
  

Doklady Physics, Vol. 48, No. 11, 2003, pp. 608–611. Translated from Doklady Akademii Nauk, Vol. 393, No. 2, 2003, pp. 176–179.
Original Russian Text Copyright © 2003 by Val’kov, Dzebisashvili, Kravtsov.

                                                          

PHYSICS
On Calculating Spectral Intensities 
for Anomalous Average Values in the Theory of Superconductors

with Strong Electron Correlations
V. V. Val’kov*, D. M. Dzebisashvili**, and A. S. Kravtsov***

Presented by Academician K.S. Aleksandrov April 28, 2003

Received May 7, 2003
In this paper, we show that allowance for properties
of the Hubbard operator algebra leads to the appearance
of a singular (at ω = 0) component in the total spectral
intensity of the anomalous correlation function of
superconductors that possess the electron pairing
mechanism. In this case, the spectral theorem acquires
the form of a singular integral equation. Taking these
features into account, we can eliminate previously
claimed forbidding of realization of the superconduct-
ing phase with the S-type symmetry of the order para-
meter.

1. While constructing a theory of high-temperature
superconductors which is based on the electron pairing
mechanism, the two following methods are most
widely employed. The first approach uses the diagram
technique for Hubbard operators [1, 2]. The second one
is based on the formalism of irreversible retarded two-
time Green’s functions [3]. Previously, the scattering
amplitude calculated for the Hubbard model [4] in the
regime of strong electron correlations [1] was analyzed
in the paramagnetic phase. It was shown that in the
Cooper channel, this amplitude has a singularity corre-
sponding to the transition into the superconducting
phase (Zaœtsev mechanism) [2]. While analyzing this
phase on the basis of retarded Green’s functions, the
spectral theorem [5] was used, which made it possible
to obtain self-consistency equations for calculating nor-
mal and anomalous average values. It turned out that at

f = g, the anomalous average values , (Xg
0σXf

0σ〈 〉 Xg
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and  are Hubbard operators [6]) calculated accord-
ing to this rule for the superconducting phase with the
S-type symmetry of the order parameter do not satisfy

the evident requirement  = 0 [3]. This viola-
tion of the sum rule has constituted the statement on
forbidding the superconducting state of the S-type.

We now show that the origin of this forbidding is
exclusively associated with ignoring the singular (at
ω = 0) component of the spectral intensity of the anom-

alous correlation function . With this
statement taken into account, we can satisfy necessary
requirements for anomalous correlators in limiting
cases without any variation of the form of the previ-
ously obtained self-consistency equations for the super-
conducting phase. The approach developed allows us to
overcome problems that arise when describing the
superconducting phase with the S-type symmetry of the
order parameter.

2. Before analyzing features of spectral representa-

tions for the correlation functions , we
pay attention to the fundamental distinction between
the anomalous Green’s function in the BCS theory and
the anomalous Green’s function in the theory of high-
temperature superconductivity based on the electron
pairing mechanism. The anomalous Green’s function
constructed on usual Fermi operators of secondary
quantization

is zero when t = t' + δ, δ → +0. This is associated with
the anti-commutativity of Fermi production operators
at coinciding times. At the same time, the time-average

values 〈 (t) (t)〉 and 〈 (t) (t)〉 in the supercon-
ducting phase can be nonzero in their own right (and
opposite in their signs) even at f = g:
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Another situation takes place for the anomalous
Green’s function constructed on Hubbard operators,

(1)

In this case, for t → t' + 0, the average values 

and  entering into the definition of the
Green’s function identically vanish as long as the site
indices turn out to be equal. It is important that such a
situation occurs not by virtue of features of a physical
system but as a result of the algebra of the Hubbard
operator multiplication. The independence of this fact
of particular physical conditions makes it possible to
explicitly take it into account at the spectral-representa-
tion level.

Keeping in mind this feature, we can write out the

spectral intensity (ω) in the spectral representation

(2)

as

(3)

This form ensures the elimination of the right-hand side
in expression (2) at t = t' + δ, δ → +0 as far as f = g and
provides the basic distinction of the introduced spectral
representation form that usually is applied in the theory
of two-time temperature Green’s functions [5].

We now on the basis of representation (2) are able
construct the spectral representation of the anomalous

correlation function 〈 (t), (t')〉. In this case, using
the property of cyclic transpositivity of operators under
the trace sign, we obtain from representation (2)

(4)

(5)

It is seen that also in this case, for f = g and t → t' +0,
as it must, the right-hand side vanishes, and

 = 0.

Applying spectral representations (2) and (4), we
find the expression for the average value of the anti-
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commutator entering into the definition of the anoma-
lous Green’s function:

(6)

where

(7)

From definition (1) with allowance for (6), we find
the Fourier transform of the anomalous Green’s func-
tion

(8)

Hence in this case, the spectral theorem [5] acquires the

form of the integral equation with respect to (ω)

(9)

It is easy to see that the solution to this equation can be
written out in the form

(10)

where

(11)

and  is an arbitrary constant. When deriving (10),
we took into account that the equality

(12)

which is a part of more generally evident relation

(13)

takes place.
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The ambiguity of the quantity  is inessential

because the total spectral intensity (ω) turns out to be

independent of . Indeed, substituting solution (10)
into definition (3), we arrive at

(14)

In view of this property and also of the fact that accord-

ing to its form written in (3), (ω) must not contain
a singular component at ω = 0, we obtain that the con-

stant  can be taken to be zero. Thus, it is seen that
the analytically continued Fourier transform of the
anomalous Green’s function determines only the regu-

lar part (ω) of the total spectral intensity (ω). In
turn, the singular (at ω = 0) component of the total spec-

tral intensity (ω) is unambiguously expressed in

terms of (ω), thereby ensuring true values of corre-
lators in limiting cases.

The following fact is of fundamental importance.
The singular (at ω = 0) component of the total spectral
intensity cannot be determined only from the knowl-
edge of the Fourier transform of the anomalous Green’s
function, which is analytically continued to the upper
complex half-plane. This fact, in essence, is one further
example that illustrates the well-known problem of
ambiguously reconstructing the spectral intensity of the
correlation function according to the spectral theorem.
A discussion of particularly relevant examples can be
found, e.g., in the review by Rudoœ, which has entered
into the collection of papers [7], as well as in original
papers [8, 9]. Practically, the allowance for singular (at
ω = 0) components turns out to be necessary in order to
obtain true limiting correlator values.

The analysis performed shows that the origin of
above-mentioned forbidding for the existence of the
superconducting phase with S-type symmetry of the
order parameter is exclusively caused by the loss of the
singular (at ω = 0) component of the correlation func-
tion but not by a principle having a certain actual phys-
ical content. Consequently, introducing a singular addi-
tion overcomes the indicated forbidding without chang-
ing the forms of all previously derived equations in the
theory of the superconducting state for strongly corre-
lated systems.

Aimed at confirming the statement on the invariabil-
ity of the self-consistent equations, we note that repre-
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sentation (2) leads to the following expression for
simultaneous correlators:

(15)

This implies that in the quasi-momentum representa-
tion, we have

Hence, it follows that the equation

(16)

for the superconducting order parameter t – J* of the
model (with due regard to three-center interactions)
[10, 11] does not vary with allowance for the singular
component of the spectral intensity of the correlation
function because
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