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We calculate the quasistatic electromagnetic density of states for aggregates of touching spheres, in particu-
lar, linear chains and computer-generated random fractal aggregates. Multipole moments with orders of up to
L=64 are taken into account for random aggregates with the number of particles ofN\spl@D and up to
L=8000 for linear chains. Extensive comparisons with the dipole approximation and geometrical cluster
renormalization method are performed. Extinction spectra are calculated for several metals and black carbon.
Long wavelength electromagnetic properties of fractal aggregates are considered in details.
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[. INTRODUCTION ticular, the pair density-density correlation functipfr) is
defined as the probability density to find a pair of distinct

The optical properties of fractal nanoaggregates continugarticles belonging to the same aggregate separated by the
to attract significant attentiolt’! These objects were dem- distancer. It has the intermediate asymptqpér)~rP=1/N,
onstrated to exhibit an unusual type of inhomogeneous spee<r <R;, wherea is the radius of a single particle afy is
tral broadening which, in turn, leads to a variety of interest-the average gyration radius of the aggregate. Another way of
ing physical phenomena such as strong fluctuations of locaibtaining D is by studying the dependence Bf on the
fields and enhancement of nonlinear optical respotsés, number of particles in the aggregaié, One expects that if
nanometer-scale  photomodification, and burning ofp(r) is described by the above asymptdggs- NP,
polarization-selective spectral hols?4The nature of local- The optical properties of fractal aggregates have long
ization of electromagnetic modes in fractal aggregates haveeen studied in the dipole approximatiddA) (see, for ex-
been a subject of intensive stuth?>-2°Optical properties of ample, Refs. 9, 36, and $7n this approximation, each par-
fractal soot are of significant importance in atmospheric opticle is replaced by an elementary dipaleexp-iwt) lo-
tics and climate researéfi-3*Another topic of recent interest cated at its center, where the indexabels particles in an
is femtosecond dynamics of local excitations in fractalaggregate. By considering the interaction of the dipoles with
aggregate® each other and the incident field, one can obtain a self-

The physical model of a fractal aggregate almost excluconsistent system of linear equations coupling the amplitudes
sively used in the literature is that of an array of small spherid, to each other and to the external field. All electromagnetic
cal particles of the same size which form a rigid self-and, consequently, optical properties of an aggregate within
supporting aggregate. To be more specific, the particles attae DA can be expressed in termsdf
allowed to touch at a mathematical point, and two touching The DA allows one to understand many of the optical
particles are assumed to be rigidly connected to each othgsthenomena listed earlien principle. Most importantly, it
An aggregate is said to be self-supporting if every particle icaptures the main feature of the optical properties of fractals,
connected to at least one other particle. The set of coordiwhich is the inhomogeneous broadening of the absorption
nates specifying the location of the center of each sphericapectrum, with each homogeneous spectral line correspond-
particle completely defines an aggregate. These coordinatésg to a certain electromagnetic eigenmode of the system.
are usually obtained by simulating an aggregation process ddowever, the DA is inaccurate for touching spheres. This
a computer. Aggregates generated in this manner are randoffact was recognized fairly eadyand has a simple physical
The fractal dimensionD, can be found by studying statisti- explanation. Indeed, even when the incident field is almost
cal characteristics of an ensemble of such aggregates. In pdrtemogeneous over the volume of a given partice even
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the whole aggregate, as is assumed in the quasistatig,limitoperator remains Hermitian and wavelength independent
the secondary fields scattered by neighboring particles areven beyond the DA. Therefore, as long as we remain in the
highly inhomogeneous. These inhomogeneous fields excittamework of the quasistatics, the approach of Ref. 37 can be
higher multipole moments inside the particles, which are nogeneralized to include higher multipolar interactions, which
accounted for in the DA. For example, the DA predicts thatis done in this paper. We have developed a computationally
the long wavelength tail of absorption spectrum of silverefficient algorithm for including high-order multipolar mo-
colloid aggregates terminates at approximately 500 nmments. Using this approach we have calculated the electro-
while experimentally it is known to extend well into the magnetic density of states and extinction cross sections for
infrared (IR) spectral regior:8-10.11.39 linear chains of touching spheres and for computer-generated

Independently of the research aimed specifically at theandom fractal aggregates. We have shown that exact ac-
optics of fractal aggregates, rigorous numerical methodsount of higher multipolar interactions allows one to de-
have been developed for solving the electromagnetic boundscribe certain spectral features which are not seen in the di-
ary problem for several interacting spheres by Gerardy angole approximation or when relatively low orders of
Ausloos?® Claro?-46 Mackowski#’-% and others. These multipole moments are used. In particular, anomalously high
methods allow one to overcome the limitations of the DAcollective absorption at the plasmon resonance frequency of
and to take into account excitation of higher multipole mo-an isolated sphere is one of these features. We show that it
ments inside each sphere. The main disadvantage of this afakes place due to short-range pair interactions.
proach is large computational complexity. The rigorous con- In the first part of the paper we focus on the electromag-
sideration of boundary conditions on the surface of eachetic density of state@0S). Although such characteristics
sphere results in an infinite-dimensional system of equationsis absorption spectra and spatial distribution of local fields
To be solved on a computer, the system must be truncated ate more relevant physically and can be directly compared
a finite multipole orderL which leads toNL(L+2) linear  with experimental data, the description based on the DOS is
equations. The minimum value df required for conver- more general since it depends only on the shape of the scat-
gence L mn, depends on the dielectric function of the scatter-terer but not on the wavelength or the material. The form of
ing materiale(w), and on the distance between the spheresthe DOS provides an important insight into the nature of
The problem becomes especially complicated when thénteraction of a scatterer with external electromagnetic field.
spheres are touching. In this case, it has been demonstratid particular, it allows one to predict, at least qualitatively,
thatL,,, becomes very large whetfw) is large?’51?Atthe  the spectral region in which strong resonance interaction and
same time, perturbativéor mean-field® approaches lead to a number of physical phenomena that are associated with it
inaccurate results in this case due to strong resonant electroan be expected. In the second part of the paper absorption
magnetic interactioft spectra of several materials are calculated.

The coefficients in the system of equation discussed in the The paper is organized as follows. In Sec. Il we briefly
previous paragraph depend on the wavelength due to dispareview the mathematical formalism of the electromagnetic
sion of the dielectric functiore(w). The standard approach DOS in the context of the quasistatic scattering problem. We
adopted in the literature is to solve this system each time foalso discuss in this section some general properties of DOS
a new value of the wavelengtbr a different material This ~ which follow from simple physical considerations and are
makes the computations even more time consuming whenot limited to any particular shape of the scatterer. These
optical spectra rather than optical characteristics at a giveproperties have important implications for long wavelength
wavelength must be calculated. This should be contrastethles of extinction spectra. Next, we derive a generalization
with the spectral approach developed in Refs. 54 and 55 anof an extinction sum rule which was previously reported for
later, in the DA and with specific application to fractal ag- ellipsoids and discuss its relation to the properties of DOS.
gregates, in Ref. 37It should be noted that at the time when Finally, we obtain matrix elements of the electromagnetic
these papers were published, the existing computer techndhteraction operator in a discrete basis using Maxwell's equa-
ogy did not allow one to perform simulations for random tions in the integral form.
aggregates with the number of particles and the maximum In Sec. lll we describe the numerical methods used to
order of multipoles included significantly larger than gne. generate random fractal aggregates and to compute the cor-
The approach adopted in Ref. 37 is based on diagonalizatioresponding DOS and extinction spectra. We have used three
of a wavelength-independent interaction matrix. Thus, thalifferent kinds of random fractal aggregates in simulations:
computationally intensive part is carried out only once for alattice cluster-cluster aggregatéSCA) with the fractal di-
given aggregate geometry. After this is done, optical crossnensionD~1.8 and off-lattice aggregates with fractal di-
sections of the aggregate for arbitrary wavelength or arbimensionsD=1.3 andD ~2.3. Optical properties were cal-
trary material can be calculated very efficiently by simpleculated using the representation of the DOS as a continued
summation. fraction®® This is a very efficient iterative numerical method.

The mathematical formalism of Ref. 37 was developedSimilar to the conjugate gradient method, it does not update
using two approximations. The first one is the quasistatithe interaction matrix during the iterations, but has better
approximation. This approximation is crucial since beyondconvergence properties for the specific problem studied in
the quasistatic limit the interaction operator becomes nonthis paper.

Hermitian and, even more importantly, wavelength depen- Section IV contains the results of simulations. We start
dent. The second approximation is the DA which allows onewith the simplest case of linear chains of spheres, and pro-
to reduce the number of equations. However, the interactioneed with the DOS for random fractal aggregates of different
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types. Next, extinction spectra for several scattering materigshere the components & are given in the quasistatic limit
als are calculated. We also compare the obtained results wi

the DA and with the geometrical cluster renormalization
method(GCRM).5"%8The latter corrects the deficiency of the & 1
DA by introducing geometrical intersections of neighboring Gaplr,r') == : (6)

: : : Iredrplr=r|
particles and has played an important role in a number of A
papers’361022.3959-6\|though the results obtained within Note that the DA can be obtained from E@) by assuming
the GCRM have been extensively compared with the experithat polarization inside each spherical particle is constant.
mental data, validation of the method by comparison with |f \ is finite, any physically reasonable polarization func-

rigorous simulations has not been done so far. tion must be square integrable, since the rate of absorption of
Finally, Sec. V contains a summary and discussion of obelectromagnetic energy by the objecteigy, |P|?d®r. There-
tained results. fore, P(r) is an element of a Hilbert spa@¢.5* It can be seen
that the integral operator on the right-hand side of £).
Il. THEORY maps this space onto itself. We denote this operator by
W:'H—H. We also introduce abstract vectd® and |Ey)
A. Formulation of the eigenproblem which correspond td(r) and E,, respectively, and rewrite

We work in a frequency domain. The electromagnetic fre-Ed. (3) in operator notation as
quency is denoted by and the corresponding free-space

wavelength is\=2#c/w. Let the dielectric functione(r) P)=x{|Eo) + WP)]. (7)
(with the frequency dependence impljeae given by The formal solution to Eq(7) can be expressed through the
. resolvent of the operatdl, R(z; W)= (z-W)™%:
(1) = g, freV 0
71, otherwisé IP) = (z- W)™YEg) = R(z:W)|Ey). 8)

whereV is the region occupied by scattering materiah  All physical quantities of interest can be obtained from the
array of nonintersecting but possibly touching spheres in oumatrix elements of the resolvent. In particular, the extinction
casg. The volume of the regioN will be denoted by later.  cross section is given by

Further, we assume thatis much larger than the character-

istic size of the scatterer. Correspondingly, the quasistatic o= 4k * L P(r)dlr = Am klm (E4|P)

limit is used throughout this paper. In this limit all electro- € |E0|2 |Eq|? 0

magnetic and, consequently, optical properties can be ob- i

tained from the Laplace equation |E |2Im (Eo|RZ:W)|Ey). (9)
V2e(r)E(r) =0, (2

Thus, o, is proportional to the diagonal matrix element of the
where E is the electric field. One can formulate an eigen-resolvent.
problem based on this equation. However, to retain more Since we are working in the quasistatic limit, both opera-
similarity with the mathematical formalism of Refs. 37 and torsW andR are Hermitian and have the same set of eigen-
63, it is instructive to start instead from the integral equationvectors. Let us denote the eigenvalues and eigenvectdks of
for the polarization functio®=[(e—1)/4=]E which satisfies by w, and|n), so thatWin)=w,|n). Then we can rewrite Eq.

(9) as
P(r)= x| Eo+ | Gg(r,r)Pr)d |. 3 Eoln)(nlE,
()X{ofv TP } ® o K s, ESE) "
|Eol z-w,
Here
3 e-1 B. Density of states
X= Ame+?2 ) Let us also define the weighted DQ%w) according to
is the couphr.\g .constanEo |.s the mgdent flgld assumed to rw=> (EqlnX |2 0 Sw-w,). (11)
be constant inside the regidn and Gg(r,r’) is the regular n UlE

part of the dyadic free space Green’s function of the Maxwells, £, [Eg)=|Eo%, DOS | lizedfT'(w)dw=1. U

equations. It is related to the full Green’s functiGn(which ince(Eo| Bo) =|Eol*v, | is normalized/T'(w)dw=1. Us-

contains a singular parby ing the earlier definition of’, (10) can be equivalently re-
written as

R . 4
G(r,r’)=GR(r,r’)—?775(r—r’), (5) o= drko Imf Fwydw (12)
Z—W
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If we introduce real and imaginary parts of the variable Compare this expression to the well-known formula for el-
according t8° lipsoids in the quasistatic limit. For the external field aligned
with one of the major axis of the spheroithbeled byp
z=X-id, (13)  =1,2,3, this formula read®

we also have

oP =kp Im (19)

- () *
Fw)dw > 1/(e=1)+v
X-w)2+ & (14) By analogy, we can introduce generallzed depolanz.atlon fac-

tors for a scatterer of an arbitrary shape, according,to
Thus, in the limit of weak absorptiof— 0), we have =1/3-w,/4m, wherew,’s are the eigenvalues of the corre-
sponding operatow. We expect that the generalized depo-
0o = 4mkuT(X). (15) larization factors satisfy the same inequality as in the case of
ellipsoids, namely & v,<1. Correspondingly, we come to
On the other hand, the earlier equation can be viewed as aRe conclusion that -8/3<w,<4x/3 andI'(w) turns to
alternative definition of the DOS: Zero unlessy e (_877-/3’477-/3)

Although a rigorous mathematical proof of the earlier

I'(w)= %Iim IM(EgRW—i8;W)|Ep).  (16)  Property ofI'(w) is not readily available, the physical inter-
mv|Eol* 50 pretation is quite obvious. Consider an electromagnetic reso-
ance in a body of a given shape that takes place when

latter is independent of the material properties of the scat- e[;/(e—_ll)q/,}]:ol.:_The resonance r?ondmon canbbe written
terer and depends only on its shape. Thus, calculation dts ¢€)=1-1/v,. First, we prove thay, cannot be nega-

DOS can give important insights about the influence of gellve- Indeed, if »,<0, the resonance takes place for

ometry on the optical properties. It is important to note that<&€) > 1. Therefore, we can imagine a hypothetical dielec-
any numerical calculations based on formg4) will pro-  tric of't.he same shape and Wlth_purely 'regl electrostatic per-
duce an essentially singular DOS, while the true spectrum din€ability e(w=0)=1-1/y,>1. Since this is the resonance
the infinite-dimensional operatd¥ may be continuous. This Value ofe and the operatdW does not depend on frequency,
problem can be solved by appropriate smoothing, i.e., byhe dielectric can be polarized so that the polarization func-
replacing the delta functions in E¢L1) by Lorentzians of tion coincides(up to an arbitrary multiplicative constant
finite width. A mathematically equivalent, and a more prac-With the nth resonant mode. Such polarization will be
tical approach is to use the definitigh6) with a small but ~ €quivalent to a stable distribution of charges inside the di-
finite (and constantvalue of 8. The numerical results ob- €lectric which can exist indefinitely without external field.
tained in this manner are adequate as long as the value &t this is known to be impossible. Thus, can not be
constants used in Eq(16) is smaller than the actual value of Negative. The proof that, cannot be larger than unity is
5=-Im(2) for the scattering material. Therefore, calculationSimilar, but the hypothetical dielectric is replaced by a void
of scattering properties high-conductivity metals pose, in°f the same shape in an infinite medium wier1/(1
general, a very serious computational challenge, since thel/vn).

value of § can be very small for such metals, especially in

the IR and far-IR spectral regions. 2. Sum rule for extinction and the long wavelength behavior

oe=4mkv S

The advantage of the description based on DOS is that th

Let the incident field be linearly polarized along the
C. General properties of the DOS axis. Then, as is shown in the Appendix, the extinction cross
section of an arbitrary scatterer satisfies the following sum

Here we consider some limitations on the form of DOSrule

which follow from general physical considerations. Namely,

we will discuss an analogy between eigenvalueand de- * 5
polarization factors of ellipsoids and certain consequences f go(N)d\ = 47, (20)
of an exact sum rule for the extinction cross section which 0
follows from casualty. where & is the electrostatic polarizability tensor of the scat-
_ o tering particle. Note that Eq20) is extremely general. It is
1. Generalized depolarization factors not limited to the quasistatic approximation, as the integra-
By using the identity tion in Eq. (20) is over all values of, and also holds for
scatterers of arbitrary size and shape, with possibly spatially
Ame+?2 Am  Arm inhomogeneous, tensorial, and nonlocal dielectric function.
T e E (17) One important conclusion about the DOS can be inferred
3e-1 3 €-1 . . . L
from the earlier sum rule. Since the electrostatic polarizabil-
Eq. (12) can be rewritten as ity of any finite object is also finite, integra0) must con-
verge. This puts some restrictions on the asymptotic behavior
f T (w)dw of ox(\). In particular, forA —, o, must approach zero
=kv Im . 18 i
Oe=Kv U(e-1) + (1/3 —wiam) (18) faster than 1X. We will show that the property of the DOS
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discussed in Sec. Il C 1 is consistent with this fact using the D. Matrix representation of the operator W
fo.IIowmg two examples. First consider dielectric material  ~qnsider N spherical particles with centers at
with e given by (i=1,... N) and radiusa. The theory can be easily modified
2 for polydisperse spheres as well. In order to calculate the
ew)=1-, —, (21) DOS and the extinction cross section, we must obtain a ma-
ko ‘wk+|w7k trix representation of the operat®W. Therefore, we start
] ) . o o with constructing a discrete basis in the Hilbert spét¢e
Am Am 47S, (rla)'Y,,(f), r<a
X((,()):XO:—+—, 5((1)):—(1) ((1)—>O), mtr, o7
3 'S & hnO=1""0" " raa (&0

(22)

|+1; °
where S, =3, (fi/ w)? $=3 fey/ wy andX and 6 are de- Y2y = {(a/r) YimlP), 1=2 (28)

fined by Eq.(13). It can be seen that for dielectrics the long 0, r<a,
wavelength limit of the variableX(w) lies outside of the
“absorption band(-8w/3,4w/3). Therefore, using Eq14),
we obtain the following asymptotic expression farin the XY (r)=(1a)™2v yD(r -r)), (29
long wavelength limit:

and correspondingelectrostatit vector spherical harmonics

-1/2 2 _r.
() = Ave? (4 m)’S, J“””' Cwdw o Xim(r) = [(1+ Dal ™2V 2 (r = ry). (30
€ ' g3 (Xo—W)? ' Here Y,n(X) is a spherical function defined by the polar
(23) angles of the unit vectak in the laboratory frame. The fac-

tors (la) ™2 and [(I+1)a] %2 are introduced for normaliza-

Thus, for dielectrics we obtain a universal scalingrw?  tion. It can be verified that

= 1/\? when\ — o« with a coefficient depending on the ma-

terial properties and the scatterer shape. J X (r) - x4 '|' (Nd% =8/ 8 Sy - (31
A more complicated situation is encountered for conduc-

tors. At sufficiently low frequency any conductor can be de-

scribed by the dielectric function of the form Here integrgtion is ta'ken over the whole space occupied by
the scattering materladcollec(tl)on of spheres It follows
w? from Eq. (31) that functionsX'"(r) constitute an orthonor-
fw)=1-—2— (24) a (3 im(")

mal basis inH (the proof of completeness is straightfor-

o(w+i
( v ward). We also have

so that the asymptotic expressions ¥{w) and §(w) are

- Am(l-1)
of J GR(r,r X () = = 27— X),
X(0)= T -4 0= T (0—0). (@29 r'rl<a 3(2+1)
3 Wy 5
if r-ri|<a, (32

Thus, the value oK(w) stays inside the absorption band and
approaches its right bound when— 0. As a result, the long
wavelength extinction cross section of metal particles can be f & (XD (e = - 4m’|(| + 1) 2 ().
very sensitive to the exact form of the DOS near the point rl<a RV /%Im B 2l +1 Xim(T
w=4/3. In particular, if we assume thdf(w)=(4=/3
-w)?® if w<4/3, andy is sufficiently small so that we can

replace Lorentzians by delta function in integfad), we if|r—ri|>a, (33
obtain the asymptote
477\|(| +1) e
4ar)tre f Gr(r,r )X (1)’ = - ———=X{P(r),
o) = Avwl*®, A= % (w—0). (26 Ir'-ri|>a m 2l+1 i
Cap,
Unlike in the case of dielectrics, the scaling exponent is not if [r-r| <a, (34)

independent of the form of DOS. Note that the extinction
sum rule(20) is satisfied for anya>0. Note also that the A _4n(1+2)
L . . Gr( r)X(Z)( )d3 ' AV e (2 (r),
extinction cross section can experience a cross over from the RULT) K1) AT 320+ 1) Kijm(r
1/\ decay to 1X1*2* when the variableX approaches its Ir'=ril>a
right bound and crosses over into the interval where the scal-
ing asymptote of'(w) is valid. if [r—ri|>a. (35
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Here in Egs.(32) and (33) the integrals are taken over the (33) we can obtain the matrix element of the linear operator
volume of ith sphere while integral§(34)) and ((35)) are ~ W.
taken over the supplement of the volumeitbf sphere to the

I l ! !
whole space. MW M') = = —= === 8 &1 Sy + Ml ™ (1= 81),
Let us denote abstract vectors in Hilbert sp&g¢ethat 32+1
correspond tc»(l(lfr)1 as|ilm). Now, using the relationg32)— (36)
|
where
Mip ™ = f dr J A/ X () - Gr(r,r )XW, () (i #i). (37)
[r-ril<a [r'=ri/|<a
Using EQq.(33), we obtain
S 47T\“”|,(|,+1)
i"'m" _ _
Mim ™ == 5041
X f X)X (i #i7). (39)
[r-ri|<a
The earlier integral can be calculated with the use of the formulas for translation of solid spherical hatfnonics
YA+ A =X K™ ANt (0 (Ar>), (39
I'm’

where

_ '+’ - ’ ’ o ’
m’(A):( 1) \/4 C+D@" +0+U +m-m) ! (1 +]' = m+m’)! A, 40

2'+1 R0+1)+10-md+m (1 =m) (" +m)! it -

Now we use the definitions o{(z)(r) (30) and the formulga39) to obtain the translation rule for vector spherical harmonics

X (1= 2\ K ) X (1), (41)

1!

wherer;;, =r;—r;,. Substitution of this expansion into integi&@8) yields

I 47T\””,
M:Ier == o +1 :r/’nm/(r” ) (42)
=— dm(- 1)“""\/ A 02 L rmom) e o me ) 2 () (43
[201+1") + 112+ D" + D)1 =m) L +m) L7 =m') L7+ Hnm=me i
This can be also written in terms of the associated Legendre polynoRjiats as
G 1+"+1 ,
Ml ™ = = 4ar(— 1)'+m<r> S PN M (cos 6 )M e (44
i’

Here 6;, and ¢;;: are the polar angles of the vectgr=r;—r;, in the laboratory frame and,;qm' is given by

—
S,m,_ VIP(@+1"+m=-m")!

T V@D DI+ L —m (1 m) (- m) (45)

The expression&44) and (45), together with Eq(36) com-  easily verified that the matridlm|W]i’l’m’) is Hermitian. It
pletely define the matrix elemeridm|W|i’l’'m’). It can be is essentially equivalent to the matrix derived in Ref. 48; the

054202-6



ELECTROMAGNETIC DENSITY OF STATES AND.. PHYSICAL REVIEW B 70, 054202(2004)

only difference is that here it was obtained from the integratture and local anisotropy. The algorithm described later takes
equations formalism. into account these important characteristics of the aggrega-
The matrix obtained above is infinite. We will truncate it tion process.
later. The maximum value dfandl’ used for this truncation At the initial moment in time, all particles are randomly
is denoted byL. positioned in a rectangular box with the side of about 10
In addition to matrix elements ofV, we also need an times the particle radius and assigned initial velocities ac-
expression for the vectdEy). Omitting a trivial derivation, cording to the the Maxwell distribution. Then mutual poten-
we adduce the result tial forces between the particles are introduced and discrete-
N _ _ time simulation of the Newtonian dynamics is performed.
_ jAmdlo | 1D +[il-1) In the absence of a collision, the coordinates and velocity
g = TE Eoc— 75— f i i iterati i
—t V2 of a particle changes during an iteration step according to
_ . r{ =r;+v;dt, v{ =v;+(F;/m)dt wherer;, v;, m, andF; are the
_E i1 -]i1-1) + By coordinate, velocity, mass, and force that acts onthear-
o= +Ei10) |. (46) i ) . . .
icle, respectively. The force is calculated at each time point
. t from the total interaction potential. In particular, the algo-
Here Eo,, Eo,, and Eq, denote the Cartesian components of jjthm allows one to include the Coulomb and van der Waals
the polarization vectoE,. . interparticle potentials and external potentials such as gravity
Note that the matrix elements & with |=1"=1 corre-  anq external electric fields. In addition, a nonconservative
spond to the DA. The corresponding terms decay with disforce (viscous friction is also incorporated into the model.
tance between two spheres ag;l/which is characteristic puring a collision, all inter-particle interactions are domi-
for the dipole coupling. The terms with higher valueslof nated by the short-range van der Waals poteniatich are
and|’ describe interaction of higher multipoles. This inter- much stronger than the electrostatic foncdsowever, after
action is only important for spheres which are close to eachwo particles collide, they are assumed to be rigidly con-
other(generally, separated by less that one sphere diajnetenected, and the subaggregates continue to move as rigid bod-
ies for the rest of the aggregation process.

Il. NUMERICS The distances between all pairs of particles are calculated
. during each iteration step. When the interparticle distagce
A. Generation of fractal aggregates between two particlesandj becomes equal or less than the

We have generated the following three types of fractalsphere diameter, these two particles are considered to be rig-
aggregates: lattice cluster-cluster aggregates with fractal didly attached to each other. Subaggregates formed in this
mensionD~1.8 and off-lattice aggregates with fractal di- manner continue to move under the influence of forces acting
mensionD =~ 1.3 andd~2.3. on each individual particle as rigid bodies. Note that the

In the case of lattice aggregates, we used the aggregatidtarticle sticking condition is checkedfter an elementary
model introduced by Meakif and Jullienet al®® Namely, —Mmove. This means that they can technically ovetthe dis-
particles were sparsely and randomly distributed on a cubitance between particle centers may become smaller than the
lattice at the initial moment of time and then allowed to Sphere diametgrHowever, the time steps are chosen to be
move randomly in all directions, sticking on contact. The sufficiently smalland velocity dependeptso that the depths
subaggregates formed in this process continued to move, cdl such overlaps are small compared to sphere diameters, and
liding and sticking with other subaggregates and isolatedvhen overlaps happen, the interparticle distance is slightly
monomers, until agglomerates of desired size were formedenlarged to the point of exact touching.

The off-lattice aggregates were generated using a new al- An elementary rotation of a subaggregatéth more than
gorithm intended for simulation of aggregation kinetics in0One particlg is taken into account with the use of rotation
sols. A simplified version of such generator was first used irfnatrices

Ref. 2 to study optical absorption by fractal-structured Ag 1 0 0
sols. The main purpose of the proposed algorithm is to simu- )
late aggregates of touching spheres with geometrical struc- Rda@)=|0 cosa -sina |,
ture resembling that of real colloid aggregates in sols as close 0 sina cosa
as possible.

First, it is clear that in order to achieve a high level of cosB 0 sinp
such resemblance, the aggregation process should be off- R/(B) = 0 1 0
lattice. Indeed, the growth of real aggregates is the result of Y ’

random Brownian motion of individual particles and aggre- -sing 0 cosp
gates which is not restricted to any spatial directions or lat-

tices. Second, an important factor affecting the geometrical cosy —siny O
structure of the aggregates is rotational motion and energy R(y)=|siny cosy 0

exchange between translational and rotational degrees of
. - . 0 0 1

freedom during collisions. Rotation of aggregates reduces

the chances of penetration of smaller particles into their inneThese transformations are applied step by step to all particles

areas which results in lower dimensionality, chain-type strucin a given subaggregate. The new coordinates as a result of a
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(Eo|Eo)

(Eo|R(Z;W)|Eg) = - (48)

The set of coefficients,, and 8, is obtained from tridiago-
nalization of the matriXilm|W|i’l’'m’). Namely, starting with
|ug)=[(Eo| Eo)]YJE,), we build the orthonormal basisi,)

in which W is tridiagonal according to the basic Lanczos
recursion

VVIUn> = a’n|un> + ,8n+1|un+1> + IBn|un—l>- (49

FIG. 1. Sample aggregates used for optical properties calcula. “ fEW notes on the numerical implementation of the ear-
tions: lattice CCA,D~1.8 (a); off-lattice, D~1.3 (b); and off- I'?r method must t_)e made'_ First, th(_':' computatlon_al!y |r_1ten-
lattice, D~ 2.3 (c). sive part of each iteration is a matrix-vector multiplication.
The matrix itself is not updated during the iterations. This
: . _ allowed us to store it in a memory-efficient way using the
rotation are calculated according tp= RX(Q)RV(E IR block structure of Eq(44). Indeed, the storage of the full
where a=w,dt, S=wydt, y=wdt, andAW is the angular ve- matrix may require an exceedingly large amount of memory.
locity of an aggregate which satisfiés=J whereJ is the  For instance, the calculations witi=100 andL=64 will
angular moment antlthe tensor of inertia of the aggregate require approximately 714 Gb of memory in double preci-
being rotated. The angular velocity is calculated from thesion if only the upper triangle oV is stored. However, the
moment of inertia by inverting the tensdr namely, w  block structure ofV which is apparent from Eq44) allows
=1"13. The linear velocities of individual particles in an ag- ©Ne to store in the memory a few different blocks, each much

gregate change as the result of rotation according’ tov; smaller thanW itself, and construct the matrix elements

1 T .
+wX (r;—r.) wherer, is the center of mass of the aggregate.Whe” they are negded by several muItlpI|qat|ons. Although
In turn, the angular momentum is updated according'to this comes at a price of reduced speed, this storage scheme

=J+Mdt whereM is the total torque acting on the aggregatea"OWS one to run this computation in principle, even on a
being rotated. At the initial timé/=0. For an each conse- computer with about 0.5 Gb of memory. In the case of lattice
quent iteration stepM is found from the known forces that 2ddregates, the memory requirements are even further re-
act on each individual particle in a subaggregdt=M duced since many translational vectgysin such aggregates
+dM; dM=3, F, X (r;—r,) are the same. Second, the maWikis, strictly speaking, not
’ | I | " . .

The described algorithm is capable of simulating the ag_sparse. Howg\_/er, SOme Of.'ts. matrl_x elements are very small.
gregation process for particles of arbitrary size distribution. Ve hav,e verified that settingim|Wi’l’'m’)=0 for r;, > 4a
It allows one to generate aggregates with controlled value ofnd!1+1">2 does not change the results in any noticeably
fractal dimension in the range<lD <3 by means of tuning Way- This approximation amounts to neglecting all interac-

the parameters of the model. To define the fractal dimensioHon With multipole orders larger than=1 between particles

of aggregate® the following expression was used: whose centers are further apart than two sphere diameters.
(Note that the dipole interaction correspond& tol and was
N =ko(Ry/a)®, (47)  taken into account for all pairs of sphepeBmpirically, this

increased the computation speed by the factor of three to four
times. We have used this approach for large-scale computa-
ions of extinction spectra for fractal aggregates in Sec. IV B;
the spectra of linear chairiSec. IV A) were calculated with-

wherek, is a prefactor.
In Fig. 1 we show typical aggregates of each type. Th
lower-dimensional aggregatéb =~ 1.3) were generated un-

ic:‘ﬁ;rthaerti((::?;di:’tllt(;?;c:i)(f)r:gla\tlil\;]eillg f;?n(?:r:szrlzmr?gy dgstheout this approximation. In Fig. 2 we show the relative effect
P ' ggreg of this approximation on a DOS of a fractal cluster with

~2.3) the centrosymmetrical part of the interaction was eN=50 D~2.3, andL=64. Finally, convergence of the contin-

hanced. Note that the aggregate sizes used in simulations gy raction(48) itself was confirmed for relatively small
optical properties were insufficient to accurately determingysiems by direct diagonalization. For large system sizes, the
the fractal dimension. The latter was calculated using muc onvergence was verified visually. An example of conver-
larger aggregates of the same type. However, the morphofence with the ordek of approximant to the continued frac-
ogy differences between aggregates with different fractal di; (48) is shown in Fig. 3. It can be seen that the conver-
mension shown in Fig. 1 are quite apparent. Complete deta"@ence is obtained fot~ L =64

of the aggregation algorithms will be published elsewhere.

B. Representation of the resolvent as a continued IV. RESULTS
fraction A. DOS for linear chains of particles
We have calculated the DOS by using E#j6). The re- We start with the simplest case of a chain consisting of
solvent was expressed as a continued fraéfion only two spheres. The electromagnetic properties of two in-
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FIG. 2. Relative errof I®ac(w)—[(@proximateyy) ]/ (exach (y), (2)
wherel(@proximate \yag calculated with the approximation discussed 3.5 : — : :
in Sec. lll B (setting certain small matrix elements to zeend [(w) ; %fi'_‘:"_“_’:'_
Iexad__without this approximation. Parameters uséte50, L 3r L=32--—-- 7
_ _ L=128 —
=64, 6=0.2. 25 i
teracting spherical particles have been studied quite exten- %[ ]
sively. However, most studies have focused on numerical 15} .
calculation of optical cross sections or distribution of local . ‘
fields for a material with given dielectric functiqe.g., see
Refs. 48 and 7Prather than on calculation of DOS. A few 0.5 .
analytical results have been also obtained. Mdzétas cal- 0 ast/) | , W
culated the electrostatic polarizability of two conducting -27/3 2r/3 4r/3

spheregqthe same result may be obtained by the method of
imageg?). Paleyet al’® have calculated analytically the qua- (b)
L o97 larizability of ; . h it -
sistatic polarizability of two interacting spheres with arbi FIG. 4. DOS for two touching spheres for different valued of

trary dielectric permeability. From the results obtained N polarization of external field paralle) and perpendiculat)

Ref. 73 an expression for DOS can be deduced, but it ap- . . :
A ) . to the line connecting the sphere centers. The relaxation parameter
pears to be incorrect. In particular, in the case when th

g . . f set t05=0.1. PRS—result of Palegt al’3
external field is parallel to the axis connecting the sphere’s et

centers, it follows from Eq. 32 in Ref. 73 thB{w) is given 41+ (x - Dexpi-x)
74 71+ (X—1)exp-x
by 100 =X~ Dexp=x),  f200=— ,

X
o (51
['(w) = f f1(x) 6w = fo(x)Jdx, (50)
0 which can be equivalently rewritten as
" flgw)]g'w), if 0<w=8m3
_J-flgwlg'(w), if 0 sws=8m
0.5 F(W)_{O, otherwise 52

0.4
where g(w) is the solution to the nonlinear equatidp(g)

=w and prime stands for differentiation. It can be seen that
this expression results in nonzefand, actually, negatiye
values forI'(w) for w>4/3, which contradicts both the
property of the DOS derived in Sec. Il C 1 and the Hermi-
ticity of the operatoW and can, for example, result in nega-
tive values of the extinction cross section for dielectric scat-
terers in the long wavelength region.

FIG. 3. lllustration of the convergence of the iterative method. We have calculated the DOS for two touching spheres
The rotationally averaged DOSw) calculated using the continued Numerically. The result is shown in Fig. 4. In this figure we
fraction representatio8) is plotted as a function ofv for the  illustrate the convergence of results withand also plot for
continued fraction terminated at different levélsCalculation was ~ comparison the DOS given by Paley al. [calculated by
performed for a single off-lattice aggregate wi=50 and D numerical integration according to E@O) where the delta
~1.3. Other parameters:=64 and5=0.2. Note that the curvds  function was replaced by a Lorentzian with the same value of
=64,L=128, andk=200 are practically indistinguishable. 6 as in the other plois

03[

0.2

0.1}

0

-6 6
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40 e
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as a function oL for different values of the refractive index
Ve (the same values are used in Table | [pterd the polar-
ization parallel to the axis. It is evident, both from Figs. 4
and 5, that the DOS eventually converges to a well-defined
limit. It also satisfies the requirement formulated in Sec.
20 - N=2 . Il C 1. Note that a much faster convergence is expected in
the absence of axial symmetry when and all modes with
# 0 make an input to the DOS. This is indeed confirmed by
10 Y AN AN AN ] simulations, as shown in the Fig(®, where two spheres are
[ _/ L compared with a random off-lattice aggregate wik 50
Pl il and D~=~2.5 for the value of\e used in Fig. §a) which
' 10 100 1000 10000 resulted in the slowest convergence. We see that for this
value of e convergence is reached fbr~ 4000 in the case
of two spheres but already far~ 60 in the case of a random
aggregate.

Now we return to the discussion of Fig(ad The full
multipolar DOS for two touching spheres is dramatically dif-
ferent from the DOS in the DA. Thus, in the cdse1 (di-
pole terms only, DOS contains a single peak of widih
centered atv=/3. The true DOS is much wider spanning
the interval from approximately /3 to 44r/3. It is interest-
ing to note that it extends to the theoretical right bound
47/3, and, judging from the plot, a scaling dependence of
the formI'(w) = (47/3-w)“ for w<47/3 is plausible. The
results obtained with the account of high-order multipolar

(b) interactions indicate a strong absorption by a two-sphere ag-
gregate at the resonance frequency of an isolated sytiere

FIG. 5. Convergence of the dimensionless quanity/v with Frohlich frequency This effect was not described theoreti-

L for different values of the complex refractive index. (a) Two cally before and is of special interest. In particular, calcula-
touching spheres with polarization of the incident field parallel totions within the GCRM consistently resulted in smaller ab-
the axis for different values ofe. (b) Two touching spheres com-  gorption at the Frohlich frequency than was experimentally
pared to a random off-lattice aggregate wikl¥50 for ye=0.737 measured:15758However, the account of high-order multi-
+5.654. polar interactions corrects this discrepancy. Physically, this
can be understood by observing that, contrary to the assump-

When the external field is polarized parallel to the axistions of the DA, the internal fields in a two-sphere aggregate
connecting the particle centefBig. 4(a)], the convergence contain components both parallel and perpendicular to the
with L appears to be slow. This is explained by the fact thataxis connecting the sphere centers, even if the external field
the system is highly degenerate due to the cylindrical symis parallel to this axis. We will also see later that the rela-
metry so that only modes wittn+ O give input to the DOS. tively high absorption at the Frohlich frequency, compared to
Due to the same reason, we have been able to caldifate  that predicted by the GCRM, is also characteristic for multi-
for extremely large values df. The convergence with is  sphere random aggregates.
illustrated in a more quantitative way in Fig. 5. Here we plot  For polarization of the external field orthogonal to the
the dimensionless quantityo./v for two touching spheres axis [Fig. 4(b)], interaction is much weaker. This fact is

30 -

TABLE I. The ratio%/afe”"”'”‘), where(ré”"”'”"=47rkNa3Im[(e— 1)/(e+2)], for different values of the refractive indef and the number
of spheres in the chailN. The maximum order of spherical harmonics is as follog@sL,=8000 forN=2 andL;=4000 for all otheN and
L, =128 (hereL, is used for polarization parallel to the chain axis and—for orthogonal polarization (b) L,=L ; =10. Column(M): data
adopted from Fig. 6 in Ref. 48.

Ve=1.6+0.6 Ve=2+1i Ve=3+2 Ve=0.737+5.65#

N @ (b M) @ (b) (M) @ (b) (M) @ (b)

2 1.033 1.034 1.03 1.106 1.106 1.11 1.410 1.393 1.38 8.445 2.679
3 1.054 1.054 1.05 1.176 1.177 1.19 1.748 1.724 1.71 17.36 5.195
4 1.067 1.067 1.05 1.220 1.221 1.22 1.991 1.966 1.91 25.41 8.228
5 1.075 1.075 1.06 1.250 1.251 1.26 2.166 2.141 2.09 31.82 11.47
10 1.093 1.058 1.07 1.315 1.319 1.32 2.570 2.967 2.49 46.78 57.27
% 1.035 1.058 1.10 1.290 1.319 1.38 2.945 2.967 2.90 62.76 57.27
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FIG. 6. Dependence of the DOS for two spheres on the separa- FIG. 7. DOS for an infinite chain of spheres for polarization
tion h between the spheres. The polarization of external field isparallel(solid line) and orthogonaldashed lingto the chain. The
orthogonal to the line connecting the sphere centers32, 6=0.1.  top part of the peak corresponding to the orthogonal polarization is

) not shown(the peak height is approximately 3.T'he relaxation
widely known (see, for example, Ref. J1However, the aameter is set t6=0.1; L=8000 for parallel polarization anid
analysis of DOS provides an additional insight into the na-_15g o, orthogonal polarization.
ture of interaction. It can be seen that, similar to the DA,
there is a well-pronounced single peak. However, it is shiftedspheres and and prolate spheroids which was established ear-
from the value predicted by the DAv=—-7/6) toward the lier in Ref. 48. Now we turn to polarization orthogonal to the
resonance of an isolated sphere; the maximum is approxthain. In this case DOS has a single peak centered wear
mately atw=—-/10. The convergence of DOS withat this  =-27/3. This value ofw corresponds te=1/2 which is the
central peak is very fast and is reached alreadylfed.  depolarization coefficient of an infinite cylinder for polariza-
However, there are also additional peaks in the negative tion orthogonal to its axis. Note that the exact position of the
region. The amplitudes of these peaks are much smaller thageak shown in Fig. 7 is shifted fromv=-27/3 towardw
that of the main peak, and they are not fully converged. In=0 by about 2%, but is not broadened, at least its widths in
fact, these peaks are extremely sensitive to the details gfot larger thans=0.1 which was the value of the relaxation
local geometry, as is illustrated in Fig. 6. In this figure we constant used in the calculations. Thus, the linear electro-
plot DOS for two touching spheres and for two spheres sepanagnetic properties of an infinite chain of spheres are very
rated by a distancér=0.00% (between the two nearest close to those of an infinite cylinder when polarization is
pointg. While the main peak is practically insensitive to this orthogonal to the axis. For polarization parallel to the axis,
separation, the smaller peaks completely change their posinear spectra of these two objects may have the same main
tions. It can be argued that in any real physical system sucfeatures(the position of the maximum, decrease or increase
peaks must be smoothed out due to imperfections of thef absorption with the wavelengthbut are quantitatively
surface, effects of nonlocality of the dielectric permeability, different.
dispersion of particle sizes, etc. The DOS of finite chains is intermediate between khe

Next we consider linear chains of particles. Infinite chains=2 andN=« cases and depends bias illustrated in Fig. 8.
can be introduced into calculations by replacing the termghe DOS maximum gradually shifts &sgrows fromw=0
(alri)"™'"* in Eq. (44) by the Riemann/ functions {(s)  to w=4/3 for the parallel polarization of the external field
=37, i wheres=1+I"+1. The DOS of an infinite chain is and fromw~-7/10 to —27/3 for the orthogonal polariza-
shown in Fig. 7. Obviously, it is very different both from the tion. This is explained by the fact that the higher multipolar
DOS in the dipole approximation and the DOS for two interactions are short range. When the length of the chain
spheres. First, consider the case of external polarization paiacreases, the relative influence of the long-range dipole in-
allel to the chain. In this case DOS has a maximunwat teraction also grows. However, the higher multipolar interac-
=4/3 and is discontinuous at this point, so ti&v)=0 for  tions retain significance even in the linlit—, as can be
w>47/3. The discontinuity of DOS aw=4w/3 is ex- Seen from a the differences between the exact and the DA
pected, since the electrostatic polarizability of an infiniteDOS. Note that the rotationally averaged DOS for an infinite
chain is infinite and, as discussed in Sec. Il C 2, the DOS caghain and two touching spheres is shown in Sec. IV B later

be nonzero in this case at=4w/3; however, it must be (Fig. 11.

identically zero forw>4s/3. Note that the depolarization ~ We have also calculated the extinction cross section for
coefficient corresponding ter=4/3 is v=1/3-w/47=0, several values of the refractive index of the material and

which is the same as in an infinite cylinder for polarizationdifferent lengths of the chain. Such calculations were carried
parallel to its axis. However, the DOS for an infinite cylinder out earlier®® and provide us with a means to validate the
has only one peakfor parallel polarization centered aw ~ numerical procedures used in this paper. The results are dis-
=47/3 while the DOS for an infinite chain of spheres is played in Table I. The quantity shown is the dimensionless
strongly broadened and forms a continuous band in the reatio oo/ o™ where 0" =47k N&Im[(e-1)/(e+2)]

gion —-2w/3<w<4s/3. This constitutes the major differ- is the extinction cross section fof noninteracting spheres,
ence between electromagnetic properties of linear chains @nd all cross sections are rotationally averagée same

054202-11



VADIM A. MARKEL et al.

PHYSICAL REVIEW B 70, 054202(2004)

0.5 T T T 0.4 ) e ——
T'(w) % = 2 S [ =382 ———--
04} N8 L=64
N =5 e 0.3
N=10--- a
03| = -
02|
02} i
01} 4 0.1}
0.0 L PR e I
—2r/3 0 2r/3 41r/3 -An/3 0 4n/3
(@) FIG. 9. DOS for lattice CCA aggregates for different values of
4.0 T T T N—o___ L. The relaxation constant is set #=0.2. Averaging performed
I'(w) NN_;lg - over five random realizations of aggregates and over rotations.
3.0F N;OO """""" .
for a=5 nm as discussed later in Sec. IV D. Note that for this
value of the refractive indeX=0.94x/3) and 5=~ 0.09. At
20r ] N=o0, the ratio oo/a'"°"™ is 62.76—more than 30 times
Iarger than in any of the three preceding cases. As can be
1.0k 4 expected, a much larger value bfis required for conver-
gence in this case.
w An interesting topic discussed in Ref. 48 was a compatri-
0.0 27:/3 41:/3 son of the extinction cross section of Alksphere chain and

a prolate spheroid with the same aspect ratio. It was shown
(b) that prolate spheroids are more efficient absorbers for the
first three values of'e shown in Table I. We can conclude by
FIG. 8. DOS for chains of different length for polarization par- examining Fig. 8 that this is generally true wh¥m-47/3
allel () and orthogonaib) to the axis;5=0.1. because the DOS for longitudinal modes of a chain is always
shifted in the “integral sense” towaml=0 compared to the
DOS of prolate spheroid with the same aspect ratio, while
transverse modes can be neglectedXor0. However, the

quantity as in Fig. 6 of Ref. 48Fully converged results for
very large values ok (as specified in the captipare given
in columns labeleda). Results forL=10, which in some effect is expected to be opposite for materials wittdre 0
cases are not fully converged, are in columns labg¢®d  andX<4s/3. Consider, for example,e=0.737+5.654 In
The columns labeledV) contain data obtained by digitiza- the limit of N— o, when the disparity between chains and
tion of Fig. 6 in Ref. 48. Our results coincide with those of prolate spheroids was shown to be strond&ste have for
Ref. 48 within the precision allowed by digitization of Fig. 6 this refractive |nde)(af‘[er rotational a\/erag")@-e/ (inf.cyl)
in Ref. 48 (approximately, 3% However, some discrepan- ~1.8.
cies remain. We note that there is a slightly better match
between the data in columiib) and (M) than between data
in columns(a) and (M). Discrepancies are the strongest in
the N= case which is not calculated directly in Ref. 48  Wwe start with the DOS of lattice cluster-cluster aggre-
(instead, we used the data fii=100). gates. We have performed computations for aggregates with
The first three values ofe shown in the table correspond N=100 particles and for values &f up to L=64. Note that
to Re(e) >0. As is discussed in Sec. Il C 2, the parameter the size of the associated linear system is approximately
in this case is greater than43, so that the DOS at=Xis 422 000 equations with complex coefficients, or 844 000 real
identically zero. As a result, electromagnetic excitation ofequations.
such materials is off-resonance. In particular, interaction is The DOS(averaged over five random aggregate realiza-
weak and convergence withis fast. Indeed, we have found tions and over rotationss illustrated in Fig. 9 for different
that L=10 already provides a result accurate within 3% forvalues ofL. It can be seen that the central peak neai0 has
these three values ofe. Also, the numerical value of the converged quite satisfactorily &t=64. However, there are
ratio oo/ 0" is close to unity, which is a manifestation of some nonconverged oscillations in the tails of the DOS. The
the relatlvely weak interaction. The situation changes draescillations in the region w<4 are physically important
matically when Rée) <0 and, correspondingl$<4m/3.In  since the value oF (w) in this interval determines the IR and
this case the DOS can be nonzerowatX and resonance far IR absorption of metal colloid aggregates. The oscilla-
excitation can take place. To illustrate this, we chose thdions are similar to the ones observed in bispheres in or-
fourth value of Ve to be Ve=0.737+5.65#4 which corre- thogonal polarization and the amplitude of these oscillation
sponds to silver at =818 nm with the finite-size corrections decreases witlL. It is obvious, however, that the nonzero

B. DOS for fractal aggregates
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FIG. 10. First few moment®l,, of the DOS for CCA aggregates FIG. 11. Comparison of the DOS for a lattice CCA aggregates
as functions olL. (My=1 andM,=0 identically for anyL.) (averaged over five random realizatipre bisphere, and an infinite
. o chain of spheres. All curves are rotationally averag#e.2.
DOS extends almost to the critical valuewf47/3. This is

a very important fact indicating that the collective resonant ,
extinction of metal colloid aggregates will extend very far Next we consider the dependence of the DOS on the frac-

into the IR. tal dimension and type of aggregates. DOS for different

Despite some nonconverged features, the qualitativé/Pes of aggregates is shown in Fig. 12. One can see that all
shape of the DOS is quite evident from Fig. 9. The true DOSEUrves are qualitatively similar. The main peak of the curve
differs from the DA DOS quite substantially. In particular, D~ 1.3 (low-dimensional aggregatess visibly shifted to the
the true DOS retains a higher value near the resonance of d@ft from the other two peaks. Also, the difference is well
isolated particle than the DA predicts. This may account formanifested neaw=47/3, which has important implications
the experimental observation of a spectral peak near théor long wavelength behavior of extinction. More specifi-
Frohlich wavelength in fully aggregated metal colloid aggre-cally, the DOS for aggregates wilh=1.8 near the critical
gates which could not be adequately understood within th@oint w=44/3 is higher than for the other two types of ag-
DA.>"8 However, for the values ofv close to the right gregates. This means that the CCA aggregates are more effi-
bound of 4r/3, the DOS obtained in the DA is zero, while cjent absorbers in the IR and far IR. It is not clear if this is
the true DOS remains finite. The second momiént(char-  the consequence of the particular value of the fractal dimen-
acteristic width of the true DOS is larger than that of the DA sion, or of the local structure of the aggregates. Also, it is
DOS. Convergence _With of the_first_ few moments of DOS, pvious that in the case of the more dense aggreddies
M”EIWHF(W)dW'. s illustrated in Fig. 10. Note tha¥l,=1 ~2.3), the DOS is more smooth and appears to be better
and M;=0 identically for all values ofL. The moments

L . converged.
shown in Fig. 10 are obviously converged. However, conver-
gence of higher moments is slower. In general, we have veri- _ _ _ o
fied that the higher is the order of the moment, the larger C. Comparison with the geometrical cluster renormalization
value of L is required for its convergence. Thus, taking method
higher values ot leads to changing the shape of the DOS on  The GCRM was proposed in Refs. 57 and 58 and used
finer and finer scales. For any given valuesptonvergence consequently in a number of papéfsr example, see Refs.
with L is reached when this scale becomes much smallez, 3, 6, 10, 22, 39, and 59—62t is described in detail in
than 4. (When the continued fraction representati®) is  Refs. 51 and 52. The method allows one to capture some
used to calculate DOS, the order of the approximemiust  important features of the collective electromagnetic interac-
be larger thain/2]+1, regardless df, in order to obtain an
accurate value foMp(L).) 0.4 . .

The DOS for five random CCA aggregates is compared to L(w) 1<
that of an infinite chain and a bisphef@veraged over rota- A 22<
tions) in semilogarithmic scale in Fig. 11. The DOS for the 03[ k
CCA aggregates and bispheres share some similarity. How- g
ever, it is obvious that everywhere except for a narrow cen- | i 't\ i
tral peak(slightly shifted fromw=0 to the lef}, aggregates ) A W
are more effective absorbers than bispheres. This result is if
explained by the relatively high input of bispheres with the o1} / S i
axis perpendicular to polarization of the external field to the e N
rotationally averaged spectra. However, in the region 5 . w "\
0<w<2 the two curves are very similar, which prompts that —4r/3 0 /3
binary interactions are dominating in this intervahg$. The
infinite chains have DOS which is distinctly different from  FIG. 12. Comparison of the DOS for lattice CGN=100, D
that of aggregates and bispheres: it is significantly smaller at1.8) and for off-lattice aggregates witN=50 andD=~1.3 and
w=0 but larger atv=41/3. D~2.3.L=64,; 5=0.2.
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tion in an aggregate while staying within the DA. It has been 04 T T T —

. N > : ; (w) =1.612 -----
validated qualitatively by comparison with experimental data §= 1.688 ------
(e.g., see Refs. 2, 3, 10, and)3But not with rigorous simu- o3l 71;722 R
lations. In particular, the main features of experimentally ob- ™
served absorption spectra of silver colloid aggregates were
described within the GCRM quite adequatéf*°!! The 0.2k i
method is briefly summarized later. The central idea of Py S
GCRM s to replacgfor the purpose of numerical simula- an N
tions) an ensemble of aggregates with experimental param- 0.1 [ —
eters by an ensemble with different average number of par- s AN
ticles in an aggregatéN), different radius of a single particle o o Nt
(a) and different distance between centers of the nearest —4rn/ 0 4n/3

neighbor particleql). Geometrical intersections of nearest
neighbor spheres is introduced and an intersection parameter he GCRM with diff X , dlfera
& is defined as the ratio of the distance between centers hte 2econ | m"(‘;';en'tse;‘:rt‘:lén?rosgcctggC?:éirgf:ﬁ;scin s 7a8
two nearest neighbor spheres to the sphere radius. In an ag- - = gres.

. o n . dL=64.
gregate of touching spheres=2 while in a renormalized

aggregate £<2. The set of transformationsa’  sufficient for obtaining accurate results for the extinction
=a(&/2)P'3 D) N'=N(2¢)%P/3D) |'=£a’, defined for an ar-  cross section of metals such as silaith the account of
bitrary £ € (0, 2] and fractal dimensiol € [0, 3), keeps the finite-size effects which tend to lower the resonance quality
total volume of the scattering material, the average gyratiorior the wavelength up te-800 nm. In this section, we show
radius of aggregates in an ensemble, and the fractal dimewur results for extinction spectra of aggregates of different
sion unchanged. These three parameters are considerathterials. In the case of silver we extend the spectral range
to be important statistical characteristics of an ensemble afb approximately 2um, a wavelength for which convergence
aggregates. The choice of paramefés somewhat phenom- with L has not been established due to computational limita-
enological. The following two choices have been used in theaions.
literature. First,é=(47/3)3~1.612 follows from an anal- First, we show extinction spectra for some lower conduc-
ogy with the discrete-dipole approximatiéhlf we place tivity metals, namely, iron and palladium. The results of mul-
centers of the spheres on a cubic lattice, This valu& of tipole calculations are shown in Fig. 14 and compared with
provides that the volume of a single sphere is equal to that ahe pure DA and the GCRM. Calculations illustrated in Fig.
a single cubic cell, so that the volume fill fraction is 1. The 14 were carried out for two ensembles of off-lattice aggre-
second value¢=1.688 was obtained from the requirement gates with different fractal dimensions. The function shown
that a linear chain of spheres has the same depolarizatida the specific extinctior,=v 1o, (the extinction cross sec-
factors as an infinite cylindéP.In addition,é~1.788 can be tion per unit volumg which has the units of inverse length.
obtained from the requirement that the renormalized DOSxperimental dielectric function of iron and palladium from
has the same second momé&fy as the multipole DOS$the  Refs. 77 and 78 were used. The spectral range in which it
latter is shown in Fig. 10 was measured in Refs. 77 and 78 determines the spectral
In the quasistatic limit, the earlier set of transformations isrange of the specific extinction shown in Fig. 14. The full
mathematically equivalent to replacing the original DOS ob-multipole calculations(L=64) are shown by squares, the
tained in the DA,Tpa(W), by I'"(W)=(2/&3pal(£/2)%W]  pure DA by circles and the GCRM approximation wi¢h
(note that no such simple scaling rule for the DOS exists=1.688 by triangles. The noninteracting limiextinction
beyond the quasistaticsin Fig. 13 we compare the multi- spectra of isolated small spheyese shown by solid lines for
pole DOS(L=64) calculated for an ensemble of five lattice comparison. Note that the noninteracting and pure DA results
CCA aggregates containing=100 particles each with that do not differ significantly for these metals. The difference
obtained with the GCRM for different intersection param-between the multipole calculations and the DA becomes
etersé. It can be concluded from the data plotted in Fig. 13quite apparent in the long wavelength limit. But GCRM with
that the renormalized DOS does not resemble the multipol¢=1.688 provides a very good approximation in the whole
one for all values ofv. Most importantly, the renormalized spectral range shown in the figure, based on comparison with
DOS does not posses a central peak weaf. Perhaps this the L=64 curve. The authors are not aware of experimental
fact explains that the approaches based on the GCRM did ngpectra measured for fractal nanoaggregates built of lower
describe properly absorption near the Frohlich frequency irconductivity metals; therefore, no comparison with experi-
silver colloidal aggregate¥:>® However, the positivev  mental results is possible at this time. Due to this reason, a
wing which describes the long wavelength absorption is deGCRM curve withé=1.612 is not shown in Fig. 14. We only
scribed quite adequately by the GCRM. An especially goodnention that the latter differs significantly from the=64
fit is obtained foré=1.688. curve; however, we show later based on comparison with
experimentally measured spectra that GCRM withl.612
may provide a better approximation for black carbon and
Despite some nonconvergent features in the DOS of fracsilver in the spectral regions where convergence of the mul-
tal aggregates, we can conclude from Fig. 5 that4 is tipole solution withL has not been demonstrated.

FIG. 13. Comparison of the DOS for CCA aggregates calculated

D. Extinction spectra
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FIG. 14. Extinction spectra of palladium and iron aggregates. Calculated for off-lattice aggregates with different fractal dimensions, as
labeled.

Next, we consider aggregates of black carbon. CarbonHowever, the curve& =64 andL=1, £=1.688 do not pro-
aceous soots with fractal structure are important atmospheridde a good fit to the experimental data in the region
pollutants and their extinction properties in a wide spectralh >100 um. In fact, the difference is quite dramatic at
range are of considerable interest. Absorption spectrum of-1 cm. Note that the discrepancy at this wavelength is so
carbonaceous diesel soot has been measured in a very willgge that it cannot be correcting by varying parameters such
spectral rangéfrom 0.5 um to 0.857 ciin Ref. 79. It was  as the mass density of black carbon in the diesel Gsbich
demonstrated that neither the model of isolated spheres n@ras not measured direcjlyHowever, the GCRM curve with
of long cylinders can explain the absorption properties ofL=1, {=1.612 provides a reasonably accurate fit to the ex-
soot, in particular, the resonance absorption extending intperimental datathis is also true forD=2.3). This is in
the centimeter spectral region. The latter property was deagreement with the results of Ref. 52.
scribed within the GCRM in Ref. 52. An accurate fit with It is clear from Fig. 15 that the results of multipole calcu-
experimental data was obtained for the intersection paramations(L=64) are inaccurate fox > 100 um. This can take
eter¢=1.612. In Fig. 15 we plot the same curves as in Refplace due to one of the following two reasons. First, one can
52 (Fig. 7) and the results fol.=64 and GCRM with¢  argue that the Ohmic loss€and the value of) in black
=1.688. The plots are shown in the same units and spectrgarbon become sufficiently small at these wavelength so that
range, and the dielectric function of black carbon is calcuthe inaccuracy in the calculated multipole DOS, which can
lated using the same three-electron dispersion formula witle attributed to insufficiently large value &f leads to the
parameters given in Ref. 80 as in Ref. 52. However, note thahaccuracy in calculated spectra. Indeed, it follows from the
no accurate measurements of the dielectric function of blackhree-electron formula for the dielectric function of soot that
carbon which constitutes soot, which may limit the accuracys~ 1072 atA=1 cm. However, convergence withwas only
of calculations. Similar to Ref. 52, the experimental data ofobtained for6~ 0.1, which corresponds approximately Xo
Ref. 79 were converted from specific extinction per unit=100«m. Note that multipole calculations provide a good
mass to specific extinction per unit volume assuming that thegreement with the experimental data ¥o1 100 um. Then
mass density of black carbon is 1.9 gfem it would follow that the GCRM with{=1.612 provides, in

Let us focus on the cade= 1.8 which is the fractal di- fact, a better approximation to the true DOS near the critical
mension corresponding to that of aggregates studied in Refoint w=47#/3 than the full multipole model. Theoretically,
79. First, it can be seen that far<100 um, the curved the inaccuracy of the multipole calculations can be corrected
=64 andL=1,¢=1.612 and_=1, £=1.688 are in reasonable by taking even larger values &f and improving numerical
agreement with each other and the experimental data. At theethods. However, it seems exceedingly difficult to reach
same time, the noninteracting limiwhich in this case convergence fors as small as 1G. The second possible
closely coincides with the pure DAgives systematically reason is more physical: namely, the three-electron disper-
lower absorption starting from approximately=2 um.  sion formula adopted from Ref. 80 may be inaccurate at
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FIG. 15. Extinction spectra of black carbon aggregates. Calculated for lattice and off-lattice aggregates with different fractal dimensions,
as labeled. Experimental data adopted from Ref. 79 are shown by error bar symbols. The lower row of plots shows the same spectra as in
the plots directly above, but in a smaller spectral range.

large wavelengths. In fact a strong indication of that is thesize correction for the dielectric function. The finite-size cor-
fact that the linear regression of the experimental data of Refection is obtained by extracting the Drude part from the
79 reveals the power lawe 1/\* wherea=0.81+0.04. As- total dielectric function of silver and replacing the Drude
suming that this power decay extends to infinitely large val+elaxation constany;,; (which is measured in bulk sampjes
ues of\, we would obtain a contradiction with the sum rule with y(a) = y,,s+ve/a, wherevg is the Fermi velocity ané
(20). Thus, there must be a crossover to a faster decay dhe radius of the sphere. The account of the finite-size effects
some value ok (which is, perhaps, out of the experimentally is important for high-conductivity metalgvith very small
attainable range Such a crossover would indicate that therevalues ofy,.). For silver,ug=~0.004€, (c being the speed of
are additional low-frequency resonances in the dielectridight), y;,+~0.0019, and the wavelength at the plasma fre-
function which are not accounted for in the dispersion for-quencyw, is \,=2mc/ w,~ 136 nm. We have calculated the
mula adopted from Ref. 79. At this point, we can concludefinite-size correction fom=5 nm. The account of this cor-
based on the available experimental data that in the spectregctions effectively increases the valuedk) and leads to a
rangeX >100 um, the GCRM with{=1.612 is a better ap- better convergence of the spectra withThe results, aver-
proximation then the multipole calculations, even with theaged over five random realizations of CCA aggregates with
relatively large number of multipoles includéd=64). This  N=100 and over rotations, are shown in Fig. 16. We can
finding underscores the importance of the GCRM for highlyconclude that the GCRM curves with bofix1.612 andé
conducting materials, when the full multipole calculations=1.688 are qualitatively compatible with the=64 results,
with the desired degree of precision are not yet feasible. while the pure DA approximation is obviously inadequate.
For the study of certain physical phenomena, such adost importantly, we see that in the spectral range consid-
strong enhancement of optical nonlinearities in fractal aggreered, these three curves demonstrate strong resonance ab-
gates, high conductivity metals such as silver or aluminunsorption, which is evident from the comparison with the DA
are of primary interest. Unfortunately, our multipole calcula-and noninteracting curve@n the latter two cases, no reso-
tions lack precision at this time to obtain accurate spectra fonant excitations are present foe>0.5 um). The L=64 and
these metals foh>900 nm. However, quantitative results the GCRM curves are also in qualitative agreement with the
can be obtained for shorter wavelengths. We have used theany experimental spectra obtained for sik/@&t01157.5§n
dielectric function for silver given in Ref. 81 with the finite- particular, the second long wavelength spectral peak was ob-

054202-16



ELECTROMAGNETIC DENSITY OF STATES AND.. PHYSICAL REVIEW B 70, 054202(2004)

10° T T T T higher multipoles have revealed that the DOS, for both bi-
ge(pm™) L= 1,§=2 —e-- spheres and aggregates, approaches its theoretical right
} 1 boundw,,,,=47/3. As can be seen in Fig. 9, this is not so in

the DA. Namely, the DA DOS terminates at approximately
w=27/3. This fact explains why the pure DA fails to de-
scribe accurately the long wavelength properties of most ma-
terials. This deficiency of the DA is partially corrected by the
GCRM. However, significant discrepancies between the mul-
tipole DOS and the GCRM DOS remain, especially near the
central peak atv=0 (Fig. 13. It is also interesting to note
that the DOS calculated in this paper, never extends to its
theoretical left boundv=-8#/3 but terminates at approxi-
mately —47/3. The DOS at the negative valueswfcan be

FIG. 16. Extinction spectra of silver aggregates calculated foimportant for calculating spectra of high conductivity metals
five lattice CCA aggregates witi=100 andD ~ 1.8, averaged over near the plasmon resonance when the spectral varkile
rotations. changes sign and can take large negative values.

The account of higher multipoles for calculation of ex-
tinction spectra of random fractal aggregates revealed several

served in many experiments. A detailed comparison with ®Xtaatures that were not known previously and cannot be un-

tensive measurements is beyond the scope of this paper a%@rstood within the DA or GCRM. First, absorption at the
will be done elsewhere. surface plasmon frequency of a single isolated sptfemeh-
lich resonancgis much larger than is predicted by the DA or
GCRM. The high absorption at the Frohlich frequency was
measured experimentally but could not be explained in a
In this paper we have solved the quasistatic scattering€lf-consistent way; it was attributed earlier to the presence
problem for fractal and regular arrays of touching spheresf non-aggregated spheres in the solutions. In this paper we
The mathematical formalism was based on the electromaﬂlave shown that such explanation is unnecessary. Second,
netic DOS. This approach was used earlier within the framdull multipole calculations result in a smaller short-
of the DA. Here we have extended this treatment beyond th%{_avelengtf(below the Frohlich resonanceing than is pre- .
DA and calculated the DOS and extinction spectra for aggre® |cted”by the DA andfGCRM, which has been also experi-
gates built of various materials for the maximum muItipoIemeEta. y obfer\t/ed bet_ore._ ¢ results with th
orderL up to 64 and for number of particles in an aggregate N important quUEstan IS CoNVErgence of Tesuits wi €

N up to 100. The values of these parameters used previous aximum order of included multipoles,. The maximum
N up " . € Pe P alue ofL that we have use(except for systems with axial
in computer simulations were significantly smaller. Note tha

. . L “symmetry in which extremely large values bfare attain-
the number of equations that couples multipole excitations iNble were L=64 for N=50 andN=100 andL=128 for N

the array of interacting spheres scales\sl +2). We have -5 "Results shown in Fig. 5 indicate that these values are
been able to perform calculations for these relatively highsyfficient for $=0.1. This includes silver in the near-IR

values ofN andL due to the computational efficiency of the spectral regioriwith the finite-size corrections for the dielec-
numerical method in this paper which is based on a contintric function) and black carbon fok <100 um.

ued fraction expansion of the resolvent and an efficient data Returning to calculations of extinction spectra, we must
storage scheme. emphasize that, ultimately, simulations alone are insufficient
The computational methods developed in this paper cato determine the validity of any particular computational
become a useful tool for investigation of a number of un-method. The model of touching spheres is highly idealized.
solved problems in optics of colloidal aggregates of nobldn practice, the spheres are not perfect and do not touch at a
metals and, more generally, nanosystems consisting of mumathematical point. Effects of nonlocality of the dielectric
tiple spheres. The possibility to calculate optical responsefiinction and polydispersity of the elementary spheres, as
with the account of high multipole moments for a large num-Well as surface oxidation and coating, can also play an im-
ber of interacting spheres is needed for more accurate inteRortant role, but are very difficult to take into account within
pretation of experimental data. Account of higher multipoles? Single mathematically tractable model. The approach pro-
is especially important in problems where distribution of lo-P0Sed here is a step toward developing of such a model.

cal field inside the spheres is significant, such as calculatioh!oWeVer. significant efforts remain to be made. It should be

: : ' .1 _also noted that more phenomenological approaches, such as
of collective nonlinear effects in aggregated metal colloids 2 X '
Note that the methods described in this paper can be gen the GCRM, can be useful whehis so small that the method

el- . . . ) o
alized for calculation of various nonlinear characteristics. (ﬁeveloped In this paper fails to converge withThis is, for

. L T example, the case for silver in the far-IR spectral region or
An important material-independent characteristics of OP%or black carbon fom > 100 um
tical properties is the density of electromagnetic stddE3S) '
which studied extensively in this paper for different systems.
Note that DOS is closely related to tHematrix of the scat- ACKNOWLEDGMENTS
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(A3)

which follows directly from Eq.(9). On the other hand, we

have
APPENDIX: DERIVATION OF THE SUM RULE
x(0) =Eq - f P(r)| =0 d° = Eg - Gy, (A4)
The sum rule(20) is a slight generalization of the sum
rule previously published for ellipsoidé®It is obtained by  \hered,, is the total dipole moment of the scatterer induced
observing that the quantity(w) =(Eo|P) on the right-hand py a constant fieldE,. Define the electrostatic tensor polar-
side of Eq.(9) is the so calledyeneralized susceptibilitgs  izability & (which is pure real by definitiorand assume that
defined in Ref. 84, and must, therefore, satisfy the Kramersk, is directed along the axis. Then
Kronig relations as a function of the electromagnetic fre-
quencyw. In particular «(0) = a,JEq|?, (AS5)

wherea,, is the diagonal element of the tensarUsing this
- result and Eq(A3), we immediately arrive at
o' IMk(w')]do’

2
Re(k(w)]=— JO T 0?2 (A1) J o 2o(w)do = Z%Tazz (AB)
0

where we have used the symmetry property[dfrw)]  OF, changing the variable of integration o=2mc/w, we
=-Im[«(w)]. By settingw=0 in the above formula, we ob- o_bta_ln Eq.(20). Note that for the rotatl_onally averaged ex-
tinction cross sectioKo,), we also obtain

tain
e} 4 3 R
. f (oo V)N == Tr(@). (A7)
f o im[k(w)]dw = —R «(0)]. (A2) °
0 2 In the earlier derivation we did not use the quasistatic
approximation, or the assumption that the dielectric function
Next we notice that is scalar and local.
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