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An effective Hamiltonian for the study of Sc–Nb(Ta) cation ordering in PbSc1/2Nb(Ta)1/2O3 solid solu-
tions is written out. To determine the parameters of the effective Hamiltonian, a nonempirical calculation 
is performed within an ionic-crystal model taking into account the deformation, dipole and quadrupole po-
larizabilities of ions. The phase transition temperatures are calculated by mean field, cluster approxima-
tions and Monte-Carlo method. Within the same ionic-crystal model, we calculated the high-frequency 
permittivity, Born dynamic charges, and the phonon spectrum for a completely disordered and ordered 
phases. 
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1 Introduction 

The perovskite solid solution А(В′В″)О3 have attracted much attention for several tens years from the 
theoretical, experimental and application points of view. From chemical point of view, two classes of 
these compounds can be distinguished: homo- and heterovalent alloys. In heterovalent alloys, the two B 
atoms belong to the different column of the Periodic Table. The solid solutions PbSc1/2Ta1/2O3 (PST) and 
PbSc1/2Nb1/2O3 (PSN) are typical examples of heterovalent alloys. This compounds have been exten-
sively studied by theoretical and experimental methods [1–4].  
In this study we investigate order-disorder phase transitions and calculate phonon dispersions, Born 
effective charge and dielectric constant for ordered and disordered phases, using a nonparametric gener-
alized Gordon-Kim model in which the deformability, dipole and quadrupole polarizabilities of ions are 
taken into account. 

2 Statistical mechanics of B-cation ordering 

To investigate the B-cation ordering for А(В′В″)О3 solid solution, we use the model Hamiltonian 
method, which takes into account the positional disordering of the Sc and Nb(Ta) atoms. In this case the 
Hamiltonian can be written as [5]: 

 z z

ij i j

i j

H J σ σ

≠

=∑  (1) 

where σi

z =±1 and Jij are the interaction effective constants. 
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The interaction effective constants are calculated by the nonparametric generalized Gordon-Kim model 
[6, 7]. In the model Hamiltonian, we restrict ourselves to the interactions within the first three coordina-
tion spheres.  
 

Table 1  Energies of different ordered structures. 

The calculated energies E1 (eV)  The configuration motif 

{σ1 σ2 σ3 σ4}{σ5 σ6 σ7 σ8} 

Lattice parame-
ters 

 

PSN  
(а0=3.95 Å) 

PST 
(а0=4.01 Å) 

The expression 
for the energies 
by effective 
constants JI 

{-1 1 –1 1} {1 -1 1 -1} a=b=c=2а0 -0.399357 -0. 448150 -6J1+12J2-8J3 
{-1 1 –1 -1} {1 1 1 -1} a=b=c=2а0 -0.193832 -0.292024 -8J3 
{1 1 1 1} {-1 -1 -1 -1} a=b=а0 

c=2а0 
-0.125324 -0.239982 2J1-4J2-8J3 

{1 -1 1 –1}{1 -1 1 -1} a=b==√2а0;c=а0 -0.349156 -0.378210 -2J1-4J2+8J3 
{-1 -1 -1 1}{1 1 1 -1} a=b=c=2а0 -0.305748 -0.361138 -2J1 
{1 -1 –1 -1} {1 1 1 -1} a=b=c=2а0 -0.237239 -0.309096 -4J2 
{1 1 1 1}{1 1 1 1}+ 
{-1 -1 -1 -1}{-1 -1 -1 -1} 

a=b= а0; c=4а0 0.848736 1.031372 4J1+4J2 

 
To calculate the effective constants, we find the energies of several structures with different ordering of 
the Sc ions. Table 1 lists the configuration motif, the lattice parameters of the ordered structures, the 
energies E1 per ABO3 and expressions of the energy in terms of the effective constants. 

 E1=Efull - Eself – E0
 (2) 

where Efull is the total energy of the ordered structure, Eself is the ion self-energy. E0 is a constant energy, 
which is independent of the positions of B' and B" ions. E0= -161.455721 eV for PSN and E0 = -
157.692151 eV for PST.  
Since only the degrees of freedom related to the positional disorder of B' and B" atoms are taken into 
account in the model Hamiltonian, the effective interaction constants are calculated using the energies of 
unrelaxed structures. The calculated effective interaction constants are listed in Table 2.  
As one can see from Table 2 the effective constants are antiferromagnetic in the first, second and third 
coordination spheres. Thus we have a competition of antiferromagnetic interactions. The phase transition 
temperature in mean field approximation is: 

 
1 2 3

(6 12 8 )mf

c BT J J J k= − +
 (3) 

As one can see from Table 3 the calculated Tc
mf exceeds the experimentally observed temperature three 

times. The reason of the disagreement between the calculated and experimental temperatures is the 
strong short-range correlations, which are important in a system with a competitive interaction. The 
short-range correlations are not taken into account in the mean field approximation. These effects are 
well described by the cluster approximations, in particular, by the cluster field approximation [8, 9]. We 
use the 8-7-6-5 cluster approximations. In this case expression for the free energy is:  

 
8 7 7 6 5 5

11 5 5
ln ln ln 3ln 3ln 3ln

4 2 2
a b a b

F Z Z Z Z Z Zβ = − − − + +
 (4) 

where β=1⁄kBT, {exp( H )}
i i

Z Sp β= −  are the i-th cluster partition functions and Hi are cluster Hamilto-

nians.  
In this approximation we have six unknown cluster fields φi and ψi, which can be found from the varia-
tional conditions: 

0
i i

F Fφ ψ∂ ∂ = ∂ ∂ =
 (5) 
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Table 2  The effective interaction constants. 

The effective interaction constants (eV) Crystal 

J1 J2 J3 

PSN 0.152874 0.0593099 0.024229 
PST 0.180569 0.077274 0.036503 

 

Table 3  The calculated and experimental temperatures of the cation ordering. 

(mf-mean field approximation, cl-cluster approximation, mc-Monte-Carlo simulation, exp-experimental data[1]) 

Crystal Tc(mf) Tc(cl) Tc(mc) Tc(exp) 

PSN  4630 K 2250 K 1810 K 1480 K 
PST 5200 K 2400 K 1920 K 1770 K 

 
 
The phase transition temperature is defined from the equation (5), using the expansion (5) in linear terms 
of φi and ψi. The determinant, consisting of coefficients attached to the cluster fields φi and ψi, is taken 
equal to zero. From Table 3 we notice that the calculated Tc

cl is essentially less than Tc
mf. 

We use Monte-Carlo method to take into account for the short- and long-range correlations, to describe 
B-cation phase transition. We studied the lattices 18×18×18, 24×24×24 and 30×30×30 sizes with peri-
odic boundary conditions. The temperature dependences of the heat capacity and long-range order pa-
rameters are shown in Fig. 1. Note, that the size of the lattice has no influence on the value of the phase 
transition temperature and the temperature dependences of the long-range order parameters. With in-
crease of the lattice size the peak of heat capacity becomes sharper. The calculated phase transition tem-
peratures (as one seen in Table 3) are in good agreement with the experimental data. 

3 Lattice dynamics of the disordered and ordered phases 

The frequency vibration spectrum, high-frequency permittivity, Born effective charges and elastic 
moduli of the ordered phases of PSN and PST solid solutions are calculated within the same model. The 
corresponding formulas for the calculations can be found in [7]. In the case of the disordered solid solu-
tions, we calculated the dynamic properties using the virtual crystal approximation; in the dynamic ma-
trix, all contributions are calculated by expanding the interaction energy between virtual <B> ion and the 
other ions into a Taylor series in small displacements. The results of calculation are shown in Tables 4–6. 
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Fig. 1 The temperature dependences of the heat capacity and long-range order parameter (solid lines - PSN, dashed 
lines - PST). 
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Table 4 Lattice parameter a0(Å), permittivity ε
∞
, Born effective charge Z and elastic moduli Cij (102 

GPa). 

The ordered solid solution (elpasolite structure) 

 a0  ε∞ 

ZPb ZSc ZB″ ZO�� ZO┴ C11 C12 C44 
PSN 7.93 5.70 2.74 3.39 8.77 -4.96 -1.92 1,96 0,88 0,90 

PST 
8.07 
8.14[2] 

4.54 2.65 3.30 5.64 -2.79 -2.16 1,96 0,77 0,80 

The disordered solid solution (the virtual crystal approximation) 
 a0 ε∞ 

ZPb Z<B> ZO1 ZO3 C11 C12 C44 

PSN 
3.95 
4.08[3] 

5.85 2.83 6.02 -5.21 -1.83 2.27 0.89 0.87 

PST 
4.01 
4.07[1] 

4.62 2.71 4.24 -2.67 -2.14 2.32 0.78 0.75 

 
Table 5 Vibration frequencies (cm–1) calculated for disordered perovskite structure. 

q=(0,0,0) 

 TO1 LO1 T2u TO2 LO2 TO3 LO3 
PSN 23.1i 104.3 207.2 290.6 322.4 466.6 598.2 
PST 51.6i 106.2 203.5 267.2 341.2 581.1 615.1 
q=R 
 R15 R25 R15 R12’ R25’ R2’ 

PSN 73.9i 35.7 216.7 345.8 484.6 589.3 
PST 68.6i 80.4i 236.8 282.6 552.8 580.1 

 
Table 6 Vibration frequencies (cm–1) at q=0 for ordered elpasolite structures. 

PSN PST 

this calculation this calculation *exp [10]  
200.6i(2) (T1u)       254.5(3) (T2g) 
181.4i(3) (T1g)       302.3(2) (T1u) 
51.7i(3) (T2g)        315.7 (T1u) 
25.5 (T1u)           460.9(2) (Eg) 
14.2(2) (T1u)         633.6(2) (T1u) 
122.5(3) (T2u)        677.2 (A1g) 
239.3 (T1u)          695.7 (T1u) 

133.0i (3) (T1g)   279.9 (T1u) 
65.3i (2) (T1u)    341.4(2) (T1u) 
51.0i (3) (T2g)    356.8 (T1u) 
95.3 (T1u)       489.1(2) (Eg) 
176.3(3) (T2u)    589.9(2) (T1u) 
201.6(2) (T1u)    609.4 (A1g) 
270.7(3) (T2g)    631.2 (T1u) 

50 (T2g) 
370 (T2g) 
 
500 (Eg) 
 
740 (A1g) 
 

4 Conclusion 

The first aim of the paper was to investigate the B-cation ordering in the solid solution PSN and PST 
using the nonempirical structure energy calculations plus CFA statistical mechanics and Monte-Carlo 
simulation. Our results show that such approach is quite promising for modeling the cation ordering in 
complex ionic systems. The agreement between the calculated phase transition temperatures and experi-
mental data is reasonable.  
The second aim of the work was to study the lattice dynamics of PSN and PST. As a result, (i) we have 
obtained the values of the dielectric constant ε∞, Born effective charges Zi, phonon frequencies, elastic 
moduli Cij and (ii) we have indicated unstable ferroelectric and ferrodistortive modes in both disordered 
(perovskite structure) and ordered (elpasolite structure) phases PSN and PST. 
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