin–phonon exci-
tations. This hypothesis is confirmed by the results of
optical measurements [1]; for example, Raman spectra
are explained on the basis of coupled excitations in a
system consisting of two magnons and a phonon. In the
low-temperature range, a number of observed structural
distortions are due to lattice modulation, and super-
structural reflections exhibit tetragonal symmetry as
well as symmetry lower than the orthorhombic symme-
try. For La1.6 – xNd0.4SrxCuO4, these transitions exist in
the normal phase at T < 80 K [2]. In La2 – xSrxCuO4
(x < 0.05), the isotopic effect is observed with an
intensity comparable to that for traditional supercon-
ductors [3]. Another feature of weakly doped semicon-
ducting cuprates is associated with their thermal con-
ductivity, which cannot be described using the theory of
a Fermi liquid and presumes the existence of certain
delocalized quasiparticles [4]. These experimental facts
indicate the existence of two characteristic energy
scales: the electron–phonon and the spin–phonon inter-
actions.

Some peculiarities in magnetic properties, which
are also observed in allied compounds with a tetragonal
T ' structure and with CuO planes in R2CuO4 (R = Eu,
Gd, Nd), can be due to the interaction between lattice
and spin fluctuations. Such compounds are character-
ized by low values of the magnetic moment of copper
1063-7761/03/9705- $24.00 © 20969
ions (σ ≈ 0.4) and a relatively high Néel temperature
(TN ≈ 230–280 K). The following has been observed:
strong anharmonicity in local displacements in the CuO
plane in the temperature range 145 K < T < 175 K in the
absence of structural transitions up to 393 K and a min-
imum in the temperature dependence of the square of
average displacements of copper ions along the [100]
direction at T = 175 K [5] due to antiferromagnetic spin
fluctuations. The antiferromagnet Gd2CuO4 with a tet-
ragonal symmetry exhibits the electron spin resonance
at ω0 = 18.2 cm–1 [6], which can be explained by the
orthorhombic distortion of lattice planes with a sto-
chastic arrangement of the orthorhombicity vectors
along the c axis. At T = 20 K, the resonance disappears
and the susceptibility increases strongly [7], which can
be attributed to the coherent orthorhombicity state
(although the elastic scattering of neutrons and X-ray
studies do not confirm this effect). These effects are
probably associated with the formation of bound spin–
phonon quasiparticles, i.e., lattice and spin fluctuations
coupled dynamically with each other.

Antiferromagnets with the spin–phonon interaction
were considered in the adiabatic approximation, in
which the interaction between spin and acoustic
phonons can be reduced to the four-spin exchange
interaction and to the effective interaction between the
spins of next-to-nearest neighbors. For certain parame-
ters of this model, a spin nematic state with violation of
the spherical symmetry of the spin–spin correlation
functions is formed [8] and the long-range magnetic
order disappears [9]. The interaction between the spin
and the elastic subsystems leads to nonlinear interac-
tions not only between spins, but also between
phonons. For this reason, a correct solution should be
carried out taking into account the nonadiabatic inter-
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action between spins and phonons; this can be done
using the quantum-mechanical Monte Carlo method
based on the continuous-time algorithm.

2. COMPUTATIONAL MODEL 
AND METHOD

For quasi-two-dimensional magnets, the interplanar
exchange is several orders of magnitude weaker than
the intraplanar exchange; consequently, we can confine
our analysis to the interaction between the spins of the
nearest neighbors and with acoustic modes of vibra-
tions in the plane of the lattice. In the harmonic approx-
imation, the Hamiltonian for a coupled spin–phonon
system has the form

(1)

where Sz, ± are the components of the spin operator S =
1/2 at a lattice site, ui, j is the displacement of an ion
over the translation vectors of the lattice, M is the ion
mass, and K is the elastic rigidity constant of the lattice
(J > 0). Using the canonical transformation

(2)

we pass from variables ui, j to the creation (b†) and anni-
hilation (b) operators of phonon with momenta qβ =
2πn/L, n = 1, 2, …, L, where β = x, y and the lattice con-
stant a = 1. The transformed Hamiltonian has the form

(3)
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In computations, the spin–phonon interaction con-
stant 

 

α

 

 and the excitation energy 

 

ω

 

 normalized to
exchange are used. As the computational method, we
choose the quantum-mechanical Monte Carlo method
combining the algorithms of world lines and continu-
ous time [10] on a plane of dimensions 

 

N

 

 = 32 

 

× 

 

32 with
periodic boundary conditions at temperature 

 

β

 

 = 

 

J

 

/

 

T

 

 =
50. In accordance with this method, the Hamiltonian is
divided into three parts: the diagonal part,

where 

 

n

 

q

 

 is the occupation number of phonons with the
same momentum; and two nondiagonal parts,

Applying the Trotter formula [11], we can disregard the
commutation of operators 

 

V

 

j

 

 and 

 

V

 

α

 

 to within

 

α

 

J

 

/(2 ). This leads to a systematic error whose
maximal value is 15% for 

 
α

 

 = 4, 

 
ω

 

0 = 8, and τ0 = 0.5.
Following [10] we express operators exp[–τ0(H0/2 +
VJ)] and exp[–τ0(H0/2 + Vα)] on the imaginary time seg-
ment τ0 in terms of the evolution operator σev in the
interaction representation exp(–τ0H) = exp(–τ0H0)σev ,
where

(4)

and

Summation and integration of two operators VJ and Vα
in Eq. (4) are carried out using a stochastic procedure
of sampling various kink–antikink configurations in
accordance with their weights. The probability of the
formation of a kink–antikink pair is given by

A subprocess of kink shift along the time axis with
probability W = exp(∆τEγβ) is possible. The use of glo-
bal spin flips at a site and a change in the occupation
number of phonons with momentum q lead to a finite
transition probability W ~ qγβ on interval τ0. As a result,
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the total projection of the spin changes and discontinu-
ities are observed on world lines with even numbers.
Since computations lead to only an even number of

nondiagonal changes of trajectories (J) and (α),
we can avoid obtaining the minus sign due to an
increase in the systematic error. As an eigenfunction of
Hamiltonian H0, we choose the Sz representation of ↑
and ↓  spins; the occupation numbers of phonons with
momentum q are nq = 0, 1, 2, … (the maximum number
is not limited).

The spectral density of magnetic and spin–phonon
excitations can be determined from the corresponding
time correlation functions calculated in imaginary time
for τ > 0. We define the spin correlator in the form

(5)

where |ν〉 is the complete set of eigenstates of Hamilto-
nian H0, H0|ν〉 = Eν|ν〉, H0|vac〉  = E0|vac〉 . For the vac-
uum state, we choose the Néel arrangement of spins
with energy E0/NJ = 1/4. Let us redefine the spin corre-
lator (5) as

(6)

where ρs(ω) defines the spectral density of magnetic
excitations. We treat spin–phonon excitations as cou-
pled excitations of spins, appearing as a result of action

of operators  and , and phonons induced by the
creation operators b† on the wave function of vacuum
nq = 0. We represent the time correlators in the form

(7)
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coupled spin–phonon excitations in the form

In fact, the Monte Carlo method is used for calculat-
ing the time correlator on a finite interval 0 < τ < τ0. In
order to reproduce the spectral density in a wide range
of energies, we must solve the integral equation (6). For
this purpose, we use the stochastic procedure optimiz-
ing the deviation [12]

(8)

of the computed correlator G(τ) from the true correlator
Gt(τ) with the spectral density ρt(ω).

In order to calculate the nondiagonal operators, we
use a symmetrized representation of the wave function
in the imaginary time interval τ0. For example, we seek

the eigenvalue of operators  for τ  0 on the
basis of the functions

The displacement of an ion at a site is defined as

(9)

The mean square displacement of the ion is defined as
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monic oscillator with α  0 is equal to zero. There-
fore, it is important to calculate the change in zero-
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972 APLESNIN
phonon density function 〈n(q)n(q + p)〉 . The wave vec-
tors of incommensurability of lattice and magnetic fluc-
tuations were determined from the ion displacement
structural factor

in two directions, [10] and [01], and the magnetic struc-
tural factor

U q( ) 1
N
---- u0ur〈 〉 eiq r⋅

q

∑=

Sz k( ) 1
N
---- S0

z Sr
z〈 〉 eik r⋅ .

k
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Uβ(k)/Uβ
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0.5

(b)

1
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(c)

1

2

0 0.5 1.0 1.5 2.0
k

Fig. 1. The lattice structural factor Uβ(k)/ (k) normal-

ized to the maximum value and calculated in two directions
β = [10] (1) and [01] (2) for ω0/J = 6, α/αc3 = 0.3 (a),
0.7 (b), and 1 (c).

Umax
β
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In the computational procedure, the first 20000
Monte Carlo steps per spin were omitted and the aver-
aging was carried out over 8000 Monte Carlo steps per
spin. This value is much larger than the time of attain-
ment of thermodynamic equilibrium calculated from
the sublattice magnetization,

〈σ(0)σ(t)〉  – 〈σ(0)〉〈σ (τmax)〉  = Aexp(–t/t0),

where t is the number of Monte Carlo steps; t0 = 3000
and 7000 Monte Carlo steps per spin for α/αc = 0.3 and
0.75, respectively; and αc is the critical parameter of the
spin–phonon coupling, for which the long-range mag-
netic order disappears. The mean square error amounts
approximately to 3% for the sublattice magnetization,
1% for the energy, 2% for the spin–spin correlation
functions, and 4% for the average phonon occupation
number.

3. DISCUSSION
The processes of inelastic scattering and formation

of magnon and phonon bound states are determined by
the density of states of the initial quasiparticles. In the
two-dimensional Heisenberg model, the density of
magnon states diverges logarithmically at the middle of
the band and the interaction between quasiparticles is
symmetric for points Γ and X of the band. In the case
when the dispersion curves for magnons and phonons
intersect, which is observed for v ph < vm at ω0/J < 2 (v ph

and vm are the velocities of phonons and magnons,
respectively), additional singularities are formed in the
density of states of these quasiparticles. The calcula-
tions were made for ω0/J = 1, 2, 4, 6, 8, and 10; the fig-
ures illustrate the typical cases when ω0/J = 1 and
ω0/J = 6. Under the action of the magnetic system, the
structural factor of lattice fluctuations shown in Fig. 1
becomes spatially anisotropic. Ladder-type fluctuations
containing two nearest chains in the [01] direction and
quasi-one-dimensional chain fluctuations in the [10]
direction, which are separated by distance r ≈ 7–10, are
formed in the magnetic subsystem. The energy per
bond in an antiferromagnet with a square lattice is 1.3
times smaller than the energy in an antiferromagnetic
chain. Consequently, lattice fluctuations facilitate local
extension of the lattice along one of the symmetry
directions of the initial square lattice. Ladder-type fluc-
tuations accompanied by dynamic local lattice dimer-
ization also lower the magnetic energy; the approxi-
mated dependence of this energy has the form

The gain in the magnetic energy is almost an order of
magnitude higher than the loss in the elastic energy.

Em α( ) Em 0( )– A α /α c3( )1.80 6( ),≈

A
0.11 1( ), v m v ph,>
0.18 2( ), v m v ph.<
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The average displacement

is depicted in Fig. 2. Anisotropy of lattice fluctuations

leads to anisotropy of displacement  – 
(Fig. 2c) and lowers the crystal symmetry from tetrag-
onal to orthorhombic. With increasing interaction
between the magnetic and elastic subsystems, zero-
point vibrations at a certain wave vector Q are

enhanced, as well as their correlation  ∝
〈N(0)N(Q)〉 , depicted in Fig. 3. The maximal value of
the correlator is attained at the wave vector Qmax =
(0.75–0.9)π, αc2 < α < αc3 and reflects a coherent vibra-
tion of ions with localized spin excitations in the [10]
direction. For vm > v ph , in the interval αc2 < α < αc3 of
the parameters, the local orthorhombicity parameter
shown in Fig. 2c decreases sharply, its value being
within the computational error. The change in the sym-
metry of structural distortions is in qualitative agree-
ment with the replacement of the condensed mode
(π, 0) for δ < 0.5 (δ = Ji, i + 1 – Ji, i – 1) by the optical mode
(π, π) for δ > 0.5, calculated on a square lattice by the
method of exact diagonalization in the adiabatic
approximation [13].

A qualitatively different behavior of elastic and
magnetic properties is observed in the case when vm <
v ph . The lattice volume and the orthorhombicity param-
eter increase monotonically for α > αc2 and the change
in zero-point vibrations is an order of magnitude
smaller as compared to the case when vm > v ph

(Fig. 3a). Anisotropy of correlated vibrations also
increases and the results of calculations can be cor-
rectly described by the power dependence

The changes in the lattice parameters in the region of
the critical values αc2, 3, in which the typical values of
the upper boundary of the region of acoustic vibrations
in quasi-two-dimensional antiferromagnets R2CuO4

(R = La, Gd, Eu, Nd) are M ≈ 4 × 10–22g, and ω0 = J, are
equal to

Uc2 = 0.005(1) Å, Uc3 = 0.04(02) Å

for ω0 ≈ 4 × 1012 Hz [14] and

Uc2 = 0.002(1) Å, Uc3 = 0.007(2) Å

for ω0 ≈1014 Hz. The lattice-averaged change in the
exchange interaction in the region of the antiferromag-
net–quantum spin liquid phase transition constitutes

Uav
β 1

N
---- ui j,

β , β
i j,
∑ x 10[ ]( ), y 01[ ]( )= =

Uav
x Uav

y

Ui
2U j

2〈 〉

Uβ
2〈 〉 Uγ

2〈 〉 0.24 3( ) α α c2–( )/α c3[ ] 0.41 3( ).≈–
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approximately 1% (dJ/J ≈ 0.01), which is an order of
magnitude smaller than local exchange fluctuations.

The linear decrease in the magnetic moment at a site
upon an increase in the spin–phonon coupling constant
can be approximated by the dependence

In the range of parameters 0.15 < α/αc3 < 0.7. For α =

σ
σ 0( )
-----------

1.14 1.3α /α c3, v m v ph,>–

1.12 0.96α /α c3, v m v ph.>–
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Fig. 2. Dependence of lattice-averaged displacements Uβ of

ions, normalized to , for ω0/J = 1 (a) and 6 (b) in

directions β = [10] (1) and [01] (2) on the normalized spin–
phonon interaction constant and the dependence of the

orthorhombicity parameter  –  for ω0/J = 1 (1),

6 (2) on α/αc3 (c).
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〈U2
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Fig. 3. Dependences (a) of the mean square displacement  of ions normalized to "/Mω0 for β = [10] (1, 2) and [01] (3, 4),

ω0/J = 1 (2, 4) and 6 (1, 3) on the normalized spin–phonon interaction constant and (b) of the maximum value of the phonon density
correlator on the wave vector Q for ω0/J = 1, β = [10] (1), [01] (2), and [11] (3) on α/αc3.
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Fig. 4. Normalized magnetic moment σ/σ(0) at a site (a) and the ratio of the correlation functions between the transverse com-
ponents of spins and longitudinal components for r = 1 (b) for ω0/J = 1 (1) and 6 (2) as functions of the spin–phonon interaction
parameter.

3

αc3, the magnetic moment abruptly vanishes. The typi-
cal dependences are shown in Fig. 4a. In the region of
the critical parameters of the spin–phonon coupling, the
spin–spin correlation functions and the correlation
radius are spatially anisotropic,

1

Sz i j,( )Sz i j r+,( )〈 〉
r

∑
Sz i j,( )Sz i r j,+( )〈 〉

r
∑
-------------------------------------------------------– 0.02–0.04,≈
JOURNAL OF EXPERIMENTAL 
and anisotropy of the spin correlation functions
between directions [11] and [10] is on the order of 0.1.
For α > αc1, the spherical symmetry of spin–spin corre-
lation functions depicted in Fig. 4b is violated. This fact
serves as a criterion for determining the value of the
spin–phonon interaction parameter αc1 and is in quali-
tative agreement with the results obtained by Andreev
and Grishchuk [8], who obtained a spin-nematic state
in the Heisenberg model with competing antiferromag-
netic interactions and the four-spin exchange. In the
vicinity of the wave vector Q = (π, π) corresponding to
AND THEORETICAL PHYSICS      Vol. 97      No. 5      2003
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ρ
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Fig. 5. Model densities of states defined analytically, ρ(ω) = (8/π)  (a) and numerically (b) (solid curves). The recon-
structed density of states are depicted by the dashed curves.
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Fig. 6. Density of states for (a) spin and (b) coupled spin–phonon excitations for ω0/J = 6, α/αc3 = 0.8 (1) and 1.14 (2).
the antiferromagnetic structural factor, satellites with
the incommensurability vector of the spin density are
observed in the interval qin = (0.7–0.95)π. The intensity
of the satellites varies in the limits

The procedure of reconstructing the spectral density
of states [12] for given models can be successfully used
for determining the band boundaries and the positions
of the peaks of the function ρ(ω) on the energy scale to
within 5%. The intensity has a saw-tooth shape and
fluctuates in the limits of 10–20%. Figure 5 shows the
reconstructed and model densities of states defined ana-

lytically (ρ(ω) = (8/π) ) and numerically.

Sz qin( )
Sz π π,( )
-------------------

0.05, α α c1,=

0.15, α α c2,=

0.3, α α c3.=





≈

ω 1 ω–( )
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The time correlator

was calculated over 100 points τi , i = 1, 2, …, 100. The
typical densities of spin excitations and coupled spin–
phonon excitations are shown in Fig. 6. For α > αc2, a
gap is observed in the spectral density of spin excita-
tions. The dependence of the gap energy on the magni-
tude of the spin–phonon coupling, together with the
approximating power function

,

is depicted in Fig. 7 (solid curve). In the density of cou-
pled spin–phonon excitations, one can single out a quasi-
gap. The maximal density ρ(ω) corresponds to quasi-
particles with zero energy and with the quasiparticle

G τ( ) e ωτ– ρ ω( ) ωd

0

ωmax

∫=

∆s/J α α c2–( )/α c3[ ] 0.50 8( )≈ , ω0 J=
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excitation energy ω ≈ 2(ω0 + 2J), 2(ω0 + J), and
3(ω0 + J) for v ph > vm and ω ≈ 4(ω0 + J) and 8(ω0 + J)
for vph < vm. For ω0 ≈ 4 × 1012 Hz [14] and J ≈ 0.1 eV,
these estimates are in satisfactory agreement with the
optical data on the absorption spectra of Sr2CuCl2O2 [1],
which show a broad peak in the vicinity of 4000 cm–1,
as well as with the values of excitation energy EMC ≈
4400 cm–1 calculated by the Monte Carlo method. The
observed excitations reveal a close relation between the
spin and lattice degrees of freedom in the CuO2 plane.

On the plane including the upper boundary ω0 of the
region of acoustic vibrations and the spin–phonon cou-
pling parameter α, three critical lines can be singled
out. As the spin–phonon coupling constant attains the
critical value with the approximation dependence αc1 =
0.16(2)ω0/J, coupled spin–phonon excitations are
formed analogously to the formation of polarons in sys-
tems with electron–phonon coupling. As the value of α
increases, the quasiparticle density becomes higher and
the spectral density ρ(ω = 0) of bound spin–phonon
excitations has a finite value at ω = 0 for αc2 =
0.39(6)(ω0/J)0.85(4). A gap ∆s appears in the spin excita-
tion spectrum and the crystal symmetry is lowered. If
we treat the gap width ∆s as an order parameter of sin-
glet pairs of spins, an inhomogeneous state consisting
of a long-range magnetic order and a singlet state is
realized in the range of parameters αc2 < α < αc3. This
resembles the coexistence of the normal and anomalous
phases in liquid helium and in a type II superconductor
in a magnetic field. For constant αc3, which can be
approximated by the power dependence αc3 =
0.62(4)(ω0/J)0.85(6), the long-range magnetic order dis-
appears and a quantum spin liquid is formed.

The correlated state of lattice fluctuations can be
destroyed by thermal phonons. The critical temperature

∆s/J

1.2

0.9

0.6

0.3

0
0.4 0.8 1.2 α/αc3

1

2

Fig. 7. The energy ∆s of the gap in the spin excitation spec-
trum as a function of the spin–phonon interaction parameter
for ω0/J = 1 (1) and 6 (2).
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can be estimated from the condition of equality of the
thermal energy Eheat of phonons and the energy Ebin =
(Nph – Nph, c2)ω0/2 of the bound state of phonons. In the
Debye approximation, Eheat = 3π4kBT4/(5Θ3), where Θ
is the Debye temperature, the corresponding critical
temperature is

The dependence of the average number Nav =

(1/N)  of phonons on the normalized value of the
spin–phonon coupling constant is shown in Fig. 8. Lat-
tice fluctuations are connected with magnetic fluctua-
tions which change under the action of the magnetic
field and temperature at T ~ ∆s . For α > αc3, the lowest
temperature at which the soliton lattice can be broken is
determined by thermal phonons; for θ = 400 K, we have

 ≈ 22 K.

The low values of the magnetic moment σ = 0.4(1)
for Gd2CuO4 and Eu2CuO4 [15], which were obtained
from elastic scattering of neutrons, as well as the values
σ = 0.35(4) determined from the electron spin reso-
nances at Gd3+ ions in Eu2CuO4 [16], are probably due
to the spin–phonon interaction with parameters α/αc3 ≈
0.3 and 0.35 leading to the formation of coupled spin–
phonon excitations. This changes the acoustic excita-
tion spectrum. For example, an anomaly is observed in
the lower branch of the acoustic phonon excitation
spectrum along the ΓX direction in the isostructural
compound Nd2CuO4 [14]. The corresponding changes
in the lattice constant are on the order of 2 × 10–3 Å and
are manifested in the X-ray spectra in the form of an
ellipsoidal displacement of oxygen ions in the ab plane
at right angles to the Cu–O bond [17].

T* 0.74Θ3/4 0.02 α α c3–( )/α c3[ ] 1/4.≈

Nkk∑

Tc3*

Nav

0.04

0.02

0
0.4 0.8 1.2

α/αc3

1

2

1.6

Fig. 8. Average occupation number for phonons as a func-
tion of the normalized spin–phonon interaction constant for
ω0/J = 1 (1) and 6 (2).
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The lifetime of coupled spin–phonon quasiparticles
and the average relaxation time are proportional to the
matrix element of the spin–phonon interaction operator
for a phonon transition from the ground state to an
excited state with a simultaneous change in the spin
configurations of the two spins. In accordance with the
“golden Fermi rule,”

the quasiparticle lifetime τ0 = 0.6 × 10–7 s (〈exc| denotes
the excited state). The relaxation time distribution is
described by the power law P(τ) ∝ (τ/τ0)5/4 for τ < τ0.

4. CONCLUSIONS

Let us summarize the main results. The interaction
between the elastic and magnetic subsystems leads to
anisotropy of the elastic vibrations of the lattice as well
as in magnetic properties; the change in the latter prop-
erties occurs at the three characteristic parameters of
the spin–phonon interaction. For α = αc1, coupled lat-
tice and spin fluctuations are formed and the spherical
symmetry of the spin–spin correlation functions is bro-
ken. For α = αc2, a gap opens in the spin excitation
spectrum and the crystal symmetry is lowered. The sin-
glet state and the long-range antiferromagnetic order
may coexist. For α = αc3, the magnetic moment at a site
vanishes and the antiferromagnet–quantum spin liquid
phase transition takes place. The constant of the spin–
phonon coupling corresponding to a decrease in the
magnetic moments of quasi-two-dimensional antiferro-
magnets Gd2CuO4 and Eu2CuO4 are determined.

1
τ0
----

2π
"

------ exc〈 |V̂ sph 0| 〉 2
N ph,=
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