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I. INTRODUCTION

The optical properties of fractal nanoaggregates continue
to attract significant attention.1–11 These objects were dem-
onstrated to exhibit an unusual type of inhomogeneous spec-
tral broadening which, in turn, leads to a variety of interest-
ing physical phenomena such as strong fluctuations of local
fields and enhancement of nonlinear optical responses,12–17

nanometer-scale photomodification, and burning of
polarization-selective spectral holes.18–24The nature of local-
ization of electromagnetic modes in fractal aggregates have
been a subject of intensive study.16,25–30Optical properties of
fractal soot are of significant importance in atmospheric op-
tics and climate research.31–34Another topic of recent interest
is femtosecond dynamics of local excitations in fractal
aggregates.35

The physical model of a fractal aggregate almost exclu-
sively used in the literature is that of an array of small spheri-
cal particles of the same size which form a rigid self-
supporting aggregate. To be more specific, the particles are
allowed to touch at a mathematical point, and two touching
particles are assumed to be rigidly connected to each other.
An aggregate is said to be self-supporting if every particle is
connected to at least one other particle. The set of coordi-
nates specifying the location of the center of each spherical
particle completely defines an aggregate. These coordinates
are usually obtained by simulating an aggregation process on
a computer. Aggregates generated in this manner are random.
The fractal dimension,D, can be found by studying statisti-
cal characteristics of an ensemble of such aggregates. In par-

ticular, the pair density-density correlation functionpsrd is
defined as the probability density to find a pair of distinct
particles belonging to the same aggregate separated by the
distancer. It has the intermediate asymptotepsrd< rD−1/N,
a! r !Rg, wherea is the radius of a single particle andRg is
the average gyration radius of the aggregate. Another way of
obtaining D is by studying the dependence ofRg on the
number of particles in the aggregate,N. One expects that if
psrd is described by the above asymptote,Rg~N1/D.

The optical properties of fractal aggregates have long
been studied in the dipole approximation(DA) (see, for ex-
ample, Refs. 9, 36, and 37). In this approximation, each par-
ticle is replaced by an elementary dipoledi exps−ivtd lo-
cated at its center, where the indexi labels particles in an
aggregate. By considering the interaction of the dipoles with
each other and the incident field, one can obtain a self-
consistent system of linear equations coupling the amplitudes
di to each other and to the external field. All electromagnetic
and, consequently, optical properties of an aggregate within
the DA can be expressed in terms ofdi.

The DA allows one to understand many of the optical
phenomena listed earlierin principle. Most importantly, it
captures the main feature of the optical properties of fractals,
which is the inhomogeneous broadening of the absorption
spectrum, with each homogeneous spectral line correspond-
ing to a certain electromagnetic eigenmode of the system.
However, the DA is inaccurate for touching spheres. This
fact was recognized fairly early38 and has a simple physical
explanation. Indeed, even when the incident field is almost
homogeneous over the volume of a given particle(or even
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the whole aggregate, as is assumed in the quasistatic limit),
the secondary fields scattered by neighboring particles are
highly inhomogeneous. These inhomogeneous fields excite
higher multipole moments inside the particles, which are not
accounted for in the DA. For example, the DA predicts that
the long wavelength tail of absorption spectrum of silver
colloid aggregates terminates at approximately 500 nm,
while experimentally it is known to extend well into the
infrared (IR) spectral region.2,8,10,11,39

Independently of the research aimed specifically at the
optics of fractal aggregates, rigorous numerical methods
have been developed for solving the electromagnetic bound-
ary problem for several interacting spheres by Gerardy and
Ausloos,40 Claro,41–46 Mackowski,47–50 and others. These
methods allow one to overcome the limitations of the DA
and to take into account excitation of higher multipole mo-
ments inside each sphere. The main disadvantage of this ap-
proach is large computational complexity. The rigorous con-
sideration of boundary conditions on the surface of each
sphere results in an infinite-dimensional system of equations.
To be solved on a computer, the system must be truncated at
a finite multipole orderL which leads toNLsL+2d linear
equations. The minimum value ofL required for conver-
gence,Lmin, depends on the dielectric function of the scatter-
ing materialesvd, and on the distance between the spheres.
The problem becomes especially complicated when the
spheres are touching. In this case, it has been demonstrated
thatLmin becomes very large whenesvd is large.47,51,52At the
same time, perturbative53 or mean-field36 approaches lead to
inaccurate results in this case due to strong resonant electro-
magnetic interaction.51

The coefficients in the system of equation discussed in the
previous paragraph depend on the wavelength due to disper-
sion of the dielectric functionesvd. The standard approach
adopted in the literature is to solve this system each time for
a new value of the wavelength(or a different material). This
makes the computations even more time consuming when
optical spectra rather than optical characteristics at a given
wavelength must be calculated. This should be contrasted
with the spectral approach developed in Refs. 54 and 55 and
later, in the DA and with specific application to fractal ag-
gregates, in Ref. 37.(It should be noted that at the time when
these papers were published, the existing computer technol-
ogy did not allow one to perform simulations for random
aggregates with the number of particles and the maximum
order of multipoles included significantly larger than one.)
The approach adopted in Ref. 37 is based on diagonalization
of a wavelength-independent interaction matrix. Thus, the
computationally intensive part is carried out only once for a
given aggregate geometry. After this is done, optical cross
sections of the aggregate for arbitrary wavelength or arbi-
trary material can be calculated very efficiently by simple
summation.

The mathematical formalism of Ref. 37 was developed
using two approximations. The first one is the quasistatic
approximation. This approximation is crucial since beyond
the quasistatic limit the interaction operator becomes non-
Hermitian and, even more importantly, wavelength depen-
dent. The second approximation is the DA which allows one
to reduce the number of equations. However, the interaction

operator remains Hermitian and wavelength independent
even beyond the DA. Therefore, as long as we remain in the
framework of the quasistatics, the approach of Ref. 37 can be
generalized to include higher multipolar interactions, which
is done in this paper. We have developed a computationally
efficient algorithm for including high-order multipolar mo-
ments. Using this approach we have calculated the electro-
magnetic density of states and extinction cross sections for
linear chains of touching spheres and for computer-generated
random fractal aggregates. We have shown that exact ac-
count of higher multipolar interactions allows one to de-
scribe certain spectral features which are not seen in the di-
pole approximation or when relatively low orders of
multipole moments are used. In particular, anomalously high
collective absorption at the plasmon resonance frequency of
an isolated sphere is one of these features. We show that it
takes place due to short-range pair interactions.

In the first part of the paper we focus on the electromag-
netic density of states(DOS). Although such characteristics
as absorption spectra and spatial distribution of local fields
are more relevant physically and can be directly compared
with experimental data, the description based on the DOS is
more general since it depends only on the shape of the scat-
terer but not on the wavelength or the material. The form of
the DOS provides an important insight into the nature of
interaction of a scatterer with external electromagnetic field.
In particular, it allows one to predict, at least qualitatively,
the spectral region in which strong resonance interaction and
a number of physical phenomena that are associated with it
can be expected. In the second part of the paper absorption
spectra of several materials are calculated.

The paper is organized as follows. In Sec. II we briefly
review the mathematical formalism of the electromagnetic
DOS in the context of the quasistatic scattering problem. We
also discuss in this section some general properties of DOS
which follow from simple physical considerations and are
not limited to any particular shape of the scatterer. These
properties have important implications for long wavelength
tales of extinction spectra. Next, we derive a generalization
of an extinction sum rule which was previously reported for
ellipsoids and discuss its relation to the properties of DOS.
Finally, we obtain matrix elements of the electromagnetic
interaction operator in a discrete basis using Maxwell’s equa-
tions in the integral form.

In Sec. III we describe the numerical methods used to
generate random fractal aggregates and to compute the cor-
responding DOS and extinction spectra. We have used three
different kinds of random fractal aggregates in simulations:
lattice cluster-cluster aggregates(CCA) with the fractal di-
mensionD<1.8 and off-lattice aggregates with fractal di-
mensionsD<1.3 andD<2.3. Optical properties were cal-
culated using the representation of the DOS as a continued
fraction.56 This is a very efficient iterative numerical method.
Similar to the conjugate gradient method, it does not update
the interaction matrix during the iterations, but has better
convergence properties for the specific problem studied in
this paper.

Section IV contains the results of simulations. We start
with the simplest case of linear chains of spheres, and pro-
ceed with the DOS for random fractal aggregates of different
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types. Next, extinction spectra for several scattering materi-
als are calculated. We also compare the obtained results with
the DA and with the geometrical cluster renormalization
method(GCRM).57,58The latter corrects the deficiency of the
DA by introducing geometrical intersections of neighboring
particles and has played an important role in a number of
papers.2,3,6,10,22,39,59–62Although the results obtained within
the GCRM have been extensively compared with the experi-
mental data, validation of the method by comparison with
rigorous simulations has not been done so far.

Finally, Sec. V contains a summary and discussion of ob-
tained results.

II. THEORY

A. Formulation of the eigenproblem

We work in a frequency domain. The electromagnetic fre-
quency is denoted byv and the corresponding free-space
wavelength isl=2pc/v. Let the dielectric functionesrd
(with the frequency dependence implied) be given by

esrd = He, if r P V

1, otherwise
, s1d

where V is the region occupied by scattering material(an
array of nonintersecting but possibly touching spheres in our
case). The volume of the regionV will be denoted byv later.
Further, we assume thatl is much larger than the character-
istic size of the scatterer. Correspondingly, the quasistatic
limit is used throughout this paper. In this limit all electro-
magnetic and, consequently, optical properties can be ob-
tained from the Laplace equation

¹2esrdEsrd = 0, s2d

where E is the electric field. One can formulate an eigen-
problem based on this equation. However, to retain more
similarity with the mathematical formalism of Refs. 37 and
63, it is instructive to start instead from the integral equation
for the polarization functionP=fse−1d /4pgE which satisfies

Psrd = xFE0 +E
V

ĜRsr,r8dPsr8dd3r8G . s3d

Here

x =
3

4p

e − 1

e + 2
s4d

is the coupling constant,E0 is the incident field assumed to

be constant inside the regionV and ĜRsr ,r8d is the regular
part of the dyadic free space Green’s function of the Maxwell

equations. It is related to the full Green’s functionĜ (which
contains a singular part) by

Ĝsr,r8d = ĜRsr,r8d −
4p

3
dsr − r8d, s5d

where the components ofĜ are given in the quasistatic limit
by

Gabsr,r8d = −
]2

] ra ] rb8

1

ur − r8u
. s6d

Note that the DA can be obtained from Eq.(3) by assuming
that polarization inside each spherical particle is constant.

If V is finite, any physically reasonable polarization func-
tion must be square integrable, since the rate of absorption of
electromagnetic energy by the object is~eV uPu2d3r. There-
fore,Psrd is an element of a Hilbert spaceH.64 It can be seen
that the integral operator on the right-hand side of Eq.(3)
maps this space onto itself. We denote this operator by
W:H→H. We also introduce abstract vectorsuPl and uE0l
which correspond toPsrd and E0, respectively, and rewrite
Eq. (3) in operator notation as

uPl = xfuE0l + WuPlg. s7d

The formal solution to Eq.(7) can be expressed through the
resolvent of the operatorW, Rsz;Wd;sz−Wd−1:

uPl = sz− Wd−1uE0l = Rsz;WduE0l. s8d

All physical quantities of interest can be obtained from the
matrix elements of the resolvent. In particular, the extinction
cross section is given by

se =
4pk

uE0u2
Im E

V

E0
* ·Psrdd3r =

4pk

uE0u2
Im kE0uPl

=
4pk

uE0u2
Im kE0uRsz;WduE0l. s9d

Thus,se is proportional to the diagonal matrix element of the
resolvent.

Since we are working in the quasistatic limit, both opera-
tors W andR are Hermitian and have the same set of eigen-
vectors. Let us denote the eigenvalues and eigenvectors ofW
by wn and unl, so thatWunl=wnunl. Then we can rewrite Eq.
(9) as

se =
4pk

uE0u2
Imo

n

kE0unlknuE0l
z− wn

. s10d

B. Density of states

Let us also define the weighted DOSGswd according to

Gswd = o
n

kE0unlknuE0l
vuE0u2

dsw − wnd. s11d

SincekE0uE0l= uE0u2v, DOS is normalized:eGswddw=1. Us-
ing the earlier definition ofG, (10) can be equivalently re-
written as

se = 4pkv ImE Gswddw

z− w
. s12d
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If we introduce real and imaginary parts of the variablez
according to65

z= X − id, s13d

we also have

se = 4pkvdE Gswddw

sX − wd2 + d2 . s14d

Thus, in the limit of weak absorptionsd→0d, we have

se = 4p2kvGsXd. s15d

On the other hand, the earlier equation can be viewed as an
alternative definition of the DOS:

Gswd =
1

pvuE0u2
lim
d→0

ImkE0uRsw − id;WduE0l. s16d

The advantage of the description based on DOS is that the
latter is independent of the material properties of the scat-
terer and depends only on its shape. Thus, calculation of
DOS can give important insights about the influence of ge-
ometry on the optical properties. It is important to note that
any numerical calculations based on formula(11) will pro-
duce an essentially singular DOS, while the true spectrum of
the infinite-dimensional operatorW may be continuous. This
problem can be solved by appropriate smoothing, i.e., by
replacing the delta functions in Eq.(11) by Lorentzians of
finite width. A mathematically equivalent, and a more prac-
tical approach is to use the definition(16) with a small but
finite (and constant) value of d. The numerical results ob-
tained in this manner are adequate as long as the value of
constantd used in Eq.(16) is smaller than the actual value of
d=−Imszd for the scattering material. Therefore, calculation
of scattering properties high-conductivity metals pose, in
general, a very serious computational challenge, since the
value of d can be very small for such metals, especially in
the IR and far-IR spectral regions.

C. General properties of the DOS

Here we consider some limitations on the form of DOS
which follow from general physical considerations. Namely,
we will discuss an analogy between eigenvaluesw and de-
polarization factorsn of ellipsoids and certain consequences
of an exact sum rule for the extinction cross section which
follows from casualty.

1. Generalized depolarization factors

By using the identity

z=
4p

3

e + 2

e − 1
=

4p

3
+

4p

e − 1
, s17d

Eq. (12) can be rewritten as

se = kv ImE Gswddw

1/se − 1d + s1/3 −w/4pd
. s18d

Compare this expression to the well-known formula for el-
lipsoids in the quasistatic limit. For the external field aligned
with one of the major axis of the spheroid(labeled byp
=1,2,3), this formula reads66

se
spd = kv Im

1

1/se − 1d + nspd . s19d

By analogy, we can introduce generalized depolarization fac-
tors for a scatterer of an arbitrary shape, according tonn
=1/3−wn/4p, wherewn’s are the eigenvalues of the corre-
sponding operatorW. We expect that the generalized depo-
larization factors satisfy the same inequality as in the case of
ellipsoids, namely 0,nn,1. Correspondingly, we come to
the conclusion that −8p /3,wn,4p /3 and Gswd turns to
zero unlesswP s−8p /3 ,4p /3d.

Although a rigorous mathematical proof of the earlier
property ofGswd is not readily available, the physical inter-
pretation is quite obvious. Consider an electromagnetic reso-
nance in a body of a given shape that takes place when
Ref1/se−1d+nng=0. The resonance condition can be written
as Resed=1−1/nn. First, we prove thatnn cannot be nega-
tive. Indeed, if nn,0, the resonance takes place for
Resed.1. Therefore, we can imagine a hypothetical dielec-
tric of the same shape and with purely real electrostatic per-
meability esv=0d=1−1/nn.1. Since this is the resonance
value ofe and the operatorW does not depend on frequency,
the dielectric can be polarized so that the polarization func-
tion coincides(up to an arbitrary multiplicative constant)
with the nth resonant mode. Such polarization will be
equivalent to a stable distribution of charges inside the di-
electric which can exist indefinitely without external field.
But this is known to be impossible. Thus,nn can not be
negative. The proof thatnn cannot be larger than unity is
similar, but the hypothetical dielectric is replaced by a void
of the same shape in an infinite medium withe=1/s1
−1/nnd.

2. Sum rule for extinction and the long wavelength behavior

Let the incident field be linearly polarized along thez
axis. Then, as is shown in the Appendix, the extinction cross
section of an arbitrary scatterer satisfies the following sum
rule

E
0

`

seslddl = 4p3azz, s20d

whereâ is the electrostatic polarizability tensor of the scat-
tering particle. Note that Eq.(20) is extremely general. It is
not limited to the quasistatic approximation, as the integra-
tion in Eq. (20) is over all values ofl, and also holds for
scatterers of arbitrary size and shape, with possibly spatially
inhomogeneous, tensorial, and nonlocal dielectric function.

One important conclusion about the DOS can be inferred
from the earlier sum rule. Since the electrostatic polarizabil-
ity of any finite object is also finite, integral(20) must con-
verge. This puts some restrictions on the asymptotic behavior
of sesld. In particular, for l→`, se must approach zero
faster than 1/l. We will show that the property of the DOS
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discussed in Sec. II C 1 is consistent with this fact using the
following two examples. First consider dielectric material
with e given by

esvd = 1 −o
k

fk
2

v2 − vk
2 + ivgk

. s21d

Using this expression, we obtain in the limitv→0:

Xsvd = X0 =
4p

3
+

4p

S1
, dsvd =

4pS2

S1
2 v sv → 0d,

s22d

whereS1=ok sfk/vkd2, S2=ok fk
2gk/vk

4 and X and d are de-
fined by Eq.(13). It can be seen that for dielectrics the long
wavelength limit of the variableXsvd lies outside of the
“absorption band”s−8p /3 ,4p /3d. Therefore, using Eq.(14),
we obtain the following asymptotic expression forse in the
long wavelength limit:

sesvd = Avv2, A =
s4pd2S2

cS1
2 E

−8p/3

4p/3 Gswddw

sX0 − wd2 sv → 0d.

s23d

Thus, for dielectrics we obtain a universal scalingse~v2

~1/l2 whenl→` with a coefficient depending on the ma-
terial properties and the scatterer shape.

A more complicated situation is encountered for conduc-
tors. At sufficiently low frequency any conductor can be de-
scribed by the dielectric function of the form

esvd = 1 −
vp

2

vsv + igd
, s24d

so that the asymptotic expressions forXsvd anddsvd are

Xsvd =
4p

3
−

4pv2

vp
2 , dsvd =

4pgv

vp
2 sv → 0d. s25d

Thus, the value ofXsvd stays inside the absorption band and
approaches its right bound whenv→0. As a result, the long
wavelength extinction cross section of metal particles can be
very sensitive to the exact form of the DOS near the point
w=4p /3. In particular, if we assume thatGswd=s4p /3
−wda if w,4p /3, andg is sufficiently small so that we can
replace Lorentzians by delta function in integral(14), we
obtain the asymptote

sesvd = Avv1+2a, A =
ps4pd1+a

cvp
2a sv → 0d. s26d

Unlike in the case of dielectrics, the scaling exponent is not
independent of the form of DOS. Note that the extinction
sum rule(20) is satisfied for anya.0. Note also that the
extinction cross section can experience a cross over from the
1/l decay to 1/l1+2a when the variableX approaches its
right bound and crosses over into the interval where the scal-
ing asymptote ofGswd is valid.

D. Matrix representation of the operator W

Consider N spherical particles with centers atr i
si =1, . . . ,Nd and radiusa. The theory can be easily modified
for polydisperse spheres as well. In order to calculate the
DOS and the extinction cross section, we must obtain a ma-
trix representation of the operatorW. Therefore, we start
with constructing a discrete basis in the Hilbert spaceH.
Consider the following scalar functions:

clm
s1dsrd = Hsr/adlYlmsr̂d, r ø a

0, r . a,
s27d

clm
s2dsrd = Hsa/rdl+1Ylmsr̂d, r ù a

0, r , a,
s28d

and corresponding(electrostatic) vector spherical harmonics

Xilm
s1d srd = slad−1/2 ¹ clm

s1dsr − r id, s29d

X ilm
s2d srd = fsl + 1dag−1/2 ¹ clm

s2dsr − r id. s30d

Here Ylmsx̂d is a spherical function defined by the polar
angles of the unit vectorx̂ in the laboratory frame. The fac-
tors slad−1/2 and fsl +1dag−1/2 are introduced for normaliza-
tion. It can be verified that

E
V

Xilm
s1d*srd ·Xi8l8m8

s1d srdd3r = dii8dll8dmm8. s31d

Here integration is taken over the whole space occupied by
the scattering material(collection of spheres). It follows
from Eq. (31) that functionsXilm

s1d srd constitute an orthonor-
mal basis inH (the proof of completeness is straightfor-
ward). We also have

E
ur8−r iuøa

ĜRsr,r8dXilm
s1d sr8dd3r8 = −

4psl − 1d
3s2l + 1d

Xilm
s1d srd,

if ur − r iu , a, s32d

E
ur8−r iuøa

ĜRsr,r8dXilm
s1d sr8dd3r8 = −

4pÎlsl + 1d
2l + 1

Xilm
s2d srd,

if ur − r iu . a, s33d

E
ur8−r iu.a

ĜRsr,r8dXilm
s2d sr8dd3r8 = −

4pÎlsl + 1d
2l + 1

Xilm
s1d srd,

if ur − r iu , a, s34d

E
ur8−r iu.a

ĜRsr,r8dXilm
s2d sr8dd3r8 = −

4psl + 2d
3s2l + 1d

Xilm
s2d srd,

if ur − r iu . a. s35d
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Here in Eqs.(32) and (33) the integrals are taken over the
volume of ith sphere while integrals((34)) and ((35)) are
taken over the supplement of the volume ofith sphere to the
whole space.

Let us denote abstract vectors in Hilbert spaceH that
correspond toXilm

s1d as uilml. Now, using the relations(32)–

(33) we can obtain the matrix element of the linear operator
W:

kilmuWui8l8m8l = −
4p

3

l − 1

2l + 1
dii8dll8dmm8 + Milm

i8l8m8s1 − dii8d,

s36d

where

Milm
i8l8m8 =E

ur−r iu,a

d3rE
ur8−r i8u,a

d3r8Xilm
s1d*srd · ĜRsr,r8dXi8l8m8

s1d sr8d si Þ i8d. s37d

Using Eq.(33), we obtain

Milm
i8l8m8 = −

4pÎl8sl8 + 1d
2l8 + 1

3E
ur−r iu,a

Xilm
s1d*srd ·Xi8l8m8

s2d srdd3r si Þ i8d. s38d

The earlier integral can be calculated with the use of the formulas for translation of solid spherical harmonics67

clm
s2dsr + Drd = o

l8m8

Klm
l8m8sDrdcl8m8

s1d srd sDr . rd, s39d

where

Klm
l8m8sDr d =

s− 1dl8+m8

2l8 + 1
Î4ps2l + 1ds2l8 + 1dsl + l8 + m− m8d ! sl + l8 − m+ m8d!

f2sl + l8d + 1gsl − md ! sl + md ! sl8 − m8d ! sl8 + m8d!
cl+l8,m8−m

s2d sDrd. s40d

Now we use the definitions ofXilm
s2d srd (30) and the formula(39) to obtain the translation rule for vector spherical harmonics

Xi8l8m8
s2d srd = o

l9m9

Î l9

l8 + 1
Kl8m8

l9m9sr ii8dXil9m9
s1d srd, s41d

wherer ii8=r i −r i8. Substitution of this expansion into integral(38) yields

Milm
i8l8m8 = −

4pÎll 8

2l8 + 1
Kl8m8

lm sr ii8d s42d

=− 4ps− 1dl+mÎ 4pll 8sl + l8 + m− m8d ! sl + l8 − m+ m8d!
f2sl + l8d + 1gs2l + 1ds2l8 + 1dsl − md ! sl + md ! sl8 − m8d ! sl8 + m8d!

cl+l8,m8−m
s2d sr ii8d. s43d

This can be also written in terms of the associated Legendre polynomialsPl
msxd as

Milm
i8l8m8 = − 4ps− 1dl+mS a

rii8
D l+l8+1

Slm
l8m8Pl+l8

m8−mscosuii8de
ism8−mdwii 8. s44d

Hereuii8 andwii8 are the polar angles of the vectorr ii8=r i −r i8 in the laboratory frame andSlm
l8m8 is given by

Slm
l8m8 =

Îll 8sl + l8 + m− m8d!
Îs2l + 1ds2l8 + 1dsl + md ! sl − md ! sl8 + m8d ! sl8 − m8d!

. s45d

The expressions(44) and (45), together with Eq.(36) com-
pletely define the matrix elementkilmuWui8l8m8l. It can be

easily verified that the matrixkilmuWui8l8m8l is Hermitian. It
is essentially equivalent to the matrix derived in Ref. 48; the

VADIM A. MARKEL et al. PHYSICAL REVIEW B 70, 054202(2004)

054202-6



only difference is that here it was obtained from the integral
equations formalism.

The matrix obtained above is infinite. We will truncate it
later. The maximum value ofl andl8 used for this truncation
is denoted byL.

In addition to matrix elements ofW, we also need an
expression for the vectoruE0l. Omitting a trivial derivation,
we adduce the result

uE0l =Î4pa3

3 o
i=1

N FiE0x

ui11l + ui1 − 1l
Î2

− E0y

ui11l − ui1 − 1l
Î2

+ E0zui10lG . s46d

Here E0x,E0y, and E0z denote the Cartesian components of
the polarization vectorE0.

Note that the matrix elements ofW with l = l8=1 corre-
spond to the DA. The corresponding terms decay with dis-
tance between two spheres as 1/r ii8

3 which is characteristic
for the dipole coupling. The terms with higher values ofl
and l8 describe interaction of higher multipoles. This inter-
action is only important for spheres which are close to each
other(generally, separated by less that one sphere diameter).

III. NUMERICS

A. Generation of fractal aggregates

We have generated the following three types of fractal
aggregates: lattice cluster-cluster aggregates with fractal di-
mensionD<1.8 and off-lattice aggregates with fractal di-
mensionsD<1.3 andd<2.3.

In the case of lattice aggregates, we used the aggregation
model introduced by Meakin68 and Jullienet al.69 Namely,
particles were sparsely and randomly distributed on a cubic
lattice at the initial moment of time and then allowed to
move randomly in all directions, sticking on contact. The
subaggregates formed in this process continued to move, col-
liding and sticking with other subaggregates and isolated
monomers, until agglomerates of desired size were formed.

The off-lattice aggregates were generated using a new al-
gorithm intended for simulation of aggregation kinetics in
sols. A simplified version of such generator was first used in
Ref. 2 to study optical absorption by fractal-structured Ag
sols. The main purpose of the proposed algorithm is to simu-
late aggregates of touching spheres with geometrical struc-
ture resembling that of real colloid aggregates in sols as close
as possible.

First, it is clear that in order to achieve a high level of
such resemblance, the aggregation process should be off-
lattice. Indeed, the growth of real aggregates is the result of
random Brownian motion of individual particles and aggre-
gates which is not restricted to any spatial directions or lat-
tices. Second, an important factor affecting the geometrical
structure of the aggregates is rotational motion and energy
exchange between translational and rotational degrees of
freedom during collisions. Rotation of aggregates reduces
the chances of penetration of smaller particles into their inner
areas which results in lower dimensionality, chain-type struc-

ture and local anisotropy. The algorithm described later takes
into account these important characteristics of the aggrega-
tion process.

At the initial moment in time, all particles are randomly
positioned in a rectangular box with the side of about 103

times the particle radius and assigned initial velocities ac-
cording to the the Maxwell distribution. Then mutual poten-
tial forces between the particles are introduced and discrete-
time simulation of the Newtonian dynamics is performed.

In the absence of a collision, the coordinates and velocity
of a particle changes during an iteration step according to
r i8=r i +vidt, vi8=vi +sFi /middt wherer i, vi, mi, andF i are the
coordinate, velocity, mass, and force that acts on theith par-
ticle, respectively. The force is calculated at each time point
t from the total interaction potential. In particular, the algo-
rithm allows one to include the Coulomb and van der Waals
interparticle potentials and external potentials such as gravity
and external electric fields. In addition, a nonconservative
force (viscous friction) is also incorporated into the model.
During a collision, all inter-particle interactions are domi-
nated by the short-range van der Waals potentials(which are
much stronger than the electrostatic forces). However, after
two particles collide, they are assumed to be rigidly con-
nected, and the subaggregates continue to move as rigid bod-
ies for the rest of the aggregation process.

The distances between all pairs of particles are calculated
during each iteration step. When the interparticle distancer ij
between two particlesi and j becomes equal or less than the
sphere diameter, these two particles are considered to be rig-
idly attached to each other. Subaggregates formed in this
manner continue to move under the influence of forces acting
on each individual particle as rigid bodies. Note that the
particle sticking condition is checkedafter an elementary
move. This means that they can technically overlap(the dis-
tance between particle centers may become smaller than the
sphere diameter). However, the time steps are chosen to be
sufficiently small(and velocity dependent), so that the depths
of such overlaps are small compared to sphere diameters, and
when overlaps happen, the interparticle distance is slightly
enlarged to the point of exact touching.

An elementary rotation of a subaggregate(with more than
one particle) is taken into account with the use of rotation
matrices

Rxsad = 11 0 0

0 cosa − sin a

0 sin a cosa
2 ,

Rysbd = 1 cosb 0 sin b

0 1 0

− sin b 0 cosb
2 ,

Rzsgd = 1cosg − sin g 0

sin g cosg 0

0 0 1
2 .

These transformations are applied step by step to all particles
in a given subaggregate. The new coordinates as a result of a
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rotation are calculated according tor i8=RxsadRysbdRzsgdr i

wherea=wxdt, b=wydt, g=wzdt, andw is the angular ve-

locity of an aggregate which satisfiesÎw=J whereJ is the

angular moment andÎ the tensor of inertia of the aggregate
being rotated. The angular velocity is calculated from the
moment of inertia by inverting the tensorI, namely, w
= Î−1J. The linear velocities of individual particles in an ag-
gregate change as the result of rotation according tovi8=vi
+w3 sr i −rcd whererc is the center of mass of the aggregate.
In turn, the angular momentum is updated according toJ8
=J+Mdt whereM is the total torque acting on the aggregate
being rotated. At the initial timeM =0. For an each conse-
quent iteration step,M is found from the known forces that
act on each individual particle in a subaggregate:M =M
+dM; dM=oi F i 3 sr i −rcd.

The described algorithm is capable of simulating the ag-
gregation process for particles of arbitrary size distribution.
It allows one to generate aggregates with controlled value of
fractal dimension in the range 1,D,3 by means of tuning
the parameters of the model. To define the fractal dimension
of aggregatesD the following expression was used:

N = k0sRg/adD, s47d

wherek0 is a prefactor.
In Fig. 1 we show typical aggregates of each type. The

lower-dimensional aggregatessD<1.3d were generated un-
der the conditions of relatively stronger anisotropy of the
interparticle interactions, while the denser aggregatessD
<2.3d the centrosymmetrical part of the interaction was en-
hanced. Note that the aggregate sizes used in simulations of
optical properties were insufficient to accurately determine
the fractal dimension. The latter was calculated using much
larger aggregates of the same type. However, the morphol-
ogy differences between aggregates with different fractal di-
mension shown in Fig. 1 are quite apparent. Complete details
of the aggregation algorithms will be published elsewhere.

B. Representation of the resolvent as a continued
fraction

We have calculated the DOS by using Eq.(16). The re-
solvent was expressed as a continued fraction56

kE0uRsz;WduE0l =
kE0uE0l

z− a0 −
b1

2

z− a2 − . . .

. s48d

The set of coefficientsan andbn is obtained from tridiago-
nalization of the matrixkilmuWui8l8m8l. Namely, starting with
uu0l=fkE0uE0lg−1/2uE0l, we build the orthonormal basisuunl
in which W is tridiagonal according to the basic Lanczos
recursion

Wuunl = anuunl + bn+1uun+1l + bnuun−1l. s49d

A few notes on the numerical implementation of the ear-
lier method must be made. First, the computationally inten-
sive part of each iteration is a matrix-vector multiplication.
The matrix itself is not updated during the iterations. This
allowed us to store it in a memory-efficient way using the
block structure of Eq.(44). Indeed, the storage of the full
matrix may require an exceedingly large amount of memory.
For instance, the calculations withN=100 andL=64 will
require approximately 714 Gb of memory in double preci-
sion if only the upper triangle ofW is stored. However, the
block structure ofW which is apparent from Eq.(44) allows
one to store in the memory a few different blocks, each much
smaller thanW itself, and construct the matrix elements
when they are needed by several multiplications. Although
this comes at a price of reduced speed, this storage scheme
allows one to run this computation in principle, even on a
computer with about 0.5 Gb of memory. In the case of lattice
aggregates, the memory requirements are even further re-
duced since many translational vectorsr ii8 in such aggregates
are the same. Second, the matrixW is, strictly speaking, not
sparse. However, some of its matrix elements are very small.
We have verified that settingkilmuWui8l8m8l=0 for r ii8.4a
and l + l8.2 does not change the results in any noticeably
way. This approximation amounts to neglecting all interac-
tion with multipole orders larger thanL=1 between particles
whose centers are further apart than two sphere diameters.
(Note that the dipole interaction corresponds toL=1 and was
taken into account for all pairs of spheres.) Empirically, this
increased the computation speed by the factor of three to four
times. We have used this approach for large-scale computa-
tions of extinction spectra for fractal aggregates in Sec. IV B;
the spectra of linear chains(Sec. IV A) were calculated with-
out this approximation. In Fig. 2 we show the relative effect
of this approximation on a DOS of a fractal cluster withN
=50, D<2.3, andL=64. Finally, convergence of the contin-
ued fraction(48) itself was confirmed for relatively small
systems by direct diagonalization. For large system sizes, the
convergence was verified visually. An example of conver-
gence with the orderk of approximant to the continued frac-
tion (48) is shown in Fig. 3. It can be seen that the conver-
gence is obtained fork<L=64.

IV. RESULTS

A. DOS for linear chains of particles

We start with the simplest case of a chain consisting of
only two spheres. The electromagnetic properties of two in-

FIG. 1. Sample aggregates used for optical properties calcula-
tions: lattice CCA,D<1.8 (a); off-lattice, D<1.3 (b); and off-
lattice,D<2.3 (c).
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teracting spherical particles have been studied quite exten-
sively. However, most studies have focused on numerical
calculation of optical cross sections or distribution of local
fields for a material with given dielectric function(e.g., see
Refs. 48 and 70) rather than on calculation of DOS. A few
analytical results have been also obtained. Mazets71 has cal-
culated the electrostatic polarizability of two conducting
spheres(the same result may be obtained by the method of
images72). Paleyet al.73 have calculated analytically the qua-
sistatic polarizability of two interacting spheres with arbi-
trary dielectric permeability. From the results obtained in
Ref. 73 an expression for DOS can be deduced, but it ap-
pears to be incorrect. In particular, in the case when the
external field is parallel to the axis connecting the sphere’s
centers, it follows from Eq. 32 in Ref. 73 thatGswd is given
by74

Gswd =E
0

`

f1sxdd fw − f2sxdgdx, s50d

f1sxd = xsx − 1dexps− xd, f2sxd =
4p

3

1 + sx − 1dexps− xd
x

,

s51d

which can be equivalently rewritten as

Gswd = H− f1fgswdgg8swd, if 0 ø w ø 8p/3

0, otherwise
, s52d

where gswd is the solution to the nonlinear equationf2sgd
=w and prime stands for differentiation. It can be seen that
this expression results in nonzero(and, actually, negative)
values forGswd for w.4p /3, which contradicts both the
property of the DOS derived in Sec. II C 1 and the Hermi-
ticity of the operatorW and can, for example, result in nega-
tive values of the extinction cross section for dielectric scat-
terers in the long wavelength region.

We have calculated the DOS for two touching spheres
numerically. The result is shown in Fig. 4. In this figure we
illustrate the convergence of results withL, and also plot for
comparison the DOS given by Paleyet al. [calculated by
numerical integration according to Eq.(50) where the delta
function was replaced by a Lorentzian with the same value of
d as in the other plots].

FIG. 2. Relative errorfGsexactdswd−Gsapproximatedswdg /Gsexactdswd,
whereGsapproximated was calculated with the approximation discussed
in Sec. III B (setting certain small matrix elements to zero) and
Gsexactd—without this approximation. Parameters used:N=50, L
=64, d=0.2.

FIG. 3. Illustration of the convergence of the iterative method.
The rotationally averaged DOSGswd calculated using the continued
fraction representation(48) is plotted as a function ofw for the
continued fraction terminated at different levelsk. Calculation was
performed for a single off-lattice aggregate withN=50 and D
<1.3. Other parameters:L=64 andd=0.2. Note that the curvesk
=64, L=128, andk=200 are practically indistinguishable.

FIG. 4. DOS for two touching spheres for different values ofL
and polarization of external field parallel(a) and perpendicular(b)
to the line connecting the sphere centers. The relaxation parameter
is set tod=0.1. PRS—result of Paleyet al.73
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When the external field is polarized parallel to the axis
connecting the particle centers[Fig. 4(a)], the convergence
with L appears to be slow. This is explained by the fact that
the system is highly degenerate due to the cylindrical sym-
metry so that only modes withmÞ0 give input to the DOS.
Due to the same reason, we have been able to calculateGswd
for extremely large values ofL. The convergence withL is
illustrated in a more quantitative way in Fig. 5. Here we plot
the dimensionless quantitylse/v for two touching spheres

as a function ofL for different values of the refractive index
Îe (the same values are used in Table I later) and the polar-
ization parallel to the axis. It is evident, both from Figs. 4
and 5, that the DOS eventually converges to a well-defined
limit. It also satisfies the requirement formulated in Sec.
II C 1. Note that a much faster convergence is expected in
the absence of axial symmetry when and all modes withm
Þ0 make an input to the DOS. This is indeed confirmed by
simulations, as shown in the Fig. 5(b), where two spheres are
compared with a random off-lattice aggregate withN=50
and D<2.5 for the value ofÎe used in Fig. 5(a) which
resulted in the slowest convergence. We see that for this
value ofÎe convergence is reached forL,4000 in the case
of two spheres but already forL,60 in the case of a random
aggregate.

Now we return to the discussion of Fig. 4(a). The full
multipolar DOS for two touching spheres is dramatically dif-
ferent from the DOS in the DA. Thus, in the caseL=1 (di-
pole terms only), DOS contains a single peak of widthd
centered atw=p /3. The true DOS is much wider spanning
the interval from approximately −p /3 to 4p /3. It is interest-
ing to note that it extends to the theoretical right bound
4p /3, and, judging from the plot, a scaling dependence of
the formGswd<s4p /3−wda for w,4p /3 is plausible. The
results obtained with the account of high-order multipolar
interactions indicate a strong absorption by a two-sphere ag-
gregate at the resonance frequency of an isolated sphere(the
Frohlich frequency). This effect was not described theoreti-
cally before and is of special interest. In particular, calcula-
tions within the GCRM consistently resulted in smaller ab-
sorption at the Frohlich frequency than was experimentally
measured.2,10,57,58However, the account of high-order multi-
polar interactions corrects this discrepancy. Physically, this
can be understood by observing that, contrary to the assump-
tions of the DA, the internal fields in a two-sphere aggregate
contain components both parallel and perpendicular to the
axis connecting the sphere centers, even if the external field
is parallel to this axis. We will also see later that the rela-
tively high absorption at the Frohlich frequency, compared to
that predicted by the GCRM, is also characteristic for multi-
sphere random aggregates.

For polarization of the external field orthogonal to the
axis [Fig. 4(b)], interaction is much weaker. This fact is

FIG. 5. Convergence of the dimensionless quantitylse/v with
L for different values of the complex refractive indexÎe. (a) Two
touching spheres with polarization of the incident field parallel to
the axis for different values ofÎe. (b) Two touching spheres com-
pared to a random off-lattice aggregate withN=50 for Îe=0.737
+5.654i.

TABLE I. The ratiose/se
snonintd, wherese

snonintd=4pkNa3Imfse−1d / se+2dg, for different values of the refractive indexÎe and the number
of spheres in the chain,N. The maximum order of spherical harmonics is as follows.(a) Li=8000 forN=2 andLi=4000 for all otherN and
L'=128 (hereLi is used for polarization parallel to the chain axis andL'—for orthogonal polarization); (b) Li=L'=10. Column(M): data
adopted from Fig. 6 in Ref. 48.

Îe=1.6+0.6i Îe=2+1i Îe=3+2i Îe=0.737+5.654i

N (a) (b) (M) (a) (b) (M) (a) (b) (M) (a) (b)

2 1.033 1.034 1.03 1.106 1.106 1.11 1.410 1.393 1.38 8.445 2.679

3 1.054 1.054 1.05 1.176 1.177 1.19 1.748 1.724 1.71 17.36 5.195

4 1.067 1.067 1.05 1.220 1.221 1.22 1.991 1.966 1.91 25.41 8.228

5 1.075 1.075 1.06 1.250 1.251 1.26 2.166 2.141 2.09 31.82 11.47

10 1.093 1.058 1.07 1.315 1.319 1.32 2.570 2.967 2.49 46.78 57.27

` 1.035 1.058 1.10 1.290 1.319 1.38 2.945 2.967 2.90 62.76 57.27
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widely known (see, for example, Ref. 71). However, the
analysis of DOS provides an additional insight into the na-
ture of interaction. It can be seen that, similar to the DA,
there is a well-pronounced single peak. However, it is shifted
from the value predicted by the DAsw=−p /6d toward the
resonance of an isolated sphere; the maximum is approxi-
mately atw=−p /10. The convergence of DOS withL at this
central peak is very fast and is reached already forL=4.
However, there are also additional peaks in the negativew
region. The amplitudes of these peaks are much smaller than
that of the main peak, and they are not fully converged. In
fact, these peaks are extremely sensitive to the details of
local geometry, as is illustrated in Fig. 6. In this figure we
plot DOS for two touching spheres and for two spheres sepa-
rated by a distanceh=0.005a (between the two nearest
points). While the main peak is practically insensitive to this
separation, the smaller peaks completely change their posi-
tions. It can be argued that in any real physical system such
peaks must be smoothed out due to imperfections of the
surface, effects of nonlocality of the dielectric permeability,
dispersion of particle sizes, etc.

Next we consider linear chains of particles. Infinite chains
can be introduced into calculations by replacing the terms
sa/ r ii8d

l+l8+1 in Eq. (44) by the Riemannz functions zssd
=oi=1

` i−s wheres= l + l8+1. The DOS of an infinite chain is
shown in Fig. 7. Obviously, it is very different both from the
DOS in the dipole approximation and the DOS for two
spheres. First, consider the case of external polarization par-
allel to the chain. In this case DOS has a maximum atw
=4p /3 and is discontinuous at this point, so thatGswd=0 for
w.4p /3. The discontinuity of DOS atw=4p /3 is ex-
pected, since the electrostatic polarizability of an infinite
chain is infinite and, as discussed in Sec. II C 2, the DOS can
be nonzero in this case atw=4p /3; however, it must be
identically zero forw.4p /3. Note that the depolarization
coefficient corresponding tow=4p /3 is n=1/3−w/4p=0,
which is the same as in an infinite cylinder for polarization
parallel to its axis. However, the DOS for an infinite cylinder
has only one peak(for parallel polarization) centered atw
=4p /3 while the DOS for an infinite chain of spheres is
strongly broadened and forms a continuous band in the re-
gion −2p /3,w,4p /3. This constitutes the major differ-
ence between electromagnetic properties of linear chains of

spheres and and prolate spheroids which was established ear-
lier in Ref. 48. Now we turn to polarization orthogonal to the
chain. In this case DOS has a single peak centered nearw
=−2p /3. This value ofw corresponds ton=1/2 which is the
depolarization coefficient of an infinite cylinder for polariza-
tion orthogonal to its axis. Note that the exact position of the
peak shown in Fig. 7 is shifted fromw=−2p /3 towardw
=0 by about 2%, but is not broadened, at least its widths in
not larger thand=0.1 which was the value of the relaxation
constant used in the calculations. Thus, the linear electro-
magnetic properties of an infinite chain of spheres are very
close to those of an infinite cylinder when polarization is
orthogonal to the axis. For polarization parallel to the axis,
linear spectra of these two objects may have the same main
features(the position of the maximum, decrease or increase
of absorption with the wavelength), but are quantitatively
different.

The DOS of finite chains is intermediate between theN
=2 andN=` cases and depends onN as illustrated in Fig. 8.
The DOS maximum gradually shifts asN grows fromw=0
to w=4p /3 for the parallel polarization of the external field
and fromw<−p /10 to −2p /3 for the orthogonal polariza-
tion. This is explained by the fact that the higher multipolar
interactions are short range. When the length of the chain
increases, the relative influence of the long-range dipole in-
teraction also grows. However, the higher multipolar interac-
tions retain significance even in the limitN→`, as can be
seen from a the differences between the exact and the DA
DOS. Note that the rotationally averaged DOS for an infinite
chain and two touching spheres is shown in Sec. IV B later
(Fig. 11).

We have also calculated the extinction cross section for
several values of the refractive index of the material and
different lengths of the chain. Such calculations were carried
out earlier48 and provide us with a means to validate the
numerical procedures used in this paper. The results are dis-
played in Table I. The quantity shown is the dimensionless
ratio se/se

snonintd where se
snonintd=4pk Na3Imfse−1d / se+2dg

is the extinction cross section forN noninteracting spheres,
and all cross sections are rotationally averaged(the same

FIG. 6. Dependence of the DOS for two spheres on the separa-
tion h between the spheres. The polarization of external field is
orthogonal to the line connecting the sphere centers;L=32, d=0.1.

FIG. 7. DOS for an infinite chain of spheres for polarization
parallel (solid line) and orthogonal(dashed line) to the chain. The
top part of the peak corresponding to the orthogonal polarization is
not shown(the peak height is approximately 3.1). The relaxation
parameter is set tod=0.1; L=8000 for parallel polarization andL
=128 for orthogonal polarization.
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quantity as in Fig. 6 of Ref. 48). Fully converged results for
very large values ofL (as specified in the caption) are given
in columns labeled(a). Results forL=10, which in some
cases are not fully converged, are in columns labeled(b).
The columns labeled(M) contain data obtained by digitiza-
tion of Fig. 6 in Ref. 48. Our results coincide with those of
Ref. 48 within the precision allowed by digitization of Fig. 6
in Ref. 48 (approximately, 3%). However, some discrepan-
cies remain. We note that there is a slightly better match
between the data in columns(b) and (M) than between data
in columns(a) and (M). Discrepancies are the strongest in
the N=` case which is not calculated directly in Ref. 48
(instead, we used the data forN=100).

The first three values ofÎe shown in the table correspond
to Resed.0. As is discussed in Sec. II C 2, the parameterX
in this case is greater than 4p /3, so that the DOS atw=X is
identically zero. As a result, electromagnetic excitation of
such materials is off-resonance. In particular, interaction is
weak and convergence withL is fast. Indeed, we have found
that L=10 already provides a result accurate within 3% for
these three values ofÎe. Also, the numerical value of the
ratio se/se

snonintd is close to unity, which is a manifestation of
the relatively weak interaction. The situation changes dra-
matically when Resed,0 and, correspondingly,X,4p /3. In
this case the DOS can be nonzero atw=X and resonance
excitation can take place. To illustrate this, we chose the
fourth value of Îe to be Îe=0.737+5.654i which corre-
sponds to silver atl=818 nm with the finite-size corrections

for a=5 nm as discussed later in Sec. IV D. Note that for this
value of the refractive indexX<0.9s4p /3d andd<0.09. At
N=`, the ratio se/se

snonintd is 62.76—more than 30 times
larger than in any of the three preceding cases. As can be
expected, a much larger value ofL is required for conver-
gence in this case.

An interesting topic discussed in Ref. 48 was a compari-
son of the extinction cross section of anN-sphere chain and
a prolate spheroid with the same aspect ratio. It was shown
that prolate spheroids are more efficient absorbers for the
first three values ofÎe shown in Table I. We can conclude by
examining Fig. 8 that this is generally true whenX.4p /3
because the DOS for longitudinal modes of a chain is always
shifted in the “integral sense” towardw=0 compared to the
DOS of prolate spheroid with the same aspect ratio, while
transverse modes can be neglected forX.0. However, the
effect is expected to be opposite for materials with Resed,0
andX,4p /3. Consider, for example,Îe=0.737+5.654i. In
the limit of N→`, when the disparity between chains and
prolate spheroids was shown to be strongest,48 we have for
this refractive index(after rotational averaging) se/se

sinf.cyl.d

<1.8.

B. DOS for fractal aggregates

We start with the DOS of lattice cluster-cluster aggre-
gates. We have performed computations for aggregates with
N=100 particles and for values ofL up to L=64. Note that
the size of the associated linear system is approximately
422 000 equations with complex coefficients, or 844 000 real
equations.

The DOS(averaged over five random aggregate realiza-
tions and over rotations) is illustrated in Fig. 9 for different
values ofL. It can be seen that the central peak nearw=0 has
converged quite satisfactorily atL=64. However, there are
some nonconverged oscillations in the tails of the DOS. The
oscillations in the region 3,w,4 are physically important
since the value ofGswd in this interval determines the IR and
far IR absorption of metal colloid aggregates. The oscilla-
tions are similar to the ones observed in bispheres in or-
thogonal polarization and the amplitude of these oscillation
decreases withL. It is obvious, however, that the nonzero

FIG. 8. DOS for chains of different length for polarization par-
allel (a) and orthogonal(b) to the axis;d=0.1.

FIG. 9. DOS for lattice CCA aggregates for different values of
L. The relaxation constant is set tod=0.2. Averaging performed
over five random realizations of aggregates and over rotations.
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DOS extends almost to the critical value ofw=4p /3. This is
a very important fact indicating that the collective resonant
extinction of metal colloid aggregates will extend very far
into the IR.

Despite some nonconverged features, the qualitative
shape of the DOS is quite evident from Fig. 9. The true DOS
differs from the DA DOS quite substantially. In particular,
the true DOS retains a higher value near the resonance of an
isolated particle than the DA predicts. This may account for
the experimental observation of a spectral peak near the
Frohlich wavelength in fully aggregated metal colloid aggre-
gates which could not be adequately understood within the
DA.57,58 However, for the values ofw close to the right
bound of 4p /3, the DOS obtained in the DA is zero, while
the true DOS remains finite. The second momentM2 (char-
acteristic width) of the true DOS is larger than that of the DA
DOS. Convergence withL of the first few moments of DOS,
Mn;ewnGswddw, is illustrated in Fig. 10. Note thatM0=1
and M1=0 identically for all values ofL. The moments
shown in Fig. 10 are obviously converged. However, conver-
gence of higher moments is slower. In general, we have veri-
fied that the higher is the order of the moment, the larger
value of L is required for its convergence. Thus, taking
higher values ofL leads to changing the shape of the DOS on
finer and finer scales. For any given value ofd, convergence
with L is reached when this scale becomes much smaller
than d. (When the continued fraction representation(57) is
used to calculate DOS, the order of the approximant,k, must
be larger thanfn/2g+1, regardless ofL, in order to obtain an
accurate value forMnsLd .d

The DOS for five random CCA aggregates is compared to
that of an infinite chain and a bisphere(averaged over rota-
tions) in semilogarithmic scale in Fig. 11. The DOS for the
CCA aggregates and bispheres share some similarity. How-
ever, it is obvious that everywhere except for a narrow cen-
tral peak(slightly shifted fromw=0 to the left), aggregates
are more effective absorbers than bispheres. This result is
explained by the relatively high input of bispheres with the
axis perpendicular to polarization of the external field to the
rotationally averaged spectra. However, in the region
0,w,2 the two curves are very similar, which prompts that
binary interactions are dominating in this interval ofw’s. The
infinite chains have DOS which is distinctly different from
that of aggregates and bispheres: it is significantly smaller at
w=0 but larger atw=4p /3.

Next we consider the dependence of the DOS on the frac-
tal dimension and type of aggregates. DOS for different
types of aggregates is shown in Fig. 12. One can see that all
curves are qualitatively similar. The main peak of the curve
D<1.3 (low-dimensional aggregates) is visibly shifted to the
left from the other two peaks. Also, the difference is well
manifested nearw=4p /3, which has important implications
for long wavelength behavior of extinction. More specifi-
cally, the DOS for aggregates withD=1.8 near the critical
point w=4p /3 is higher than for the other two types of ag-
gregates. This means that the CCA aggregates are more effi-
cient absorbers in the IR and far IR. It is not clear if this is
the consequence of the particular value of the fractal dimen-
sion, or of the local structure of the aggregates. Also, it is
obvious that in the case of the more dense aggregatessD
<2.3d, the DOS is more smooth and appears to be better
converged.

C. Comparison with the geometrical cluster renormalization
method

The GCRM was proposed in Refs. 57 and 58 and used
consequently in a number of papers(for example, see Refs.
2, 3, 6, 10, 22, 39, and 59–62). It is described in detail in
Refs. 51 and 52. The method allows one to capture some
important features of the collective electromagnetic interac-

FIG. 10. First few momentsMn of the DOS for CCA aggregates
as functions ofL. (M0=1 andM1=0 identically for anyL.)

FIG. 11. Comparison of the DOS for a lattice CCA aggregates
(averaged over five random realizations), a bisphere, and an infinite
chain of spheres. All curves are rotationally averaged;d=0.2.

FIG. 12. Comparison of the DOS for lattice CCA(N=100, D
<1.8) and for off-lattice aggregates withN=50 andD<1.3 and
D<2.3. L=64; d=0.2.
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tion in an aggregate while staying within the DA. It has been
validated qualitatively by comparison with experimental data
(e.g., see Refs. 2, 3, 10, and 39), but not with rigorous simu-
lations. In particular, the main features of experimentally ob-
served absorption spectra of silver colloid aggregates were
described within the GCRM quite adequately.2,8,10,11 The
method is briefly summarized later. The central idea of
GCRM is to replace(for the purpose of numerical simula-
tions) an ensemble of aggregates with experimental param-
eters by an ensemble with different average number of par-
ticles in an aggregatesNd, different radius of a single particle
sad and different distance between centers of the nearest
neighbor particlessld. Geometrical intersections of nearest
neighbor spheres is introduced and an intersection parameter
j is defined as the ratio of the distance between centers of
two nearest neighbor spheres to the sphere radius. In an ag-
gregate of touching spheresj=2 while in a renormalized
aggregate j,2. The set of transformations a8
=asj /2dD/s3−Dd ,N8=Ns2jd3D/s3−Dd , l8=ja8, defined for an ar-
bitrary jP s0,2g and fractal dimensionDP f0,3d, keeps the
total volume of the scattering material, the average gyration
radius of aggregates in an ensemble, and the fractal dimen-
sion unchanged. These three parameters are considered
to be important statistical characteristics of an ensemble of
aggregates. The choice of parameterj is somewhat phenom-
enological. The following two choices have been used in the
literature. First,j=s4p /3d1/3<1.612 follows from an anal-
ogy with the discrete-dipole approximation.75 If we place
centers of the spheres on a cubic lattice, This value ofj
provides that the volume of a single sphere is equal to that of
a single cubic cell, so that the volume fill fraction is 1. The
second value,j<1.688 was obtained from the requirement
that a linear chain of spheres has the same depolarization
factors as an infinite cylinder.76 In addition,j<1.788 can be
obtained from the requirement that the renormalized DOS
has the same second momentM2 as the multipole DOS(the
latter is shown in Fig. 10).

In the quasistatic limit, the earlier set of transformations is
mathematically equivalent to replacing the original DOS ob-
tained in the DA,GDAswd, by G8swd=s2/jd3GDAfsj /2d3wg
(note that no such simple scaling rule for the DOS exists
beyond the quasistatics). In Fig. 13 we compare the multi-
pole DOS(L=64) calculated for an ensemble of five lattice
CCA aggregates containingN=100 particles each with that
obtained with the GCRM for different intersection param-
etersj. It can be concluded from the data plotted in Fig. 13
that the renormalized DOS does not resemble the multipole
one for all values ofw. Most importantly, the renormalized
DOS does not posses a central peak nearw=0. Perhaps this
fact explains that the approaches based on the GCRM did not
describe properly absorption near the Frohlich frequency in
silver colloidal aggregates.57,58 However, the positive-w
wing which describes the long wavelength absorption is de-
scribed quite adequately by the GCRM. An especially good
fit is obtained forj=1.688.

D. Extinction spectra

Despite some nonconvergent features in the DOS of frac-
tal aggregates, we can conclude from Fig. 5 thatL=64 is

sufficient for obtaining accurate results for the extinction
cross section of metals such as silver(with the account of
finite-size effects which tend to lower the resonance quality)
for the wavelength up to,800 nm. In this section, we show
our results for extinction spectra of aggregates of different
materials. In the case of silver we extend the spectral range
to approximately 2mm, a wavelength for which convergence
with L has not been established due to computational limita-
tions.

First, we show extinction spectra for some lower conduc-
tivity metals, namely, iron and palladium. The results of mul-
tipole calculations are shown in Fig. 14 and compared with
the pure DA and the GCRM. Calculations illustrated in Fig.
14 were carried out for two ensembles of off-lattice aggre-
gates with different fractal dimensions. The function shown
is the specific extinctionee=v−1se (the extinction cross sec-
tion per unit volume) which has the units of inverse length.
Experimental dielectric function of iron and palladium from
Refs. 77 and 78 were used. The spectral range in which it
was measured in Refs. 77 and 78 determines the spectral
range of the specific extinction shown in Fig. 14. The full
multipole calculationssL=64d are shown by squares, the
pure DA by circles and the GCRM approximation withj
=1.688 by triangles. The noninteracting limit(extinction
spectra of isolated small spheres) are shown by solid lines for
comparison. Note that the noninteracting and pure DA results
do not differ significantly for these metals. The difference
between the multipole calculations and the DA becomes
quite apparent in the long wavelength limit. But GCRM with
j=1.688 provides a very good approximation in the whole
spectral range shown in the figure, based on comparison with
the L=64 curve. The authors are not aware of experimental
spectra measured for fractal nanoaggregates built of lower
conductivity metals; therefore, no comparison with experi-
mental results is possible at this time. Due to this reason, a
GCRM curve withj=1.612 is not shown in Fig. 14. We only
mention that the latter differs significantly from theL=64
curve; however, we show later based on comparison with
experimentally measured spectra that GCRM withj=1.612
may provide a better approximation for black carbon and
silver in the spectral regions where convergence of the mul-
tipole solution withL has not been demonstrated.

FIG. 13. Comparison of the DOS for CCA aggregates calculated
in the GCRM with different intersection parameters and forL=64.
The second moments of the DOS coincide for the curvesj=1.788
andL=64.
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Next, we consider aggregates of black carbon. Carbon-
aceous soots with fractal structure are important atmospheric
pollutants and their extinction properties in a wide spectral
range are of considerable interest. Absorption spectrum of
carbonaceous diesel soot has been measured in a very wide
spectral range(from 0.5mm to 0.857 cm) in Ref. 79. It was
demonstrated that neither the model of isolated spheres nor
of long cylinders can explain the absorption properties of
soot, in particular, the resonance absorption extending into
the centimeter spectral region. The latter property was de-
scribed within the GCRM in Ref. 52. An accurate fit with
experimental data was obtained for the intersection param-
eterj=1.612. In Fig. 15 we plot the same curves as in Ref.
52 (Fig. 7) and the results forL=64 and GCRM withj
=1.688. The plots are shown in the same units and spectral
range, and the dielectric function of black carbon is calcu-
lated using the same three-electron dispersion formula with
parameters given in Ref. 80 as in Ref. 52. However, note that
no accurate measurements of the dielectric function of black
carbon which constitutes soot, which may limit the accuracy
of calculations. Similar to Ref. 52, the experimental data of
Ref. 79 were converted from specific extinction per unit
mass to specific extinction per unit volume assuming that the
mass density of black carbon is 1.9 g/cm3.

Let us focus on the caseD<1.8 which is the fractal di-
mension corresponding to that of aggregates studied in Ref.
79. First, it can be seen that forl,100 mm, the curvesL
=64 andL=1, j=1.612 andL=1, j=1.688 are in reasonable
agreement with each other and the experimental data. At the
same time, the noninteracting limit(which in this case
closely coincides with the pure DA) gives systematically
lower absorption starting from approximatelyl=2 mm.

However, the curvesL=64 andL=1, j=1.688 do not pro-
vide a good fit to the experimental data in the region
l.100 mm. In fact, the difference is quite dramatic atl
,1 cm. Note that the discrepancy at this wavelength is so
large that it cannot be correcting by varying parameters such
as the mass density of black carbon in the diesel soot(which
was not measured directly). However, the GCRM curve with
L=1, j=1.612 provides a reasonably accurate fit to the ex-
perimental data(this is also true forD<2.3). This is in
agreement with the results of Ref. 52.

It is clear from Fig. 15 that the results of multipole calcu-
lationssL=64d are inaccurate forl.100 mm. This can take
place due to one of the following two reasons. First, one can
argue that the Ohmic losses(and the value ofd) in black
carbon become sufficiently small at these wavelength so that
the inaccuracy in the calculated multipole DOS, which can
be attributed to insufficiently large value ofL, leads to the
inaccuracy in calculated spectra. Indeed, it follows from the
three-electron formula for the dielectric function of soot that
d,10−3 at l=1 cm. However, convergence withL was only
obtained ford,0.1, which corresponds approximately tol
=100mm. Note that multipole calculations provide a good
agreement with the experimental data forl,100 mm. Then
it would follow that the GCRM withj=1.612 provides, in
fact, a better approximation to the true DOS near the critical
point w=4p /3 than the full multipole model. Theoretically,
the inaccuracy of the multipole calculations can be corrected
by taking even larger values ofL and improving numerical
methods. However, it seems exceedingly difficult to reach
convergence ford as small as 10−3. The second possible
reason is more physical: namely, the three-electron disper-
sion formula adopted from Ref. 80 may be inaccurate at

FIG. 14. Extinction spectra of palladium and iron aggregates. Calculated for off-lattice aggregates with different fractal dimensions, as
labeled.
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large wavelengths. In fact a strong indication of that is the
fact that the linear regression of the experimental data of Ref.
79 reveals the power law«~1/la wherea=0.81±0.04. As-
suming that this power decay extends to infinitely large val-
ues ofl, we would obtain a contradiction with the sum rule
(20). Thus, there must be a crossover to a faster decay at
some value ofl (which is, perhaps, out of the experimentally
attainable range). Such a crossover would indicate that there
are additional low-frequency resonances in the dielectric
function which are not accounted for in the dispersion for-
mula adopted from Ref. 79. At this point, we can conclude
based on the available experimental data that in the spectral
rangel.100 mm, the GCRM withj=1.612 is a better ap-
proximation then the multipole calculations, even with the
relatively large number of multipoles includedsL=64d. This
finding underscores the importance of the GCRM for highly
conducting materials, when the full multipole calculations
with the desired degree of precision are not yet feasible.

For the study of certain physical phenomena, such as
strong enhancement of optical nonlinearities in fractal aggre-
gates, high conductivity metals such as silver or aluminum
are of primary interest. Unfortunately, our multipole calcula-
tions lack precision at this time to obtain accurate spectra for
these metals forl.900 nm. However, quantitative results
can be obtained for shorter wavelengths. We have used the
dielectric function for silver given in Ref. 81 with the finite-

size correction for the dielectric function. The finite-size cor-
rection is obtained by extracting the Drude part from the
total dielectric function of silver and replacing the Drude
relaxation constantginf (which is measured in bulk samples)
with gsad=ginf +vF /a, wherevF is the Fermi velocity anda
the radius of the sphere. The account of the finite-size effects
is important for high-conductivity metals(with very small
values ofginf). For silver,vF<0.0047c, (c being the speed of
light), ginf <0.0019vp and the wavelength at the plasma fre-
quencyvp is lp=2pc/vp<136 nm. We have calculated the
finite-size correction fora=5 nm. The account of this cor-
rections effectively increases the value ofdsld and leads to a
better convergence of the spectra withL. The results, aver-
aged over five random realizations of CCA aggregates with
N=100 and over rotations, are shown in Fig. 16. We can
conclude that the GCRM curves with bothj=1.612 andj
=1.688 are qualitatively compatible with theL=64 results,
while the pure DA approximation is obviously inadequate.
Most importantly, we see that in the spectral range consid-
ered, these three curves demonstrate strong resonance ab-
sorption, which is evident from the comparison with the DA
and noninteracting curves(in the latter two cases, no reso-
nant excitations are present forl.0.5 mm). The L=64 and
the GCRM curves are also in qualitative agreement with the
many experimental spectra obtained for silver.2,8,10,11,57,58In
particular, the second long wavelength spectral peak was ob-

FIG. 15. Extinction spectra of black carbon aggregates. Calculated for lattice and off-lattice aggregates with different fractal dimensions,
as labeled. Experimental data adopted from Ref. 79 are shown by error bar symbols. The lower row of plots shows the same spectra as in
the plots directly above, but in a smaller spectral range.
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served in many experiments. A detailed comparison with ex-
tensive measurements is beyond the scope of this paper and
will be done elsewhere.

V. SUMMARY AND DISCUSSION

In this paper we have solved the quasistatic scattering
problem for fractal and regular arrays of touching spheres.
The mathematical formalism was based on the electromag-
netic DOS. This approach was used earlier within the frame
of the DA. Here we have extended this treatment beyond the
DA and calculated the DOS and extinction spectra for aggre-
gates built of various materials for the maximum multipole
orderL up to 64 and for number of particles in an aggregate
N up to 100. The values of these parameters used previously
in computer simulations were significantly smaller. Note that
the number of equations that couples multipole excitations in
the array of interacting spheres scales asNLsL+2d. We have
been able to perform calculations for these relatively high
values ofN andL due to the computational efficiency of the
numerical method in this paper which is based on a contin-
ued fraction expansion of the resolvent and an efficient data
storage scheme.

The computational methods developed in this paper can
become a useful tool for investigation of a number of un-
solved problems in optics of colloidal aggregates of noble
metals and, more generally, nanosystems consisting of mul-
tiple spheres. The possibility to calculate optical responses
with the account of high multipole moments for a large num-
ber of interacting spheres is needed for more accurate inter-
pretation of experimental data. Account of higher multipoles
is especially important in problems where distribution of lo-
cal field inside the spheres is significant, such as calculation
of collective nonlinear effects in aggregated metal colloids.
Note that the methods described in this paper can be gener-
alized for calculation of various nonlinear characteristics.

An important material-independent characteristics of op-
tical properties is the density of electromagnetic states(DOS)
which studied extensively in this paper for different systems.
Note that DOS is closely related to theT matrix of the scat-
tering system and, in the quasistatic limit, is also wavelength
independent. The numerical simulations with the account of

higher multipoles have revealed that the DOS, for both bi-
spheres and aggregates, approaches its theoretical right
boundwmax=4p /3. As can be seen in Fig. 9, this is not so in
the DA. Namely, the DA DOS terminates at approximately
w=2p /3. This fact explains why the pure DA fails to de-
scribe accurately the long wavelength properties of most ma-
terials. This deficiency of the DA is partially corrected by the
GCRM. However, significant discrepancies between the mul-
tipole DOS and the GCRM DOS remain, especially near the
central peak atw=0 (Fig. 13). It is also interesting to note
that the DOS calculated in this paper, never extends to its
theoretical left boundw=−8p /3 but terminates at approxi-
mately −4p /3. The DOS at the negative values ofw can be
important for calculating spectra of high conductivity metals
near the plasmon resonance when the spectral variableXsvd
changes sign and can take large negative values.

The account of higher multipoles for calculation of ex-
tinction spectra of random fractal aggregates revealed several
features that were not known previously and cannot be un-
derstood within the DA or GCRM. First, absorption at the
surface plasmon frequency of a single isolated sphere(Froh-
lich resonance) is much larger than is predicted by the DA or
GCRM. The high absorption at the Frohlich frequency was
measured experimentally but could not be explained in a
self-consistent way; it was attributed earlier to the presence
of non-aggregated spheres in the solutions. In this paper we
have shown that such explanation is unnecessary. Second,
full multipole calculations result in a smaller short-
wavelength(below the Frohlich resonance) wing than is pre-
dicted by the DA and GCRM, which has been also experi-
mentally observed before.

An important question is convergence of results with the
maximum order of included multipoles,L. The maximum
value ofL that we have used(except for systems with axial
symmetry in which extremely large values ofL are attain-
able) were L=64 for N=50 andN=100 andL=128 for N
=2. Results shown in Fig. 5 indicate that these values are
sufficient for dù0.1. This includes silver in the near-IR
spectral region(with the finite-size corrections for the dielec-
tric function) and black carbon forl,100 mm.

Returning to calculations of extinction spectra, we must
emphasize that, ultimately, simulations alone are insufficient
to determine the validity of any particular computational
method. The model of touching spheres is highly idealized.
In practice, the spheres are not perfect and do not touch at a
mathematical point. Effects of nonlocality of the dielectric
function and polydispersity of the elementary spheres, as
well as surface oxidation and coating, can also play an im-
portant role, but are very difficult to take into account within
a single mathematically tractable model. The approach pro-
posed here is a step toward developing of such a model.
However, significant efforts remain to be made. It should be
also noted that more phenomenological approaches, such as
the GCRM, can be useful whend is so small that the method
developed in this paper fails to converge withL. This is, for
example, the case for silver in the far-IR spectral region or
for black carbon forl.100 mm.
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APPENDIX: DERIVATION OF THE SUM RULE

The sum rule(20) is a slight generalization of the sum
rule previously published for ellipsoids.82,83 It is obtained by
observing that the quantityksvd;kE0u Pl on the right-hand
side of Eq.(9) is the so calledgeneralized susceptibilityas
defined in Ref. 84, and must, therefore, satisfy the Kramers-
Kronig relations as a function of the electromagnetic fre-
quencyv. In particular

Refksvdg =
2

p
E

0

` v8Imfksv8dgdv8

v82 − v2 , sA1d

where we have used the symmetry property Imfks−vdg
=−Imfksvdg. By settingv=0 in the above formula, we ob-
tain

E
0

`

v−1Imfksvdgdv =
p

2
Refks0dg. sA2d

Next we notice that

v Im ksvd =
cuE0u2

4p
se, sA3d

which follows directly from Eq.(9). On the other hand, we
have

ks0d = E0 ·E uPsrduv=0 d3r = E0 ·dtot, sA4d

wheredtot is the total dipole moment of the scatterer induced
by a constant fieldE0. Define the electrostatic tensor polar-
izability â (which is pure real by definition) and assume that
E0 is directed along thez axis. Then

ks0d = azzuE0u2, sA5d

whereazz is the diagonal element of the tensorâ. Using this
result and Eq.(A3), we immediately arrive at

E
0

`

v−2sesvddv =
2p

c
azz sA6d

or, changing the variable of integration tol=2pc/v, we
obtain Eq.(20). Note that for the rotationally averaged ex-
tinction cross sectionksel, we also obtain

E
0

`

ksesldldl =
4p3

3
Trsâd. sA7d

In the earlier derivation we did not use the quasistatic
approximation, or the assumption that the dielectric function
is scalar and local.
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