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Abstract: We have calculated the spectral function and density of states of half-

­ lled two-dimensional Hubbard model in the Hubbard-I approximation assuming an

antiferromagnetic long range order at low temperature and compared results to the QMC

data. It occurs that calculated functions are in a qualitative agreement with the QMC

one. We have also shown that Neel ordered state dispersion has the similar form to the

spin density wave one.
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1 Introduction

The Hubbard model, which takes into account both hopping of electrons and their in-

teraction, is one of the basic models in the theory of strong electron correlations (SES)

systems. The matter is that, despite the model’s insu±ciency for quantitative descriptions

of any particular substance, it contains the important e®ects of SEC. There is certain

interest to research an atomic limit t ½ U , since it is known that it’s easier to describe

such systems starting from the local approach instead of Hartry-Fock theory of a band

limit. The Hubbard-I approximation in the t ½ U limit yields the simplest description

of the system as two energy bands divided by a gap [1]. With growth ratio it becomes

obviously wrong, but apparently still is quite reasonable in a regime of SEC. In the dia-

gram technique for the Hubbard X-operators [2, 3] the Hubbard-I solution is just a result
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of the Hartree-Fock approximation. A non-perturbative quantum Monte Carlo (QMC)

method provides possibility to compare electronic properties of the Hubbard model at

t ½ U obtained in the Hubbard-I approximation to the QMC numerical results. Such

comparison has been studied in [4], where a spectral density function A
³
~k; !

´
has been

calculated at di®erent temperatures. It occurs that at high temperature T ¹ t the func-

tions A
³
~k; !

´
obtained by QMC and in Hubbard-I paramagnetic solution are very simi-

lar. With decreasing temperature, the di®erence between two A
³
~k; !

´
functions becomes

larger. For low temperature, the spin density wave (SDW) solution has been used in [4]

for comparison to QMC data. It is known that SDW solution is valid in the weak corre-

lation band limit U ½ W = zt and is not the appropriate solution in the SEC limit. In

this paper, we calculated the spectral function A
³
~k; !

´
of the half-¯lled two-dimensional

Hubbard model in the Hubbard-I approximation assuming an antiferromagnetic (AF)

long range order at low temperature and compare it to the QMC data.

It occurs that calculated function A
³
~k; !

´
is in a rather reasonable agreement with

the QMC one, in spite of all shortcomings of our approach. These shortcomings are

the following:

(1) In the two-dimensional system, there is no Neel long range order at any ¯nite tem-

perature, so we should assume some anisotropy or interplane coupling.

Nevertheless,here it is not important because we compare our data to the ¯nite sys-

tem QMC one and the Mermin Wagner theorem does not hold in the ¯nite system.

(2) The Hubbard-I approximation does not give the self-consistent description of the

AF-state, the only solution for the sublattice magnetization m is zero. Thus, in the

t ½ U limit for ne = 1 system, we construct the e®ective low-energy Heisenberg

Hamiltonian with AF coupling J = 4t2=U and calculate the value of m in the

Heisenberg model. For T = 0 it results in m = 0:3 with 40% spin reduction due to

zero quantum spin °uctuation.

2 The electron spectrum in AFM state at half ¯lling

The two-dimensional Hubbard model that we study has a Hamiltonian given by

Ĥ ¡ · N̂e =
X

f;¾

·
(" ¡ · ) nf;¾ +

1

2
U nf;¾nf;¹¾

¸
+

X

f;g;¾

¡
tf;ga+

f;¾ag;¾ + h:c:
¢
: (1)

Here · is the chemical potential and " is the single-electron energy, a+
f;¾ (af;¾) are

creation (destruction) operators of electron with spin ¼ = §1=2 at lattice site f . The

particle density at each site is given by nf¾ = a+
f¾af¾. The second term describes an onsite

Coulomb repulsion between particles with opposite spin. The third term for kinetic energy

is restricted by the hopping matrix element t between only nearest neighbor sites.

Further, the spatially non-uniform solution for electron spectral function in the two-

dimensional square lattice with antiferromagnetic spin ordering is considered. (Near and

at half ¯lling the system has Neel order for T = 0 that is caused by a kinetic superex-
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change.) Due to two sublattices the two-time temperature-dependent Green functions [5]

read as

G
³
~k; !

´
=

1

N

0

BBB@

P
~f¡ ~f0

ei~k(~f¡ ~f0)
­­

af

¯̄
a+

f0

®®
!

P
~f¡~g

ei~k( ~f¡~g)
­­

af

¯̄
a+

g

®®
!

P

~g¡ ~f

ei~k(~g¡ ~f)
­­

ag

¯̄
a+

f0

®®
!

P
~g¡~g0

ei~k(~g¡~g0)
­­

ag

¯̄
a+

g0

®®
!

1

CCCA ; (2)

where indexes f , f 0 correspond to the same sublattice, while f and g 0 correspond to

di®erent ones. The Fourier transform of Green function is a function of ! and is denoted

by
­­

af ja+
g

®®
!
.

Analytical expressions for Green functions are received in known Hubbard-I approach

which corresponds to the following decoupling procedure

­­
af+h;¾nf;¹¾

¯̄
a+

f0;¾

®®
! hnf;¹¾i

­­
af+h;¾

¯̄
a+

f0;¾

®®
: (3)

In the atomic limit, a representation of the Hubbard X-operators is more convenient[6].

They are connected with usual Fermi-operators by a linear combination

a+
f¾ = X ¾;0

f + 2 ¼ X2;¹¾
f ; af¾ = X0;¾

f + 2 ¼ X ¹¾;2
f : (4)

Note that the single-electron Green function in the Hubbard operator representation

is given by

Gf;f0 = hhaf j af0ii =

0

B@

­­
X0;¾

f

¯̄
X 0;¾

f0

®®

2 ¼
­­

X0;¾
f

¯̄
X 2;¹¾

f0

®®
2 ¼

­­
X ¹¾;2

f

¯̄
X¾;0

f0

®®

­­
X ¹¾;2

f

¯̄
X2;¹¾

f0

®®

1

CA : (5)

Therefore we may write down in the X-representation the expressions for Green func-

tions (A and B are sublattice indexes)

Gl
AA = F 0;¾

A

³
(E ¡ "1)

h
¸ 2 ¡ F ¹¾;2

A F ¹¾;2
B t2(~k)

i
+ F 0;¾

B t(~k)
h
¸ 2 ¡ F ¹¾;2

A t(~k) ¸
i´,

4Y

i=1

(E ¡ Ei);

Gl
AB = F 0;¾

B

³
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h
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i
+ F 0;¾

A t(~k)
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4Y
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Gu
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³
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³
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¡
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B U
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³
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³
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´
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A U
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4Y
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Here the following notations are used: F 0;¾
A =

­
X0;0

A + X ¾;¾
A

®
, F ¹¾;2

A =
­
X2;2

A + X ¹¾;¹¾
A

®

are the ¯lling factors, "1 = (" ¡ · ), ¸ = (E ¡ "1 ¡ U ). The upper indexes are related

to lower (l) and upper (u) Hubbard bands. The bottom ones mark intra and inter
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sublattice functions. The Green function poles Ei, determining quasiparticle dispersion,

are the solution of the following equation of the fourth order:

E4+ aE3 + bE2 + cE + d = 0;

a = ¡ 2 (2"1 + U ) ;

b = (2"1 + U )2 + 2"1 ("1 + U ) ¡ t2(~k);

c = ¡ 2"1 ("1 + U ) (2"1 + U ) + 2"1t
2(~k) + U t2(~k) (2 ¡ nf ) ;

d = "2
1 ("1 + U )

2 ¡ "2
1t2(~k) ¡ U t2(~k) (2"1 + U ) (1 ¡ nf;¾) (1 ¡ nf;¹¾)

¡ "1U t2(~k) (nf ¡ 2nf;¾nf;¹¾) :

Below, we shall restrict ourselves by half-¯lling case ne = 1 where expression for

chemical potential is known [7] for any values of model parameters and temperatures

· = " + U=2. In this case, the fourth order equation determining quasiparticle dispersion

is reduced to a biquadratic one. And we at once receive a quasiparticle spectrum for the

two-dimensional antiferromagnetic lattice in the Hubbard-I approximation

E l;u
§ = § 1p

2

µ
t2(~k) §

q
t4(~k) + 4U 2t2(~k)nf;¾nf;¹¾ ¡ 2"1 ("1 + U )

¶1=2

: (6)

Due to two-fold reducing of the Brillouin zone in the AF state, each Hubbard subband

of the paramagnetic phase is twice splitted. If these bands were conventional single

electron bands with a number of states per atom being 1, the total number of states

would be equal to 4. Here there are quasiparticle bands with a fractal spectral weight

that is explicitly calculated by the QMC method. In our calculations, the fractal weights

are controlled by the ¯lling factor F m;n
f =

­
X m;m

f + Xn;n
f

®
.

It is interesting to note that the obtained quasiparticle spectrum (6) can be rewritten

through well known Hubbard-I paramagnetic solution. It turns out that the Neel ordered

state dispersion has the similar form to the spin density wave one

E l;u
§ = §

q
( ¹ §)

2
+ ¢2: (7)

Where gap parameter ¢ = U m, sublattice magnetization m = 1=2 (nf;¾ ¡ nf;¹¾) and ¹ §
~k

corresponds to dispersion of the upper and lower Hubbard bands in the paramagnetic

phase with renormalized value of Coulomb repulsion ~U = U
p

1 ¡ 4m2:

¹ §
~k

=
1

2

Ã

t
³
~k

´
§

r
t2

³
~k

´
+ U 2

!

: (8)

When m = 0 these bands are exactly the upper and lower Hubbard bands in the para-

magnetic phase [1]. In the single electron SDW state the quasiparticle spectrum is given

by the similar to Eq. (7) formulae with ¹ §
~k

being free electron dispersion.

Now we can calculate total spectral function of system as an imaginary part of one-

electronic Green function:

A
³
~k; !

´
= ¡ 1

º
Ŝp

³
ImG

³
~k; !

´´

= ¡ 1

º
Im

³
Gl

AA

³
~k; !

´
+ Gl

AB

³
~k; !

´
+ Gu

AA

³
~k; !

´
+ Gu

AB

³
~k; !

´´
(9)
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and the single electron density of states (DOS)

N (!) =
1

N

X

~k

A
³
~k; !

´
: (10)

The accepted approach does not contain any information on a line-width (spectral den-

sity expression includes usual delta-functions). To compare obtained results to the calcu-

lated by a quantum Monte Carlo method, we approximate delta-functions by a Lorentzian

line shape with a suitably chosen temperature-dependent parameter ¯ . Such weight and

width renormalization of the quasiparticle spectral lines assumes some nonzero imagi-

nary part of a self-energy value §(~k; !), and means a phenomenological output beyond

the Hubbard-I approximation.

It is necessary to note that there is no unequivocal conformity between temperature

and parameter ¯ . However, at temperature reduction, this parameter also aspires to zero.

And despite the fact that the Mermin-Wagner theorem prevents a long-rang Neel ordered

state in a two dimensional system for ¯nite temperature, it is commonly believed that

a system is e®ectively ordered if the spin correlation length becomes comparable to the

system size.

In ¯gures 1-3 angle-resolved spectral function are plotted simultaneously with the data

of numerical QMC calculations taken from the work [4]. The following values of param-

eters are used: U = 8t, " ¡ · + U=2 = 0 and t(~k) = ¡ 2t (cos(kx) + cos(ky)). In the

low-temperature region we take the parameter of sublattice magnetization m = 0:3.

Starting from the high-temperature range (¯g.1,2), we found that Hubbard-1 approx-

imation, which neglects all spin correlations e®ects, approximates weight and positions

of spectral peaks given by the upper and lower Hubbard bands. It is not surprising since

these e®ects are not essential at the paramagnetic state (m = 0) when all relevant spin

degrees of freedom are thermally exited.

For T = 1:00t the QMC data [4] have revealed very weak satellites at k = (0; 0) for

unoccupied and k = ( º ; º ) for occupied states. These satellites correspond to our bands

Eu
+ and E l

¡ with very small spectral weights. Of course there is no long magnetic order

at such high temperature but there is short magnetic order that evidently results in these

weak satellites.

At media and low temperatures (¯g.3,4) both Hubbard bands of the paramagnetic

state are split in two subbands E l;u
§ . For the largest part of the Brillouin zone one of the

subbands both below and above the Fermi level has larger spectral weight the other looks

like a weak satellite. The non-trivial result obtained in the QMC method as well as in

our calculation is the redistribution of spectral weight between strong and weak peaks.

This is most clearly seen in the ¯g.4 for T = 0:1t.

While the trends for spectral weight redistribution are similar in our Hubbard-I cal-

culations and in the QMC data, in some regions of the Brillouin zone (near ~k = (0; 0)

and ~k = ( º ; º )) there is a reasonable agreement in the shape and position of peaks in

A
³
~k; !

´
and there are regions in a k-space (near ~k = ( º =2; º =2) and ~k = ( º ; 0)) with

rather large deviations of our and QMC data.
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The single electron DOS (¯g.5) at low temperature shows two peak structure cor-

responding to the occupied (l) and unoccupied (u) Hubbard bands. Weak satellites in

the spectral density resulted in the shoulders for both peaks. Our data for DOS are in

a qualitative agreement to the QMC data by [8].

3 Conclusions

Summarizing we have shown that the spectral function at the low temperature consists of

four peaks corresponding to the AFM Hubbard-I subbands similar to the QMC data. The

general trend of the spectral weight redistribution is also in agreement to the QMC. Nev-

ertheless for some regions in the k-space there are quantitative disagreements. The DOS

in Hubbard-I solution is similar to the DOS in QMC.
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Fig. 1 The angle-resolved spectral function for half ­ lled Hubbard model at low temperature,
T=4t. The QMC data are taken from the work[4].
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Fig. 2 The angle-resolved spectral function for half ­ lled Hubbard model at low temperature,
T=1t. The QMC data are taken from the work[4].
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Fig. 3 The angle-resolved spectral function for half ­ lled Hubbard model at media temperature.
The QMC data are taken from the work[4].
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Fig. 4 The angle-resolved spectral function for half ­ lled Hubbard model at low temperature.
The QMC data are taken from the work[4].
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Fig. 5 The single-particle density of states for half-­ lled Hubbard model. The QMC data are
taken from the work[8].


