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MODELING MULTIPARTICLE COHERENCES IN SOLID-STATE

NUCLEAR SPIN SYSTEMS USING INFINITE-RANGE

INTERACTION

V. E. Zobov∗ and A. A. Lundin†

Using the exactly solvable model known in statistical physics as the infinite-range interaction model (the

van der Waals model), we obtain expressions for the hierarchy of multispin multiquantum time correla-

tion functions for a solid-state paramagnetic nuclear spin system with magnetic dipole–dipole interaction

between nuclei. These functions are observed experimentally using contemporary multiquantum NMR

spectroscopy methods. We write the complete set of orthogonal multispin operators explicitly and find

the time dependence for amplitudes of multiparticle time correlation functions. The proposed model

describes the behavior of multiparticle correlation functions well, at least for not very large numbers

n of expansion harmonics. The theoretical results agree well with the experimental data obtained for

hexamethylbenzol.

Keywords: multipulse method, dipole–dipole interaction, multispin coherence, time correlation function,
rotating reference frame

1. Introduction

A rapid growth of multipulse methods in solid state NMR started at the beginning of the 1970s. These
methods now prevail in modern radio-frequency spectroscopy [1], [2]. Just because of these methods, the
application of NMR ranges from investigating solid state physics and superconductivity to molecular biology
and medicine (including diagnostics).

The main advantage ensuring the success of the new technologies is the possibility of performing al-
most unlimited transformations of the nuclear spin system Hamiltonian in accordance with the investigation
project, which is sometimes even called the “alchemy of spin systems.” At the same time, signals observed
using the pulse NMR methods are determined by different time correlation functions (TCF), and these
investigations are therefore essential for developing the statistical mechanics of irreversible processes: solid-
state nuclear spin subsystems with their exactly known (and often pre-devised) Hamitonian and practically
total isolation from other degrees of freedom of a sample (lattice) are, according to Blombergen, an “ex-
cellent statistical-physics laboratory.” We here only recall the “time reversal” in a solid-state spin system
experimentally realized in NMR [3], [4] and underlying many modern experimental methods, as well as
“quantum computing” (computers) realized using multipulse NMR [5].

One of the most interesting directions of solid-state NMR development is the multiquantum Fourier
spectroscopy [2], [4], [6]–[8]. The whole variety of actual realizations of its methods can be eventually reduced
to the fact that irradiating a spin system with a sequence of radio-frequency pulses results in a nonsecular
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(w.r.t. the equilibrium magnetization) Hamiltonian appearing in the system. This Hamiltonian pumps the
initial magnetization into various multispin TCF (multispin coherences). The manifested coherences are
labeled by a phase shift proportional to time for which one more radio-frequency pulse can be used. The
arising phase shift is proportional to nϕ, where n is an integer and ϕ is the phase corresponding to the pulse.
We can therefore distinguish coherences by the parameter n corresponding to the number of quanta [2].
We can then stimulate the system with a new pulse sequence that changes the sign of the above nonsecular
Hamiltonian, thus realizing a “time reversal,” and the system starts to evolve “backward.” Observing the
dependence of the evolution on time and the phase ϕ then allows constructing a one- or two-dimensional
Fourier spectrum.

Multiquantum NMR spectroscopy is very convenient, for instance, for studying cluster structures or
other local structures [9]. In the case of regular solid bodies, developing the application is hindered, in
particular, by the absence of a consistent theory (see, e.g., [6]–[9]). On the other hand, the time evolution
of multispin multiquantum TCF chain is very interesting from the standpoint of the statistical mechanics
of irreversible processes.

In this paper, we investigate the above problem using the model with infinite-range interaction. The
proposed model allows finding an exact solution of the problem under consideration. Our results agree well
with the experimental data [4], at least, qualitatively.

2. Hamiltonian, model Hamiltonian, and the problem setting

The physical quantity that is directly observed in pulse NMR experiments is the magnetization in
the frame of reference rotating with the Larmore frequency γH0 about the Z axis of the laboratory frame
of reference along which a large constant magnetic field H0 is applied (γ is the gyromagnetic ratio). In
the simplest experiments, this magnetization excited by a single π/2 pulse (i.e., a pulse whose duration tp
in the rotating frame system (RFS) is chosen such that γH1tp = π/2, where H1 is the amplitude of the
radio-frequency field) is called the free precession signal and is proportional to the TCF:

Γ0(t) =
Sp

(
Sx(t)Sx

)
SpS2

x

=
Sp

(
S+(t)S−)

Sp(S+S−)
, (1)

where Sx =
∑

i Sxi , which is the x component of the total system spin, satisfies the Heisenberg equation

Ṡx = i[H0
d , Sx],

S+ = Sx + iSy, S− = Sx − iSy.
(2)

In Eq. (2) and below, we measure energies in frequency units, H0
d is the secular part of the dipole–dipole

interaction [10], which is mainly responsible for the widening of the NMR spectra in nonmetallic diamagnetic
crystals,

H0
d =

3
2

∑
i�=j

bijSziSzj −
1
2

∑
i�=j

bij �Si
�Sj = Hzz +Hex, (3)

where

bij =
γ2

�

2r3ij
(1− 3 cos2 θij),

�rij is the vector connecting the spins i and j, and θij is the angle between the vector �rij and the constant
external magnetic field. Hamiltonian (3) is basic for “spin alchemy”; a researcher can transform it into
other Hamiltonians of interest using radio-frequency pulses.
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The problem of calculating even the simplest TCF (1) with Hamiltonian (3) is extremely complex
because of the multiparticle nature of the problem and the lack of an explicit small parameter in the
Hamiltonian. Essential progress in solving this problem has been achieved only recently (see, e.g., [11], [12]
and the references therein). Calculating the TCF that determine the behavior of multiquantum coherences
is, as is seen below, an even more complex problem. We must therefore simplify the problem by making
an assumption that is basic for the problem under consideration: let the coefficients bij be independent of
angles and distances, i.e., let bij = b for all i and j. Such an approach is common in the physics of magnetic
phenomena (see, e.g., [13]–[15]). Hamiltonian (3) then becomes

H0
d =

3
2

∑
i�=j

bSziSzj −
1
2

∑
i�=j

b�Si
�Sj . (4)

Our assumption drastically simplifies the problem. For example, when calculating TCF (1) for spin
1/2, the term Hex drops out of consideration because the terms Hzz and Hex now commute, and Hex

also commutes with Sx. It is worth mentioning here that the problem complexity also forced the authors
of [6], [7] to use the equal-interaction approximation when calculating the coefficients for modeling the
diffusion in the Liouville space. In the present paper (in contrast to [6], [7]), we consider the exact dynamics
of multispin multiquantum coherences in the framework of the above model. Moreover, we mention that
in the regular solids in which every spin is surrounded by a large number of equivalent neighbors, the TCF
form is practically independent of the value of the spin S, which determines the time scale [16].

When calculating TCF (1) for S = 1/2, we therefore replace Hamiltonian (4) with the expression

H0
d = H = BS2

z − N
4
, B =

3
2
b, (5)

where N is the number of spins in the sample. Because of this, we have

exp(iHt)S+ exp(−iHt) = exp[itB(
S2

z − (Sz − 1)2)]S+ = exp
[
2itB

(
Sz − 1

2

)]
S+. (6)

The term −1/2 in evolution operator (6) appears because the spin itself is excluded from the local field
acting on this spin. This term can obviously be neglected for large N . Moreover, in this approximation,
Sz, Sx, and Sy are numbers (not operators), each of which is normally distributed with the second moment

〈S2
α〉 =

∑
i

S2
αi =

N

4
, (7)

Pα(Sα) =

√
2
πN

exp
(
−2S

2
α

N

)
, α = x, y, z. (8)

Calculating the trace in formula (1) means averaging the projections w.r.t. distribution measure (8).
We can therefore easily obtain

Γ(t) = exp
(
−M2t

2

2

)
, M2 =

B2

N
. (9)

As mentioned, the following action scheme is customary when experimentally forming and observing
multispin and multiquantum coherences: at the first stage, the evolution of a system with the dipole
Hamiltonian (Hamiltonians (4) or (5) for the system under consideration) is provoked on the time interval
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t with the appearing multispin coherences subsequently segregated into classes according to the number of
(adsorbed) quanta and labeled. The latter is realized by rotating through some angle ϕ about the RFS axis
x. At the last stage, the evolution of the system with the Hamiltonian −H is forced on the time interval τ .
The desired TCF can therefore be written in the form

Γϕ(t, τ) =
Sp

[
U+(τ)UϕU(t)SxU

+(t)U+
ϕ U(τ)Sx

]
SpS2

x

. (10)

Strictly speaking, the experiment described in [4] was performed with an effective Hamiltonian slightly
differing from our Hamiltonian (see formula (39) and the discussion that follows it). Nevertheless, these
differences are inessential for analyzing the appearing multiparticle correlation dynamics. This is also
indicated by the results in [7], [8].

As we show below, describing the evolution of multiquantum TCF (10) even for the model Hamiltonian
is a much more cumbersome problem than calculating free precession signal (9).

3. Expansion over orthogonal operators

To explicitly segregate multiparticle coherences appearing in evolution operator (6), we expand this
operator in a series in orthogonal operators. In accordance with the methods in [11], [17], we construct the
orthogonal basis using the commutators with Hamiltonian (5)

Q1 = [H0
d , S

+
0 ] = 2B

∑
i

SziS
+
0 , (11)

Q2 =
[
H0

d , [H
0
d , S

+
0 ]

]
= (2B)2

∑
j �=i

SzjSziS
+
0 + (2B)

2N

4
S+

0 . (12)

The spin subscript 0 indicates a (any) selected spin in the lattice. Only the first term in operator (12) is
orthogonal to the operator S−

0 . Absolutely analogously, the part of the n-fold commutator

Qn =
[
H0

d ,
[
H0

d , . . . , [H
0
d , S

+
0 ] . . .

]]
(13)

that is orthogonal to all the previous operators is

Q(ort)
n = (2B)n

(
N

4

)n/2

O+
n ,

where

O+
n =

∑
i�=j �=j �=···�=q

SziSzj · · ·SzqS
+
0

(
4
N

)n/2

. (14)

We calculate the scalar product in accordance with the rule

〈O+
n | O−

m〉 = δnm Sp(S+
0 S

−
0 )n!. (15)

We now expand the evolving transverse component of the spin in the series in orthogonal operators

U(t)S+
0 U

+(t) =
∑
n=0

inAn(t)O+
n . (16)
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The TCF An(t) are multiparticle coherences. Multiplying (16) by O−
n and calculating the scalar product,

we obtain

Sp
[
S+

0 (t)O
−
n

]
= Sp

[
exp(2iBSzt)S+

0

∑
i�=j �=···�=0

SziSzj · · ·SznS
−
0

](
4
N

)n/2

=

= inAn(t)n! Sp(S+
0 S

−
0 ). (17)

We now expand the exponent in formula (17) in the series

exp(2iBSzt) =
∑
m

(2iBt)m

m!

( ∑
i

Szi

)m

(18)

and calculate the trace. This trace vanishes for m < n. At m = n, we can pair the operators Szj from O−
n

with the operators Szi arising in the exponent expansion n! ways. At m = n, we therefore obtain

(2iBt)n Sp(S+
0 S

−
0 )

(
n!
n!

)(
N

4

)n(
4
N

)n/2

. (19)

For m > n, we can choose from (Sz)m operators for pairing with the operators Szj from On m(m −
1) · · · (m− n− 1) = m! /(m− n)! ways. Hence, for the whole series, we have

Sp(S+
0 S

−
0 )(2iBt)

n
〈 ∑

m≥n

(2iBtSz)n−m

(m− n)!
〉(
N

4

)n(
4
N

)n/2

=

= Sp(S+
0 S

−
0 )(2iBt)

n

(
N

4

)n/2

exp
(
−B

2t2N

2

)
. (20)

Substituting expression (20) in (16), we find the explicit expression for the multispin coherence in the model
under consideration:

An(t) = (2Bt)n
(
N

4

)n/2

exp
(
−B

2t2N

2

)
=

(√
M2 t

)n exp(−M2t
2/2)

n!
. (21)

4. Calculating intensities of multiparticle coherences

To describe multispin multiquantum coherences, we express the operators Sx in relation (10) through
the operators S+ and S−. Then

Γϕ(t, τ) =
1
2
(
Γ+−

ϕ (t, τ) + Γ++
ϕ (t, τ) + Γ−+

ϕ (t, τ) + Γ−−
ϕ (t, τ)

)
. (22)

We now consider the first term in the r.h.s. of (22). Performing the cyclical permutation under the trace
sign, we obtain

Γ+−
ϕ (t, τ) =

Sp
[
UϕU(t)S+U+(t)U+

ϕ U
+(τ)S−U(τ)

]
Sp(S+S−)

. (23)

Substituting expansion (16) in (23), we have

Γ+−
ϕ (t, τ) =

Sp
[
Uϕ

( ∑
n i

nAn(t)
( ∑

0O
+
n

))
U+

ϕ

(∑
m(−i)mAm(τ)

( ∑
0′ O−

m

))]
Sp(S+S−)

. (24)
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We must sum the orthogonal operators over all possible positions of the selected spin “0” (“0′”) in rela-
tion (24); otherwise, the function Γ+−

ϕ (t, τ) would reduce to its autocorrelation part, which is incorrect in
the framework of our model.

We set the angle ϕ = 0 in formula (22). The terms Γ++
ϕ (t, τ) and Γ−−

ϕ (t, τ) then vanish, and we must
set n = m and 0 = 0′ for the orthogonal operators in expression (22). Then

Γ+−
ϕ=0(t, τ) =

∑
n

An(t)An(τ)in(−i)nn! . (25)

Substituting (21) in (25), we have

Γ+−
ϕ=0(t, τ) =

∑
n

(M2tτ)n
exp

[−M2(t2 + τ2)/2
]

n!
= exp

[−M2(t− τ)2
2

]
. (26)

As expected, we then obtain Γ+−
ϕ=0(τ, τ) = 1 at t = τ , i.e., we obtain the complete “time reversal.” Now

acting with the rotation operator Uϕ = exp(iϕSx) on the operator O+
n in (11), we obtain

O+
n (ϕ) =

(
4
N

)n/2 ∑
i�=j �=···�=q �=0

(Szi cosϕ− Syi sinϕ) · · · (Szq cosϕ− Syq sinϕ)×

× (Sx
0 + iSy0 cosϕ+ iSz0 sinϕ). (27)

The last multiplier under the summation sign in formula (27) can be rewritten as

iSz0 sinϕ+
1
2
S+

0 (1 + cosϕ) +
1
2
S−

0 (1 − cosϕ). (28)

We obtain the autocorrelation contribution in (24) at coinciding subscripts “0” and “0′” and upon
pairing the operators Szi · · ·Szq from the first n brackets with the operators Szl from the analogous set.
The operator S+

0 is then paired with the operator S−
0 , and we obtain

Γ+−
ϕauto(t, τ) =

∑
n

1
2
(M2tτ)n exp

[
−M2(t2 + τ2)

2

]
(cosϕ)n

(1 + cosϕ)
n!

=

=
1
2
(1 + cosϕ) exp

[
−M2(t2 + τ2)

2
+M2tτ cosϕ

]
. (29)

The cross contribution to (24) results from the term in which the subscript “0′” of the operators O−
m

coincides with one of the subscripts of the operators Syi in product (27) and the subscript “0” of the
operator Sz0 coincides (see (28)) with one of the subscripts of the operators Szl in O−

m:

Γ+−
ϕcross(t, τ) = −1

2

∑
n

(M2tτ)n(cosϕ)n−1 sin2 ϕ
exp

[−M2(t2 + τ2)/2
]
n

n!
=

= −1
2
sin2 ϕ(M2tτ) exp[M2tτ cosϕ] exp

[
−M2(t2 + τ2)

2

]
. (30)

Adding (29) and (30), we obtain

Γ+−
ϕ (t, τ) =

1
2
(1 + cosϕ−M2tτ sin2 ϕ) exp

[
−M2(t2 + τ2)

2
+M2tτ cosϕ

]
. (31)
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We now consider the second term in (22):

Γ++
ϕ (t, τ) =

Sp
[
Uϕ

( ∑
nAn(t)

( ∑
0 i

nO+
n

))
U+

ϕ

( ∑
mAm(τ)

( ∑
0 i

mO+
m

))]
Sp(S+S−)

. (32)

In the calculation of the autocorrelation part of (32), the difference (compared to calculations when deriving
expression (31)) is that we change the sign of the term cosϕ because the sign of im changes and we pass
from the second to the last term in formula (28). We perform the analogous change when calculating the
cross contribution as well. We then obtain

Γ++
ϕ (t, τ) =

1
2
(1 − cosϕ−M2tτ sin2 ϕ) exp

[
−M2(t2 + τ2)

2
−M2tτ cosϕ

]
. (33)

The two remaining terms in expression (22) are complex conjugate to the expressions already presented
(i.e., they coincide in the case under consideration). Eventually, we obtain

Γϕ(t, τ) =
1
2
(1 + cosϕ−M2tτ sin2 ϕ) exp

[
−M2(t2 + τ2)

2
+M2tτ cosϕ

]
+

+
1
2
(1− cosϕ−M2tτ sin2 ϕ) exp

[
−M2(t2 + τ2)

2
−M2tτ cosϕ

]
. (34)

The desired amplitude of the nth harmonic, which can be experimentally observed, is the Fourier transform
of (34):

gn(t, τ) = (2π)−1

∫ π

−π

dϕ exp(inϕ)Γϕ(t, τ). (35)

We can further use the Euler formulas and the definition of the Bessel function

In(x) = π−1

∫ π

0

dt exp(x cos t) cosnt. (36)

Changing the sign of cosϕ in the exponential in (34) results in changing the sign of the Bessel function at
odd n and retaining this sign at even n. The two terms in (34) therefore mutually cancel at odd n and are
added at even n. The calculations in the framework of our model therefore only result in the appearance
of coherences of even orders, as in the experiments [4]. We eventually find

g2n(t, τ) = exp
[
−M2(t2 + τ2)

2

][
I2n(M2tτ)

(
1− M2tτ

2

)
+
1
2
I2n+1(M2tτ) +

+
1
2
I2n−1(M2tτ) +

1
4
M2tτ

(
I2n+2(M2tτ) + I2n−2(M2tτ)

)]
. (37)

Further, using the recursive relations for the Bessel functions [18], we obtain

gn(t, τ) = In(M2tτ)
(
1 +

n2

M2tτ

)
exp

[
−M2(t2 + τ2)

2

]
. (38)

We note that we obtain expression (38) by assuming an infinite number N of spins in the system. At
the same time, it is a common practice in molecular solids to use a deuteration method to create groups
of isolated spins belonging, as a rule, to a single molecule (or to its fragment) with a high symmetry. As
a rule, the intermolecular contribution of the dipole–dipole interaction to the spectrum widening in such
systems can be almost completely eliminated, and the intramolecular contribution can then be adequately
described by model Hamiltonian (4), (5) above. But we must then take into account that the number N is
finite [19]. The corresponding calculations are in Appendix 1.
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5. Discussing the results

In Fig. 1, we draw the dependences gn(t) for hexamethylbenzol constructed using formula (38). Such
dependences were first observed experimentally by the authors of [4], where the dynamics of the nuclear
spin system was governed by the Hamiltonian

Heff =
1
3
(Hxx −Hyy) =

1
2

∑
i�=j

bij(SxiSxj − SyiSyj). (39)

The observed TCF was proportional to Sp
(
Sz(t)Sz

)
there. We can pass from the correlation function for

the z component to the correlation function for the x component of the spin using the cyclic permutation
x→ y → z of the RFS coordinate axes.

The second moment of the spectrum determined by Hamiltonian (39) is related to the second moment
of the NMR absorption spectrum by

M2 eff =
2
3
M2NMR. (40)

The temperature dependence for the quantity M2NMR was measured in [20].
Hexamethylbenzol is a molecular crystal containing benzol rings to which methyl groups are attached.

Four, six, and more quantum coherences cannot appear inside a single methyl group, and the intergroup
dipole–dipole interaction therefore plays the determining role in forming these coherences. This relatively
weak interaction determines the time scale for the appearance of higher-order correlations.

At a room temperature corresponding to the experimental conditions described in [4], M2NMR =
2.5Oe2, which corresponds to a time scale of the order of 33µsec. At low temperatures when both the
methyl groups and the benzol rings are at rest, the contribution to the second NMR moment from the
protons of the same methyl group is 1/6 of the contribution from protons of other methyl groups. The
ratio between these contributions is unknown at room temperature, when both the methyl groups and the
benzol rings rotate rapidly about their symmetry axes. When calculating the dependences in Fig. 1, we
nevertheless assume that this ratio between contributions to the second moment remains approximately
the same as at low temperatures.

The experiments described in [4] were conducted for polycrystal samples; therefore, their correct de-
scription, rigorously speaking, requires averaging formula (38) over powder, which seems rather difficult.
We therefore choose the second moment (and hence the time scale) to correspond to a polycrystal, which,
taking the above into account, results in the value T ∗ ≈ 90µsec. The obtained results completely agree
qualitatively and agree well quantitatively with the results of the experiment described in [4].

The expression

gn =
[
In(M2τ

2) +
1
2
(
In+1(M2τ

2) + In−1(M2τ
2)

)]
exp(−M2τ

2) (41)

was obtained in [8] to describe the results of the experiment in [4].
The power-averaging over the powder was performed neither there nor in the present paper, and the

time scale, without comments, was set to be T ∗ = 57µsec, which nevertheless resulted in a good agreement
between the theory and experiment. We note that formula (41) was obtained for a model different from
our model. Finally, the difference between formulas (41) and (38) reduces to neglecting the contribution
from cross term (30) in (41).

In Fig. 2, we compare the results of calculations following formulas (38) and (41) with the experimental
data [4]. We use the time scale values above.
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Fig. 1. The time dependence for the doubled amplitudes of multispin multiquantum correlation

functions of hexamethylbenzol: n = 4 is denoted by solid curve, n = 6 by ◦, n = 8 by �, and n = 10

by +.
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Fig. 2. The time dependence for the doubled amplitudes of multispin multiquantum correlation

functions of hexamethylbenzol for n = 4. The solid curve corresponds to our theory, + to calculations

according to formula (41), and � to the experimental data [7].
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6. Conclusion

It is a commonly accepted fact stated long ago in the statistical mechanics of nonequilibrium systems
that the dynamical evolution of systems of many interacting particles is accompanied by the appearance of
multiparticle correlation functions (see, e.g., [21]). Nuclear spin systems are by no means an exception [17].
At the same time, obviously arising problems make calculating any complex multiparticle TCF for actual
systems impossible. The exactly solvable model considered in the present paper makes it possible. We
have obtained the complete set of orthogonal multispin operators explicitly and found the time dependence
for the amplitudes of multiparticle TCF, which are important for the contemporary physics of magnetic
resonance.

Our model describes the behavior of multiparticle correlation functions well, at least for small n. At
the same time, correlation functions may start to deviate for large numbers of particles because a more
rapid growth of moments as this number increases is observed for systems with Hamiltonian (39) (see
Appendix 2) than with the Gaussian function. This probably explains the very rapid growth of the mean
number of particles with correlated motion observed in adamantane [4]. These effects will be considered
elsewhere.

Appendix 1

We find the expressions for the desired TCF determined on a lattice containing a finite number N of
spins. The evolution operator is

exp(iHt)S+
0 exp(−iHt) =

N−1∏
j �=0

(cosBt+ 2iSzj sinBt)S+
0 . (1.1)

Here we use the known properties of exponential operators for the spin 1/2. For the orthogonal operators,
we obtain

O+
n =

(
4

N − 1
)n/2 ∑

i�=j �=···�=q �=0

n︷ ︸︸ ︷
SziSzj · · ·Szq S

+
0 , n < N,

Sp(O+
nO

−
m) =

1
(N − 1)n δnm

n! (N − 1)!
(N − 1− n)! Sp(S

+
0 S

−
0 ).

(1.2)

Expanding the evolution operator in a series in the orthogonal operators, we find

exp(iHt)S+
0 exp(−iHt) = in

N−1∑
n=0

An(t)O+
n , (1.3)

where

An(t) =
1
n!
(N − 1)n/2(sinBt)n(cosBt)N−n−1.

The desired TCF can therefore be represented in the form

Γ+−
ϕ (t, τ) =

Sp
[
Uϕ

( ∑N−1
n=0 (i)

nAn(t)
∑

0O
+
n

)
U+

ϕ

( ∑N−1
m=0(−i)mAm(τ)

∑
0′ O+

m

)]
Sp(S+S−)

. (1.4)

We have

Γ+−
ϕauto(t, τ) = (1 + cosϕ)

∑
n

1
2(N − 1)n

n! (N − 1)!
(N − 1− n)!An(t)An(τ) cosn ϕ =

=
1
2
(1 + cosϕ)(cosBt cosBτ + cosϕ sinBt sinBτ)N−1 (1.5)
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for the autocorrelation part and

Γ+−
ϕcross(t, τ) = −1

2
sin2 ϕ

N−1∑
n

(N − 1)!
(N − n− 1)! (n− 1)! cos

n−1 ϕ(cosBt cosBτ)N−n−1(sinBt sinBτ)n =

= −1
2
(N − 1) sin2 ϕ sinBt sinBτ(cosBt cosBτ + cosϕ sinBt sinBτ)N−2

for the cross part.
As above, the expression for Γ++

ϕ (t, τ) can be obtained by changing the sign of cosϕ, which results in
the sum containing only even powers of cosϕ. We eventually obtain

Γϕ(t, τ) =
1
2
(1 + cosϕ)(cosBt cosBτ + cosϕ sinBt sinBτ)N−1 −

− 1
2
(N − 1) sinBt sinBτ(cosBt cosBτ + cosϕ sinBt sinBτ)N−2 +

+
1
2
(1 − cosϕ)(cosBt cosBτ − cosϕ sinBt sinBτ)N−1 −

− 1
2
(N − 1) sinBt sinBτ(cosBt cosBτ − cosϕ sinBt sinBτ)N−2.

Appendix 2

After performing the cyclical permutation of the variables Sx, Sy, and Sz in the model with infinite-
range interaction, we can write Hamiltonian (39) in the form

H =
1
2
b(S2

z − S2
y).

In what follows, we set b = 1, which corresponds to an obvious choice of the time scale. For the equations
of motion

Ṡx(t) = −2SzSy, Ṡy(t) = SzSx, Ṡz(t) = SySx, (2.1)

we have two integrals of motion:

S2
x + S

2
y + S

2
z = S

2,
1
2
(S2

z − S2
y) = E. (2.2)

Analogous equations were obtained in [14] for a system of classical magnetic moments. The explanation
why the dynamical properties of systems containing quantum and classical magnetic moments coincide in
the limit of an infinite number of nearest neighbors was previously given in [16]. Hence, the corresponding
results in [14] are applicable to our spin system.

System of equations (2.1) is solved [14] by the Jacobi elliptic functions

Sx(t) = ax sn(Ωt+ ϕ0k),

Sy(t) = ay dn(Ωt+ ϕ0k),

Sz(t) = az cn(Ωt+ ϕ0k),

(2.3)

where

a2x = S
2 − 2ε, a2y =

1
2
(S2 + 2ε), a2x =

1
2
(S2 − 2ε),

Ω2 = 2ε+ S2, K2 =
S2 − 2ε
2ε+ S2

, ε = |E|.
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These parameters together with the phase ϕ0 are determined by the values of the spin projections at t = 0.
The trajectories Sx(t), Sy(t), and Sz(t) obtained from (2.3) must be averaged over all possible initial values,
i.e., over all distributions with the Gaussian density functions.

A solution of Eqs. (2.1) can also be sought in the form of the time series

Sx(t) =
∞∑

n=0

Xnt
n, Sy(t) =

∞∑
n=0

Ynt
n, Sz(t) =

∞∑
n=0

Znt
n. (2.4)

Substituting (2.4) in (2.1) and equating the coefficients of equal powers of time, we obtain the system of
recursive equations

(n+ 1)Xn+1 = −2
n∑

m=0

Yn−mZm,

(n+ 1)Yn+1 =
n∑

m=0

Zn−mXm,

(n+ 1)Zn+1 =
n∑

m=0

Xn−mYm

(2.5)

with the initial conditions X0 = Sx(0), Y0 = Sy(0), and Z0 = Sz(0). The coefficients Xn can then be
obtained as the sums

Xn =
m+q+k=n+1∑

m,q,k

Cn
mqkS

m
x S

q
yS

k
z . (2.6)

The expressions for Yn and Zn are analogous.
We give the nonzero coefficients Cmqk

(n) in the first four orders:

C
(1)
11 = −2, C

(2)
102 = C

(2)
120 = −1, C

(3)
013 = C

(3)
031 =

4
3!
, C

(3)
211 = − 8

3!
,

C
(4)
122 = 7 ·

8
4!
, C

(4)
104 = C

(4)
140 =

4
4!
, C

(4)
302 = C

(4)
320 = − 8

4!
.

(2.7)

Using relation (6), we can find the moments of the correlation function:

M2n = (−1)n〈S2
x〉−1 d

2n
〈
Sx(t)Sx

〉
dt2n

∣∣∣∣
t=0

= (−1)n
〈
d2nSx(t)
dt2n

∣∣∣∣
t=0

Sx

〉
〈S2

x〉−1. (2.8)

As in formula (7), we let 〈 · 〉 denote averaging over the initial data with the Gaussian distribution function.
Because

dnSx(t)
dtn

∣∣∣∣
t=0

= Xnn!, (2.9)

substituting (2.9) in (2.8) and averaging over independent Gaussian random variables Sx, Sy, and Sz, we
obtain

M2 = 4〈S2
x〉, M4 = 2(M2)2, M6 = 9(M2)3, M8 = 117(M2)4.

We note that for the Gaussian distribution ϕ(x) = (1/M2(2π1/2)) exp(−0.5x2/M2
2 ), the moments are µ2k =

1 · 3 · . . . · (2k − 1)M2k
2 , where k = 1, 2, . . . .

Using (2.6), we can determine not only the moments but also the orthogonal operators in full analogy
with what was done in the body of the paper. For this, we must substitute Sα =

∑
i Sαi, α = x, y, z,

in (2.6) preserving only operators corresponding to spins located at different sites in the sums.
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