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We consider single-channel transmission through a double quantum dot system consisting of two single dots
that are connected by a wire and coupled each to one lead. The system is described in the framew@k of the
matrix theory by using the effective Hamiltonian of the open quantum system. It consists of the Hamiltonian
of the closed systerfwithout attached leagsand a term that accounts for the coupling of the states via the
continuum of propagating modes in the leads. This model allows one to study the physical meaning of branch
points in the complex plane. They are points of coalesced eigenvalues and separate the two scenarios with
avoided level crossings and without any crossings in the complex plane. They influence strongly the features
of transmission through double quantum dots.
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I. INTRODUCTION In recent studies, it turned out that not only discrete states
] ] avoid crossing, but also resonance states do not cross, as a
The phenomenon of avoided level crossifigandau-  ryle [3—7]. An avoided level crossing in the complex plane is
Zener effectis studied theoretically as well as experimen- accompanied by a redistribution of the spectroscopic proper-
tally for many years. It is a general property of the discreteties of the resonance states. Most interesting is the bifurca-
states of a quantum system, the energies of which will nevefion of decay widths related to the avoided crossing of levels
cross when the interaction between them is nonvanishingn the complex plane since it causes different time scales in
Their wave functions are exchanged at the critical value of ahe system. The long-livettrapped resonance states cause
certain tuning parameter where the avoided crossing takesarrow resonances in the cross section on a weakly energy
place. The reason for the avoided crossing of two discret@lependent background induced by the short-lived resonance
levels follows from the expression for the two eigenvalees  states. A similar situation is discussed recently in FR&f.
of the Hamiltonian of the system, The resonance trapping phenomenon discussed in Refs.
[3—7] is a collective coherent resonance phenomenon as
ete, 1 ——s5— stated also in Ref8]. The avoided level crossings may form
Ty t 5\“(31‘92) +4w%, a branch cuf8]. This cut can be traced up to the avoided
crossing of discrete stat¢3)].

. . . Often, the branch points in the complex plane are identi-
wheree; ande, are the energies of the noninteracting states;q

de is their | ion. Si h - | d with double poles of th& matrix [9] when related to
andw IS their interaction. Since the square root contains on yphysical processes. It became possible directly to study the
positive valuesg, ande_ are always different from one an-

other with the only exception of vanishing interaction spectra of atoms in the very neighborhood of double poles of

A . it of the t . | be found the S matrix by means of laser field$,10-13. The results
crossing point ot the two eigenvajues can be foun show a smooth behavior of the observables when crossing

t?y continuing |r:1to the comple>_(rﬁlane, 'He" by. aclldmg a neg%}f/}e double pole by tuning the parameters of the laser field.
tive term into the square root. The mathematical properties ofy, o qyer. recent studies in the framework of schematical

the crossing points are discussed.in many papers. Accordir}%dels have shown that the branch points in the complex
to Kato[1], they_are called exceptlc_mal points, since the d'_s' lane separate the scenario with avoided level crossing from
crete spectrum is supposed to be incomplete at these poin at without any crossingg,13. In Refs.[3-7], the double

The points in the complex plang are branch poirss). . poles of theS matrix are identified with points at which the
Although the number of these points in the complex plane : igenvalues of two states of the effective Hamiltonian coa-

of measure zero, their meaning for physical ProCESSES g, In Refs[5,6,14,15, the line shape of resonances in the

!arge. T_hey are related to the ph_enomenon of avoided CrOS"\;/'ery neighborhood of double poles of tBenatrix is studied.

ing of discrete states as shown in RE). In Ref. [16], the S matrix theory is applied to the trans-
mission through double quantum da®Ds) consisting of
two single QDs and a wire connecting them. The study of

ei:

*Electronic address: rotter@mpipks-dresden.mpg.dethese artificial molecules is of great interest since they dis-
(almsa@ifm.liu.se; almas@tnp.krasn.ru; almsa@mpipksplay the simplest structures of quantum-computing devices
dresden.mpg.de that can be controlled by external parameters, e.g., Refs.
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[17,18. One of the interesting results obtained for a doubleplace with the consequence that one narrow resonance ap-
QD system, is the appearance of transmission zeros of difpears on a smooth background created by the two broad
ferent order at energies that are related to the eigenvalues pésonance states. The separation between the two different
the Hamiltonians of the single QO46]. They appear even scenarios is provided by the branch point in the complex
in cases when the transmission is large in this energy regiomlane. This separation is independent of whether the eigen-
In such a case, they can be seen as narrow dips in the trangiates cross or avoid crossing in the complex plane at the
mission probability. _ energyE..

Double dot systems provide a very powerful tool for 3°gec. v, we consider the effective Hamiltonian as well

studying the properties of branch points in the complex plangg e transmission through the double dot system when it is
and their physical meaning. When leads are attached to therEoupled with different strength to the two leads. In the fol-

the double dot systems allow one further to study the relatlorllowing Sec. V, we show numerical examples for transmission

of the branch points in the complex plane to both the double ; . . .
poles of theS matrix and the points where two eigenvaluesand eigenvalue trajectories of a double dot system with alto

of the Hamiltonian of the open quantum system coalesc ether five and eleven states, respectively, as a function of
This is, above all, due to the symmetries involved in the oth, the length qf the wire and th@xterna] coupllng .
system in a natural manner. Moreover, the properties of strengthv. The main featu_res of the eigenvalue trajectories
double dot system can be controlled by external parameteS well as of the transmission are the same as those discussed
in a very clear manner. The double QD tself is characterized? Sec. lll. Moreover, we draw some conclusions on the dif-
by the coupling strengths between the wire and the single ferent bonds of the two single QDs in the artificial molecule.
QDs, the spectral properties of the two single QDs, as well adhe appearance of different bond types is also related to the
by the length and the width of the wire. The coupling of the Positions of the branch points in the complex plane. In the
double dot system to the environment is given by the coul@st section, we summarize the results obtained.

pling strengthv to the leads attached to it. All these param-

eters are well defined and can be controlled. One mayvcall

the external coupling of the double QD systgria the Il. EFFECTIVE HAMILTONIAN AND S MATRIX THEORY
leady andu the internal couplingvia the wire that is char- FOR TRANSMISSION THROUGH COUPLED
acteristic of the double dot system as a whole. QUANTUM DOTS

In the present paper, we will study a simple model for a

X X N ) In our study, we follow the papdd9] where theS matrix
double QD system with the aim to receive information on thetheory for transmission through QDs in the tight-binding ap-
branch points in the complex plane and their relation to

hvsical h i . We Sugeatri proach is formulated, and the pagé6] where theS matrix
T e s e ot o o oo i ey appledto & double GD system consisig of o
tonian which consists of two parts. The first part is (Her- single QDs coupled to each other by a wire. As in RE€],

mitian) Hamiltonian of the closed system and the second par e consider a simple model with a small number of states in
: - o . h single QD and one m r ting through the wire.
is an additionalnon-Hermitian term that takes into account ach single QD and one mode propagating through the wire

This simple model is able to explain the characteristic fea-

the coup_lmg of _the_ states of the system via th_e continuumy ¢ of the transmission through realistic double dot systems
The continuum is given by the modes propagating in the tWQt the same structure. as shown in Rif]

half-infinite 1d-leads when attached to the system. The inter- First, we will consider the simplest case with only one

pLayr b?tvr\sen ttg]esd?ﬁtv;/on{) aLts ?f Ith?t ef'[?cr?ve Ham"ton'anstatesl in each single dot and one mod@.) propagating in
characterizes the drierent physical stuafions. the wire of lengthL. The wire and the single QDs are

In Sec. Il, we give theS matrix for the_ transmission coupled byu. The effective Hamiltonian of such a system is
through a model double QD system by using the effectlve[16 19

Hamiltonian formalism. The double QD consists of two
single QDs with one state in each, a wire with a single 1

eigenenergy that depends on the length of the wire, and with Her=Hg+ > Vecr Ve (1)
one channel for the propagation of the mode in the attached C=LR c

leads. We define the spectroscopic valigsand I', of the  where

resonance statds In Sec. Ill, we study analytically the fea-

tures of the eigenvalues and eigenvectors at the branch point eg u 0
in the complex plane. Here, at a certain enekyyE., two Hg=| u el) u (2)
eigenvalues of the effective Hamiltonian coalesce. We show 0 u &

numerical examples obtained for branch points in the com-
plex plane as well as for the transmission through the doublé the Hamiltonian of the closed double dot systéfg,is the

dot system. The branch points can be seen by varying diffetHamiltonian of the lef(C=L) and right(C=R) reservoir and

ent parameters. The transmission scenario at smallis  E*=E+i0. The second term ofl.4 takes into account the
characterized by transmission peaks which are spread overcaupling of the eigenstates b via the reservoirs when the
certain energy region. The spreading is the larger, the largeaystem is opened. It introduces correlations between the
the internal interactiornu is. In contrast to this picture, the states of an open quantum system that appear additionally to
transmission peaks are no longer spread in energy when those of the closed systefi7]. The effective Hamiltonian

is large. Here, level attraction and width bifurcation takeHgs is non-Hermitian.
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The coupling matrix between the closed double dot sys- a 0 b
tem and the reservoirs can be found if both are specified. We =0, |2=(1] |3=| 0 9)
take the reservoirglead9 as semi-infinite one-dimensional ' ’ '
wires in tight-binding approacfil9]. The connection points b 0 -a
of the coupling between the system and the reservoirs are Where
the edges of the one-dimensional leads. Then the coupling
matrix elements take the following forfid6,19 f i+ o
ink Ré(E+w) 2¢
VB, L) =00 )0l = D =0y D), e
2,14k 24k
f:—v,Eé , w:_n+Asve' , E=o?+f2. (10
V27 27

) sink
Vm(EvR) = U‘/’E,L(XR) ’pm(] =3)=v 2_¢m(3): (3
& The eigenfunctions are biorthogonsleg| k) =z|k) with [7]
where k is the wave vector related to the energy By A
-2 cosk, ¢4(j),j=1,2,3, are theeigenfunctions of2), and (K = (K[ = & (11)

v is the hopping matr.ix element bgtween the edg_e of the |eanJsing the eigenvalueg8) and eigenfunction€9) of the ef-
and the QD. The will be varied in our calculations. The fective Hamiltonian, the amplitude for the transmission
eigenvalues of the Hamiltoniai2) are real, through the double QD takes the simple fofii9],

g _&1tel) -

EB=e,, (4) (LIMNAVIR

1,37 N .
? m% . (12
' —Ae2+ 22, A= L) Substituting Egs(3), (6), and (9) into the matrix elements
with  72=Ae?+20%, Ae= > (5 (L[V]x) and (x| VIR) we obtain
and the eigenstates read e
(LIV2) =X (ELMmm2)=2 /==,
1 - 1 ! m T
V= ——|p+Ae |, |2=—=| 0 |,
! V2n(n+ Ae) 77—u 2 2 -1 v [sink
@VIR =3 @mmVIEL ==/~
m T
1 u
= n-2c |. © _
SRR (LVID) = (VIR = v~ [da(Da+ ys(Db],

As a result, we get the following expression for the effective
Hamiltonian[16],

ink
(LIVI3) = GBVIR =0 S [44(Db - (Dl (13)

g viuZek v2ueX
L+ Ag) V27 The transmission probability §=t|%.
Ho. = 0 e — p2ak 0 The spectroscopic values such as the positions in energy
eff — - 1 - ' of states are originally defined for the discrete eigenstates of
viue 0 gB_ Y u‘e Hermitian Hamilton operators that describe closed quantum
V27 s n(n— Ag) systems. The decay widths do not appear explicitly in this

formalism since the eigenvalues of the Hamiltonian are real.

)

which is symmetric. Its complex eigenvalugsand eigen-
vectors|k) are[16]

Zy=¢€1— Uzelk,

+¢e(l) - Zeik L) - + 26ik 2
21’3:81 6(2) v I\/(E() 821 v o2

(8

and

They are calculated from the tunneling matrix elements by
means of the eigenfunctions of this Hamiltonian. The corre-
sponding values for resonance states are energy dependent
functions since the eigenvalues as well as the eigenfunctions
of the non-Hermitian effective Hamilton operaid) depend

on energy. Nevertheless, spectroscopic values for resonance
states can be defined, and that by solving the fixed-point
equationg 7],

E= Re(z)|e=, (14)

and defining
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=2 Im(z)| =, - (15)

The valuesk, and I’y characterize a resonance state whose
position in energy i€, and whose decay width . This
resonance state causes a resonance of Breit-Wigner type in
the cross section when it is well separated from other reso-
nance states. In the regime of overlapping resonances, the
relation betweerk, andI', on the one hand, and the reso-
nances seen in the cross section on the other hand, is less
well defined.

In the denominator of th& matrix, the eigenvalues, of
the effective Hamiltoniand appear in their full energy de-
pendence. That means that at every en&@f the system,
the contribution of every resonance states taken into ac-
count in correspondence to the valgg¢E). This fact be-
comes important when(E,..,) # z(E,) and the contribution
of the resonance state cannot be neglected at the energy
E=E, i.e., when the resonance states overlap.

Another definition of the spectroscopic values of a reso-
nance state is by means of the poles of 8matrix. This
(standargl definition of the spectroscopic values in the
framework of theS matrix theory is not a direct one since the
poles of theS matrix give information on the resonances, but
not on the spectroscopic properties of the resonance states.
The S matrix has a pole only when the energy is continued
into the complex plane. We remind, however, that 8maa-
trix describing physical processes is defined for real energies (b)
E, and|§2<1. It is not surprisingly therefore that the two . .
definitions do not coincide completely. In the following, we  FIG- 1. The evolution of R, (&) and Imz (b), k=1,3(solid
will characterize the resonance states by the energy depepﬂes)j k:_2 (dashed ling of_the three eigenvalues of the effective
dent eigenvalueg, and eigenfunctionsk) of the effective HamiltonianHgg as a function ofv at E=E.=0.9847. The param-
HamiltonianHey as well as by the valueS, andT, but not ~ St€rs Of the double DQ system are chosergsl, e(L)=2-L/5,
by the poles of thé& matrix. The reason for doing this is the U=/ L=3. Atu=v:=0.9013 the two eigenvaluas andz; coa-
clear definition of the spectroscopic valugsandI’, also in leﬁ.(l:e' J he Rey ang. Rélz3) app(;ola ch egih other ‘;]thK Ve
the regime of overlapping resonande§ by means of the while the corresponding (=) and Intzy) bifurcate when > v

: . . . At the branch point in the complex plaig # E,, E;.
effective HamiltonianHg that describes the open quantum
sysl,:enr?éy happen that, at a certain poigt=z for two dif- The form_alism for the d(_ascriptiop of double QDs with
ferent state& andl. Such a point might be considered as the™More complicated structure is given in REF6]. We will not
analog of a double pole of th® matrix. However, the coa- repeat it here. We will, howeyer, use it to obtain some nu-
lescence of two eigenvalugg z at a certain energ, does merical results for the transmission through double QDs with
not mean that also the poles exactly coincide. Therefore, wé l2rger number of states.
will not consider double poles of tHe matrix in the follow-
ing, but will look at the points and their energi&s where . BRANCH POINTS IN THE COMPLEX PLANE
the two eigenvalueg, z coalesce. In such a case, the trans-
mission is determined mainly by interferences between the
two resonance statdsand|. These interferences influence (e(L) —g+ vze‘k)z Lo

Let us define the value

strongly the line shape of resonand@sl5. F= 5 (16)

Generally, two resonance statesnd! avoid crossing in
the complex plane, i.e., the eigenvalmsandz coalesce at by which the two eigenvalues ; differ according to Eq(8).
an energyE=E., which is different from the energidg, E,.  F is real only wherk=nm;n=0,1,....WhenF >0, Eq.(8)
The phenomenon of avoided crossing of resonance states @fives repulsion of the two levels 1 and 3 in their energies
the complex plane is in complete analogy to the well-knownRe&(z,). When, howeverF <0, there is a bifurcation of the
phenomenon of avoided crossing of discrete states. In théecay widths Ing,).
latter case, the crossing point can be found by opening the Most interesting is the casé=0 since the eigenvalues
system and varying the coupling strength of the discretand eigenvectors dfl.4 have some special properties under
states to the continuum, i.e., by continuing into the complexhis condition. From Eq(8) follows z;=z; for the eigenval-
plane. In both cases, the crossing point influences stronglyes, i.e., the conditiofr =0 defines a point of coalesced ei-
the properties of the states although it is hiddigh genvalues. According to Eq9), the components of the
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1.4

FIG. 3. The evolution of Rgy) (a) and Im(z) (b), k=1, 3 (solid
lines), k=2 (dashed ling of the three eigenvalues of the effective
HamiltonianHgg as a function o at E=E.=0. The parameters
05 1 15 2 =1/4,L=10, £,=0, e(L)=2-L/5 of the double QD system are
chosen in such a manner thglL)=¢,=0 at E=0. Here, the two
eigenvalues coalesce,=8"4u%?=0.8409.

FIG. 2. The transmission probability through the double QD vs
v and energy. Each single QD has one levetatl. It is e(L)=2
-L/5 andL=3. The eigenenergies of the double QD are shown by The point at whichF=0 is a branch point in the complex
stars. The cas€a) corresponds to Fig. 1. The coupling constant plane[2,3,7]. This point separates the scenarios with level
between the single dots and the wireuis1/4. Thepoint of coa-  repulsion on the one hand and width bifurcation on the other
lesced eigenvalues is,=0.9013,E,=0.9847 and the solutions of hand[3,7]. The study on the basis of a schematical model
the fixed point equation€l4) give E,=E, # E; as can be seen from provided the following additional results: level repulsion is
Fig. 1. In the caséb), the coupling constant=u,=0.1443 between gccompanied by the tendency to reduce the differences be-
the single dots and the wire is chosen in correspondence t®Eq.  tween the widths of the two states, while width bifurcation is
Therefore E,=E, coincides withE.=7/5 atv=uv,. accompanied by level clustering.

According to Eq(8), the two eigenvalues, andz; of the

(complex eigenvectordl) and |3) become infinitely large, effective Hamiltonian (7) coalesce when RE)=0 and
and Im(F)=0. The first condition gives

I1)= %i[3)  when F=0. (17) ve=[e(Lo) — 517+ 8uZ. (18)

From the second condition ariei=-2 cogk), we find the
Also the normalization conditioni1l) is fulfilled whenF  energy at which the coalescence takes place,
=0 due to the biorthogonality of the eigenfunctions, since the
difference between two infinitely large numbers may be 0 or 2Le(Le) — 5]
1. These relations between the eigenvalues and eigenvectors Ec=—72—. (19
of Hgi; that follow from the conditior-=0, hold not only for Ve
the special case considered here. They hold also for the In Fig. 1, we present the typical evolution of the real and
eigenvectors of an effective Hamiltonian that describes atimaginary parts of the eigenvalugsof the effective Hamil-
oms under the influence of a laser fi¢8]. More generally, tonian Hes as a function of the coupling constant The
they characterize the eigenstates of an effective Hamiltoniaparameters of the system aee2-L/5, ¢;=1, u=0.25,L

that describes an open quantum sysf{én,2Q. =3. With these parameters, it follows from E¢E8) and(19)
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FIG. 4. (a) The transmission probability through the double QD 0 L o4
vs v and energy for the case shown in Fig.(B) The same asa) 1 R1'5 2 -0.5 0
but for fixed v=0.2 (dashed ling v=0.53 (solid line), and v ©) e(z,) Im(z,)
=0.83 (dot-dashed ling At v=0.53, the double QD is a perfect
filter. FIG. 5. The evolution of the real and imaginary parts of the

eigenvalueg,, k=1, 3(solid lineg, k=2 (dashed ling as a function

that trﬁ_ elgenvaluesz_m _coalesce whenv=v.=(1/2  ;ipe lengthL for the same double QD system as in Fig. 1 but
+9/257%=0.9013 andE=E;=0.9847. The results shown in =1.E,=+2. The critical values of the lengthat the two points of

Flg 1 are obtained for the energrE.. A|thOUgh there are coalescence of eigenvalues Mﬁ:1-4645l-2c:8-5355-@,b) E=
three eigenstates, only and z; coalesce at the poifE  _5_01 (c.d E=-\2, (e,f) E=-12+0.1, andg,h) E=+2.
=E.,v=v.. The second eigenstate does not interact with the
two other ones since it is not directly coupled to the leads. It
is coupled to the leads only via the two single QDs, and this
coupling is symmetrical. This result is in accordance to Eq.
(7). It can be seen further, that the two stgtBsand|3) with
energies R&,), Re(z) coalescgwhenv=v) at the energy  With the parameters chosen in Fig. 1, the last equation im-
E=E.. At this branch point in the complex plan plies that solutions exist ié(L)<2. We can consider there-
#Rez)|e=c,, E#Rez)|e=c,. This means, the two reso- fore the evolution of the eigenvalugg with v at E=E,
nance statesl) and [3) do cross atE=E. but not at the =¢)=7/5 andlook for the point where the two eigenvalues
energyE, or E,. In Fig. 2a), the corresponding transmission ¢ogjesce. The critical values at the branch point in the com-
probability versus andE is shown. _ lex plane arei,=0.1443 andE,=7/5. Theevolution of the

Let us consider now the behavior of the eigenvalues of th igenvalueg, with v for u,, E, L=3 is similar to that given

Eflfzectl\ée Hém_"gon'aré as a flfnt(.:t'on fQIfE atlTel energyE | in Fig. 1. It is not shown here. The corresponding transmis-
=Ey whereE,=Relz(Ey) is solution of Eq(14). In general g, picture, Fig. &), is also similar to Fig. @). The main
case, It is not easy to find the solution OT the flxe.d POINtgittarence is the smaller spreading of the eigenvalueldof
equation. However, for the enerng)'at which the €I9€N- " and the smaller transmission probability according to the
valuesz, coalesce, Eq14) can be easily solved analytically. ¢oier valual in the case WItlE, =E,=E,. In both cases, the

From Eqgs.(8), (18), and(19) we obtain transmission is more spread in energyvat v, than atv

u

2 [ello) - 85]2( 4 1) 2

8 el)?

2e(Ly) — &5 =v.. This is in accordance with level repulsion seen in the
E=ellg=—"73— (20) eigenvalue trajectories at smalland level attraction appear-
Ve ing at largev. There is a transmission peakwet= 1 near the
and upper bordeE=2 in both cases. This peak follows from the
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14 1
0.8 FIG. 6. (a) The probabilityT for transmission
1 0E ] through the double QD v€E and v for L.
- - =8.5355.(b) The transmission probability as a
0.4 1 function of E for fixed v=0.85. It has one narrow
05 peak on the background caused by the two broad
0z | resonance states. Parametersj=1,e(L)=2
-L/5,u=1/4 as inFig. 1.
-1 -1 0 1 2
(a) E (b) E

energy dependence of the Rg: the positions of the two which two eigenvalues coalesce, appear in a natural manner.
resonance states with large width appro&ch? withv=1 Itis less evident that the branch points in the complex plane
(see Fig. 1 where the eigenvalues are shown for an energyan be seen in all parameters of the double QD system that
E<2). We can state therefore that the characteristic featuredefine Eq.(18). We can take arbitrary but fixed values wof
of the transmission pictures do not depend on whether thendu and consider the length or even the energf as a
two states avoid crossing or cross in the complex plane. parameter in order to trace the coalescence andz; at L
In Fig. 3, we present the peculiar symmetrical behavior ofand E.. The corresponding equations for achieving the coa-
the eigenvalueg, versusv at E=0 for the resonant case with lescence are
the parameters(L)=¢,, L=5. In this case we have, accord-
ing to Egs.(18) and (19), E.=0 andv.=8"4u'2 At v <u,, e, [A _az .27 a2
the widths of the two st;tes 1 ar?d 3 are equal,(szn ello =er £ \vg—8Ug; Bo= & Ugwc—Suc. (22)
=Im(z;), while at v>wv, their positions are equal, R®g)
=Re(z3). The state 2 is not involved in the crossing scenarioA whole branch cut occurs alorlg whenu=u,, v=v,, and
as in Fig. 1. E=E. are fixed bute; is not fixed. We consider in the fol-
The transmission probability versus energy ani$ pre- lowing one branch point corresponding to a fixed valueof
sented in Fig. 4. It has the same symmetrical behavior as the The case with as a parameter is shown in Fig. 5 for the
eigenvalue pictures. Of special interest is, as Figg) ghows, Ssame double QD system as in Fig. 1, betl. There are two
that this symmetrical case is at0.53 a perfect filter: the branch points in the complex plane correspondingEte
transmission probability is equal to one in a large energy=v2, L1c=1.4645 andE,.=—12, L,.=8.5355. Wherl <L,

range. and E> 2, the two levels 1 and 3 avoid crossing as in
Up to now, we traced the appearance of a branch point imht; foregoing cases. In the regioh; <L<L, and
the complex plane by enlarging the coupling strengthe- —V2<E<2, the levels do not cross at all in the complex
tween system and leads. In such a case, the branch pointsane due to their different widths: one of them is trapped by
0
2 -
—_ P < — !
Nx P Nx /
e = - =05 7
D1 _F
ey L E N /
P = N e
P = A - - <
0 -1 = =
-2 -1 0 1 2 -2 -1 0 1 2
@ E by - E
FIG. 7. The evolution of the regleft column)
and imaginary(right column parts of the eigen-
1 valuesz,, k=1, 3 (solid lineg, k=2 (dashed ling
,’ as a function of energy for transmission through
/ the same double QD system as in Fig. 1, but
™ g -7 =1 as in Fig. 5. The point of coalesced eigenval-
—= = ues isE,=\2. The critical length is_.=1.4645.
-1 0 1 2 c gth 15
E (a,p L=L.-0.1, (c,d L=L, and (e,fy L=L,
+0.1.
1/
/
/
N\ /7
N 7
N P
-1 0 1 2
E
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the other one due to the strong interaction via the continuuriwhile the energy dependence of (izy) is more or less sym-
(i.e., via the modes propagating in the leadorL>L,. and  metrically aroundE=0, the Réz) show an unsymmetrical
E<-\2, the levels again avoid crossing in the complexbehavior as a function of energy. It is of special interest, that
plane since the widths and with them the external couplinghe branch points in the complex plane appear also in the
of the states via the continuum decrease in approachingnergy dependence of Bg and In(z). An example is the
E=-2. branch point aEC:v‘E, L.=1.4645 that can be seen in Fig. 7.

The appearance of two branch points in the complex
plane in Fig. 5 illustrates in a very convincing manner the IV. TRANSMISSION THROUGH A DOUBLE DOT SYSTEM

interplay between internal and external interaction in ap- WITH DIFFERENT COUPLING STRENGTHS
proaching a branch point. In any case, a branch point sepa- TO THE TWO LEADS
rates regions with avoided level crossifig<L;,L>Lyc) Till now we considered the case that the double QD is

from those without any crossing of the levels, <L <Ls)  coupled to the left and to the right reservoir with the same
in the complex plane. One should underline, however, thastrengthy. The couplings may be, however, different from
the first branch point influences the physical observablegne another. Such a case is interesting, also from a theoreti-
such as the transmission probabiljfyig. 6(@)], indeed. The  cal point of view, since the effective Hamiltonian becomes
second branch point occurs as a threshold effect far from thenseparable when the two coupling strengths differ from one
energiesE; andE; of the two states. The two eigenvalugs — another. This is in contrast to E€) where the double QD is
andz; coalesce at the enerd@y.=—v2<E,-T'/2, E,-T/2, assumed to be coupled symmetrically to the reservoirs and,
i.e., at the tails of the resonance states. This does not hawecording to Eqs(8) and (9), the eigenstaté2) does not

any influence on the transmission probability. interfere with the other two stat¢$) and|3).

In Fig. 6b), the transmission probability is shown lat Following Ref.[16] we can write Eq(1) as follows
=L, It shows one peak, caused by the narrow resonance 1 (2 V. (E',CV,(E'C)
state, on the background created by the two broad resonancémHegn) = Endpn+ > —— [ dE ————1—
states. The narrow resonance is of Fano type by taking into c-Lr2m) 2 E+i0-E
account that the background decreases in approaching the = EryOmn— [020m(1) (1) = W2 (3) 1, (3) 1€,
two bordersE=*2. The transmission probability for other 23)

values ofL> L. is similar to that shown in Fig. 6.

In Fig. 7, we show the analog pictures for tkedepen- wherev, w are the coupling strengths between the system
dence of the eigenvalueg Due to the fact that the energy is and, respectively, the right and left reservoirs. Substituting
bounded from belowWE=-2) and above(E=2), the energy the eigenstates of the closed double QD syst2ninto (23)
dependence of Ifm) cannot be neglected. It is especially we obtain the following expression for tlisymmetrica) ef-
large for states that are strongly coupled to the continuumfective Hamiltonian

g 2+wAued  u@®-w)eX u(v? + w)ek
Y 29(n+ Ae) 2\Vn(n+ Ae) 2\27
u(v? - w)ek . u(v? - w)ek
Het=| -~ (U— —) g1~ (V2 +w?)ek/2 (v— v we (24
2\n(n+Ae) 2\n(n—Ae)
u(v? +w?)eX u(v? - w)ek 5 (2+w?uek
2\27 2Vn(n-2s) > 2p(n-Ae)

The transmission probability for a system with different tem. As it can be seen from Fig(e, we can have resonant
couplings of the double QD to the reservoirs demonstrategansmission through the system at this energy only for
new features that appear wherandw differ strongly from  w<(1/2. Correspondingly, the transmission probability de-
one anothe(Fig. 8). In the calculations, we have chosen thecreases for larga, Fig. 8b). Next, let us tak€E=0.92 that
following parameters for the double QD systewril)=2 approacheg; for w=1/3 according to Fig. ). Resonance
-L/5, L=4,u=0.15,&,=1. Then from Eq(4) we haveE? transmission through the system is possible, at this energy,
=0.8665,E2B=81:1, E5=1.3345 for the three states of the only whenw=1/3 andv=0.06. Since Re,) is almost con-
closed system. The positions of the real partdzRek  stant as a function o whenw>1/3, also the transmission
=1,2,3, of thethree eigenvalues of the effective Hamil- remains almost constant fav>1/3. Obviously the trans-
tonianHgi are given in Fig. 8, left column, fdE=1.0, 0.92, mission is symmetrical relative to— w. As a result we ob-
and 1.26. tain the peculiar picture of transmission probability shown in

Let us at first tune the energy of the incident particle to beFig. 8d). A similar picture is obtained if the energy is tuned
resonant with the eigenenerdy= Eg‘:l of the closed sys- to the third eigenenergy that E=E3;=1.26 for largew, as
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shown in Figs. 8) and &f). We mention, however, that at
largeru the transmission picture is less peculiar. Maximum
transmission appears wharr=v andv is about two or three
times larger than.

V. TRANSMISSION THROUGH A DOUBLE DOT SYSTEM
WITH MORE THAN THREE STATES

We show now results of some calculations for the trans-
mission through a more realistic double QD system with
more than one state in each of the single QDs. The number
of propagating modes in the leads as well as in the wire,
connecting the two single QDs, is restricted to one as in the
foregoing calculations.

In Fig. 9, we show the transmission through such a double
QD system with two states in each single QD as a function of
energy E and lengthL for u=0.25 and for four different
coupling strengths < 1. The results show the change of the
transmission picture as a function bffor different v. At
smallv, the transmission takes place mainly at the energies
E? of the discrete states of the double QD. This behavior is
called usually resonant transmission. At largerhowever,
the transmission peaks have nothing in common with the
positionsEE of the eigenstates ¢fg. Here, the energy and
dependence of the transmission follows basically that of the

FIG. 8. Left column: the evolution of the real parts of the eigen-wave inside the wiree=3/2-L/7. The transmission picture

values of EQ.(23) as a function ofw for v=0.1, E=1.0 (a), v

given in Fig. 9 corresponds to those shown in Réf].

=0.06,E=0.92(c), andv=0.1,E=1.26 (). The parameters of the Transmission zeros appear for all at Ego):(si+s§)/2,

closed double QD system ate=4, u=0.15,e,=1, e(L)=2-L/5.

The circles at thex axes denote the energi&s Right column: the
transmission probability through the double QD vs couptingith

the left reservoir andv with the right reservoir. The energi&sare
the same as in the corresponding figures of the left column.

where ei(k=1,2;s=I,r) are the eigenenergies of, respec-
tively, the left and right single QD. It i€ " =E”=3/4 in
Fig. 9.

The eigenvalue pictures corresponding to Fig. 9 are
shown in Fig. 10. As long as is small, the energies R&)
show a dependence on the paramétethat is typical for
interacting(discretg states. The Rey ) of the two outermost
states avoid crossing at a certdirL®" where the decay

FIG. 9. The transmission through a double
QD vsE andL for v=0.25(a), 0.5(b), 0.75(c),
and 1.0(d). The solid lines represent the five real
eigenvaluesEE of the HamiltonianHg as a func-
tion of L. The dashed lines show the eigenenergy
of the wiree=3/2-L/7. The eigenenergies of the
two single QDs are equat;=1/2,¢,=1, andu
=0.25. The transmission zero B§=3/4 isinde-
pendent ofL andwv.
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widths 2Im(z,) cross. At largew, however, the eigenvalue L= 3 for allv. At this value ofL, the middle state crosses the
pictures change since the widths of the two outermost stateanergyE©=3/4 where the transmission is zero. For a dis-
do no longer cross in the complex plane. Though the trajeceussion of the transmission zeros see REf].
tories projected onto the energy axis cross at a certain value In Fig. 11, the transmission through a double QD with
of L, the decay widths do not cross at all. This is due to thealtogether five states is shown as a function of energyvand
large difference between Im) and Im(z;) as a consequence for two different lengths of the wird,=2 and 5. Each of the
of resonance trappingvidth bifurcation. two single QDs has two levels aj=1/2 ande,=1, and the
We can see from the eigenvalue trajectories Fig. 10 thamode in the wire is(L)=2-L/4. Transmission zeros appear
Fig. 9d) corresponds also to resonant transmission in spitat E=3/4 (for a detailed discussion of the transmission zeros
of the fact that its structure is completely different from thatsee Ref[16]).
in Fig. A@). The point is that the eigenvalues Hf differ The eigenvalue pictures corresponding to Fig. 11Eat
fundamentally from those dflg if the coupling of the states =0.75 are shown in Fig. 12. We see a bifurcation of the
via the continuum is strong. The transmission peak appeangidths as discussed in Sec. Ill as well as the corresponding
at the position of a narrow resonance state. Besides this stateranch points in the complex plane. At larggethere are two
there are two broad and two narrow resonance states lyingroad resonance states according to the two modes propagat-
each very close to one another. The interferences betweeéng in the two leads. The remaining three states are narrow at
them are obviously destructive. largev. They are trapped by the two broad states. As shown
Another interesting result seen in Fig. 10 is that the decayn Fig. 12, the two outermost states coalesce onlylL at
width of the state in the middle of the spectrum vanishes at3.03. The resonance state in the middle of the spectrum

FIG. 11. The transmission through a double
QD vsv andE with the lengthL=2 (a) and 5(b).
The parameters are@=0.25, e(L)=2-L/4, &
=1/2,e,=1. The transmission zero By=3/4 is
independent ob andL.
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2
> 1
0 0
0.5 1 15 2 -05 -04 -03 -02 -0A1
(a) Re(z,) (b) Im(z,)
2 I 2 FIG. 12. The evolution of realleft) and

imaginary(right) parts of the five eigenvalues of
the HamiltoniarHqg as a function of the coupling
>1 > 1 strengthv for a double QD. The length of the
wire is L=0.7 (a,b, 2 (c,d), and 3.03(e,f). Pa-
rameters: u=0.25, E=0.75, e(L)=2-L/4, &
0 %s 1 15 > % o8 02 o2 0 =1/2,&,=1. The transmission of this double QD

(c) Re(z,) (d) "ﬁ(zk) is shown in Fig. 11.

>1

0

0.5 1 1.5 2 -1 -0.5 0
(e) Re(zk) 0} Im(zk)

coalesces, however, with another state at lower energy for all In Fig. 13, the transmission through a QD with five states
three lengthd. shown in Fig. 12. in each single QD is shown, and Fig. 14 gives the corre-
The eigenvalue pictures calculated at different energiesponding eigenvalue trajectories of all 11 states. The main
differ from one another in some details. The eigenvalue Figfeatures discussed for the cases with a smaller number of
12 corresponds to Fig. 1 calculated at a positive en&igy states remain. This holds true also for the transmission zeros,
The two broad states are shifted to higher energy whé  the positions of which are determined by the energies of the
large. The shift is in the opposite direction when the eigen<€igenstates of the two single QDs. One of the differences to
value pictures are calculated at negative energy. The calcthe cases with altogether three or five states is the following.
lation atE=0 gives a symmetrical picture corresponding to The eigenenergy trajectoriesat0 are symmetrical around
Fig. 3. In this case, the positions of all states at largare  the energyE=0 in Fig. 3 with only one state in each single
almost constant. The resonance trapping mechanism occu@P, while the symmetry is somewhat disturbed in Fig. 14
symmetrically aE=0: the two outermost states coalesce at awith more states in each single QD. In the latter case, the two
somewhat higher value ef than the two states lying nearer outermost states do not approach each other completely. The
to the center of the spectrum. The state in the middle of théower state approaches one of the states out of the middle,
spectrum does not coalesce with any other state. It correand the upper state becomes trapped by these two states. As
sponds to the mode moving in the wire and is symmetricallya consequence, the region with maximum transmission does
coupled to the states at higher and at lower energy when not occur in the middle of the spectrum but at a somewhat
=0. This result corresponds completely to those shown inower energy. The reason for this asymmetry is the follow-
Fig. 3. ing: the functions Re,) of ten states are raising with energy
The figures show clearly that the transmission peaks apwhile all the In{z) are vanishing at the two limit§=+2 of
pear at the positions of the eigenstatesigfonly whenv is  the energy windowcompare Fig. Y. Therefore, the widths
small. At largerv, the transmission is determined by inter- of the states at lower energy are larger than those of the
ferences between the contributions from the different statestates at higher energy so that they trap the higher-lying
Nevertheless, it is resonant in relation to the eigenstates aftates. For details of the resonance trapping phenomenon, see
the effective Hamiltonial .. Level repulsion at small and  Ref. [7].
level attraction at large cause features of the transmission ~Common to all the pictures shown in this section is that
pictures for a double QD with altogether five stategs. 11  the single-channel transmission through a double QD is of
and 13 that are the same as those of a double QD withresonant character although its structure depends strongly on
altogether only three statébigs. 1—4. The only difference the strengthv by which the dot is coupled to the attached
is the appearance of transmission zefBigy. 11) when the leads. The point is that the evolution of the eigenvalues of
two single QDs are coupled to one another so that the doublihe effective HamiltoniarH.+ as a function of external pa-
QD is effectively different from a d-chain as in Figs. 11 and rameters changes fundamentally at branch points in the com-
12, see Ref[16]. plex plane. The transmission through the double QD shows a
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FIG. 13. The transmission through a double
QD vsv and E with the parameter&=1.5 and
u=0.2. Each single QD has five levels af
=1/4, 1/3, 1/2, 3/4, and 1. Thenergy in the
wire is e=1-L/8. The four transmission zeros
are independent af andL. The eigenenergies of
the closed double QD are shown by stars.

correspondingly sensitive dependence on the external parartenvironmeny and the coupling of the two single QDs to the
eters. Qualitative changes in the transmission picture arwire (inside the double QD systemThe ratiov/u charac-
caused by branch points in the complex plane which separaterizes therefore the ratio between external and internal in-
the scenario with avoided level crossing from that withoutteraction of the states of an open quantum system. When the
any crossing in the complex plane. While transmission ocexternal coupling is much larger than the internal coupling,
curs in the whole energy region with several peaks in thehe external coupling of the levels via the modes propagating
case with avoided level crossings, there is a smaller numbeén the two leads, prevents the formation of a uniform QD. In
of peaks of mostly different height in the case without anythe opposite case of a large internal coupling, the relatively
level crossings in the complex plane. The position of theseveak external coupling is unable to break the uniform QD.
peaks changes as a functionlLofCommon to both scenarios Most interesting is, of course, the transition region between
are only thel. independent transmission zerdsr a detailed the two different types of bonds in double QDs.
discussion of the transmission zeros see Ri§)). It is worthwhile to notice the following. The two levels
The two coupling strengths and u stand, respectively, that are the outermost ones of the spectrum, cross or avoid
for the coupling of the double QD as a whole to the leadscrossing in the complex plane B=0. The distance in en-

1

0.8
0.6
>
0.4f-
0.2+ FIG. 14. The evolution of the
11 eigenvalueg, of the effective
_%_2 HamiltonianHgi as a function of
(@) v at E=0. () Re(z), (b) Im(zy).
L=1.5, u=0.2. Each single QD
1 has five levels ate;=1/4, 1/3,
1/2, 3/4 and 1. The eigenenergy
0.8 of the wire is e=1-L/8. The
transmission of this double QD is
0.6F shown in Fig. 13.
>
0.4
02 T _
0 ; : :

1
-05 -045 -04 -035
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ergy to the crossing or avoided crossing, which occurs beE=E.. Sometimes, E.=E,=E,. Mostly, however, E,
tween two other levels, is smaller than their decay widths# Re(zk)|E=EC andE, # Re(z.)|E=Ec, and the branch point in the
That means, effectively all states are involved in the scenarigomplex plane is not a double pole of tBamatrix.
of avoided level crossing in the complex plane. We underline that the resonance phenomena appearing in
Additionally, we mention that the dependence of thethe transmission through double QDs are the same as those
transmission on the lengthof the wire is determined by the observed in, e.g., the scattering on nuclei or at¢sThe
manner the wave propagates inside the wire. It can be rgole of the branch points in the complex plane for the trans-
placed by another relation betweemndL than that used in  mission through a double dot system agrees with that dis-
our calculations or by the analog relation betweesand the  cussed in a schematical stuf8] and for a double-well sys-
width d of the wire. In the last casé, can be kept constantin tem [13]. In our model double QD, however, the energy
studying the dependence of the transmission fthreee the  dependence of the eigenvalugs of the effective Hamil-

discussion at the end of RfL6]. tonian Hy; is relatively strong. Especially, Im) shows a
strong energy dependence due to the energy window with
VI. SUMMARY thresholds at a lower and an upper finite energy. The spec-

h I idered in th btai dl;rum is therefore bounded from below and from above, and
The results considered in the present paper are obtained {jg gjgenvalues of the effective Hamiltonian cannot always

the formalism worked out in Ref16] for the description of satisfyin ; :
o ) gly be approximated by the poles of thenatrix.
a double QD system. The formalism is based onSimeatrix The results discussed here are true for single-channel

theory with use _of the eﬁgctive Hamiltonian that describes,;smission through a double QD system that consists of
the spectroscopic properties of the open quantum systery,, single QDs with similar energy spectra and a narrow

The formalism is applied in Ref16] to the description of .. ot couples the two single QDs and allows the propa-

transmission zeros in the conductance through double QDgxion of only one mode. When the energy spectra of the two
These zeros are determined by the spectroscopic properti

, thgle QDs are very different from one another and the cou-
of the constituents of the double dot system and by the markjing strengthu to the wire is small, the transmission picture
ner the single QDs are coupled. They appear atall ralos 5 |5rg6, differs from that discussed above. In such a case,
of the coupling strengths. Our present study is devotedge transmission is hindered at largeabove all due to the

above all, to the transmission peaks. Their positions ang ., ap between the levels of the two single ODs through
widths depend on the ratiw/u and are influenced by branch whic%ytr?e ?ransmission takes place. gleQ g

points in the complex plane. At these points, the transition |, he present paper, the behavior of a simple model is

between the two scenarios with avoided level crossing anflyngigered that reflects many characteristic features of real-
no crossing in the complex plane takes place. In any case, thejc gouble QDs with more complicated structure, see Ref.
transmission is resonant. , [16]. The results obtained may guide the construction of
_Aslong asv/uis small, the levels repel in energgs the 4, 16 ODs. The position of transmission zeros and trans-
discrete eigenstates éfg) and the decay widths of the dif- | iccion peaks can be controlled by varying the coupling
ferent states are of comparable value. This causes Sor@;?rengthSU andu as well as the propagation of the mode
spreading of the transmission probability over a relativelyicide the wire. An example is the broad plateau with maxi-
!arge energy region. At Iarg@/u, hqwever, the _Ievels attract -1 transmission shown in Fig.(#. Using the interplay
in energy and the decay widths bifurcate. This causes rangenyeen internal and external interaction allows one to con-

mission peaks at the positions of the narrow states that agq,| the nroperties of ODs in a systematic manner
pear on the smooth background created by the broad states. prop Q y '

The positions of the transmission peaks depend, in this case,
strongly on the length of the wire or on another parameter
that controls the propagation of the mode inside the wire. We thank Erich Runge for critical reading the manuscript.
The two different scenarios are separated by a branch poi.F.S. thanks the Max-Planck-Institut fir Physik komplexer
in the complex plane. At such a point, two eigenval@®s Systeme for hospitality. This work was supported by the
and z) of the effective Hamiltonian coalesce at the energyRFBR Grant No. 04-02-16408.
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