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We consider single-channel transmission through a double quantum dot system consisting of two single dots
that are connected by a wire and coupled each to one lead. The system is described in the framework of theS
matrix theory by using the effective Hamiltonian of the open quantum system. It consists of the Hamiltonian
of the closed system(without attached leads) and a term that accounts for the coupling of the states via the
continuum of propagating modes in the leads. This model allows one to study the physical meaning of branch
points in the complex plane. They are points of coalesced eigenvalues and separate the two scenarios with
avoided level crossings and without any crossings in the complex plane. They influence strongly the features
of transmission through double quantum dots.
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I. INTRODUCTION

The phenomenon of avoided level crossing(Landau-
Zener effect) is studied theoretically as well as experimen-
tally for many years. It is a general property of the discrete
states of a quantum system, the energies of which will never
cross when the interaction between them is nonvanishing.
Their wave functions are exchanged at the critical value of a
certain tuning parameter where the avoided crossing takes
place. The reason for the avoided crossing of two discrete
levels follows from the expression for the two eigenvaluese±
of the Hamiltonian of the system,

e± =
e1 + e2

2
±

1

2
Îse1 − e2d2 + 4v2,

wheree1 ande2 are the energies of the noninteracting states
andv is their interaction. Since the square root contains only
positive values,e+ ande− are always different from one an-
other with the only exception of vanishing interactionv.

A crossing point of the two eigenvaluese± can be found
by continuing into the complex plane, i.e., by adding a nega-
tive term into the square root. The mathematical properties of
the crossing points are discussed in many papers. According
to Kato [1], they are called exceptional points, since the dis-
crete spectrum is supposed to be incomplete at these points.
The points in the complex plane are branch points[2,3].
Although the number of these points in the complex plane is
of measure zero, their meaning for physical processes is
large. They are related to the phenomenon of avoided cross-
ing of discrete states as shown in Ref.[1].

In recent studies, it turned out that not only discrete states
avoid crossing, but also resonance states do not cross, as a
rule [3–7]. An avoided level crossing in the complex plane is
accompanied by a redistribution of the spectroscopic proper-
ties of the resonance states. Most interesting is the bifurca-
tion of decay widths related to the avoided crossing of levels
in the complex plane since it causes different time scales in
the system. The long-lived(trapped) resonance states cause
narrow resonances in the cross section on a weakly energy
dependent background induced by the short-lived resonance
states. A similar situation is discussed recently in Ref.[8].
The resonance trapping phenomenon discussed in Refs.
[3–7] is a collective coherent resonance phenomenon as
stated also in Ref.[8]. The avoided level crossings may form
a branch cut[8]. This cut can be traced up to the avoided
crossing of discrete states[3].

Often, the branch points in the complex plane are identi-
fied with double poles of theS matrix [9] when related to
physical processes. It became possible directly to study the
spectra of atoms in the very neighborhood of double poles of
the S matrix by means of laser fields[6,10–12]. The results
show a smooth behavior of the observables when crossing
the double pole by tuning the parameters of the laser field.
Moreover, recent studies in the framework of schematical
models have shown that the branch points in the complex
plane separate the scenario with avoided level crossing from
that without any crossing[3,13]. In Refs.[3–7], the double
poles of theS matrix are identified with points at which the
eigenvalues of two states of the effective Hamiltonian coa-
lesce. In Refs.[5,6,14,15], the line shape of resonances in the
very neighborhood of double poles of theSmatrix is studied.

In Ref. [16], the S matrix theory is applied to the trans-
mission through double quantum dots(QDs) consisting of
two single QDs and a wire connecting them. The study of
these artificial molecules is of great interest since they dis-
play the simplest structures of quantum-computing devices
that can be controlled by external parameters, e.g., Refs.
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[17,18]. One of the interesting results obtained for a double
QD system, is the appearance of transmission zeros of dif-
ferent order at energies that are related to the eigenvalues of
the Hamiltonians of the single QDs[16]. They appear even
in cases when the transmission is large in this energy region.
In such a case, they can be seen as narrow dips in the trans-
mission probability.

Double dot systems provide a very powerful tool for
studying the properties of branch points in the complex plane
and their physical meaning. When leads are attached to them,
the double dot systems allow one further to study the relation
of the branch points in the complex plane to both the double
poles of theS matrix and the points where two eigenvalues
of the Hamiltonian of the open quantum system coalesce.
This is, above all, due to the symmetries involved in the
system in a natural manner. Moreover, the properties of a
double dot system can be controlled by external parameters
in a very clear manner. The double QD itself is characterized
by the coupling strengthsu between the wire and the single
QDs, the spectral properties of the two single QDs, as well as
by the length and the width of the wire. The coupling of the
double dot system to the environment is given by the cou-
pling strengthv to the leads attached to it. All these param-
eters are well defined and can be controlled. One may callv
the external coupling of the double QD system(via the
leads) andu the internal coupling(via the wire) that is char-
acteristic of the double dot system as a whole.

In the present paper, we will study a simple model for a
double QD system with the aim to receive information on the
branch points in the complex plane and their relation to
physical processes such as transmission. We useS matrix
theory combined with the method of the effective Hamil-
tonian which consists of two parts. The first part is the(Her-
mitian) Hamiltonian of the closed system and the second part
is an additional(non-Hermitian) term that takes into account
the coupling of the states of the system via the continuum.
The continuum is given by the modes propagating in the two
half-infinite 1d-leads when attached to the system. The inter-
play between these two parts of the effective Hamiltonian
characterizes the different physical situations.

In Sec. II, we give theS matrix for the transmission
through a model double QD system by using the effective
Hamiltonian formalism. The double QD consists of two
single QDs with one state in each, a wire with a single
eigenenergy that depends on the length of the wire, and with
one channel for the propagation of the mode in the attached
leads. We define the spectroscopic valuesEk and Gk of the
resonance statesk. In Sec. III, we study analytically the fea-
tures of the eigenvalues and eigenvectors at the branch point
in the complex plane. Here, at a certain energyE=Ec, two
eigenvalues of the effective Hamiltonian coalesce. We show
numerical examples obtained for branch points in the com-
plex plane as well as for the transmission through the double
dot system. The branch points can be seen by varying differ-
ent parameters. The transmission scenario at smallv /u is
characterized by transmission peaks which are spread over a
certain energy region. The spreading is the larger, the larger
the internal interactionu is. In contrast to this picture, the
transmission peaks are no longer spread in energy whenv /u
is large. Here, level attraction and width bifurcation take

place with the consequence that one narrow resonance ap-
pears on a smooth background created by the two broad
resonance states. The separation between the two different
scenarios is provided by the branch point in the complex
plane. This separation is independent of whether the eigen-
states cross or avoid crossing in the complex plane at the
energyEc.

In Sec. IV, we consider the effective Hamiltonian as well
as the transmission through the double dot system when it is
coupled with different strength to the two leads. In the fol-
lowing Sec. V, we show numerical examples for transmission
and eigenvalue trajectories of a double dot system with alto-
gether five and eleven states, respectively, as a function of
both, the length of the wire and the(external) coupling
strengthv. The main features of the eigenvalue trajectories
as well as of the transmission are the same as those discussed
in Sec. III. Moreover, we draw some conclusions on the dif-
ferent bonds of the two single QDs in the artificial molecule.
The appearance of different bond types is also related to the
positions of the branch points in the complex plane. In the
last section, we summarize the results obtained.

II. EFFECTIVE HAMILTONIAN AND S MATRIX THEORY
FOR TRANSMISSION THROUGH COUPLED

QUANTUM DOTS

In our study, we follow the paper[19] where theS matrix
theory for transmission through QDs in the tight-binding ap-
proach is formulated, and the paper[16] where theS matrix
theory is applied to a double QD system consisting of two
single QDs coupled to each other by a wire. As in Ref.[16],
we consider a simple model with a small number of states in
each single QD and one mode propagating through the wire.
This simple model is able to explain the characteristic fea-
tures of the transmission through realistic double dot systems
of the same structure, as shown in Ref.[16].

First, we will consider the simplest case with only one
state«1 in each single dot and one modeesLd propagating in
the wire of lengthL. The wire and the single QDs are
coupled byu. The effective Hamiltonian of such a system is
[16,19]

Heff = HB + o
C=L,R

VBC
1

E+ − HC
VCB, s1d

where

HB = 1«1 u 0

u esLd u

0 u «1
2 s2d

is the Hamiltonian of the closed double dot system,HC is the
Hamiltonian of the leftsC=Ld and rightsC=Rd reservoir and
E+=E+ i0. The second term ofHeff takes into account the
coupling of the eigenstates ofHB via the reservoirs when the
system is opened. It introduces correlations between the
states of an open quantum system that appear additionally to
those of the closed system[7]. The effective Hamiltonian
Heff is non-Hermitian.
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The coupling matrix between the closed double dot sys-
tem and the reservoirs can be found if both are specified. We
take the reservoirs(leads) as semi-infinite one-dimensional
wires in tight-binding approach[19]. The connection points
of the coupling between the system and the reservoirs are at
the edges of the one-dimensional leads. Then the coupling
matrix elements take the following form[16,19]

VmsE,Ld = vcE,LsxLdcms j = 1d = vÎsin k

2p
cms1d,

VmsE,Rd = vcE,LsxRdcms j = 3d = vÎsin k

2p
cms3d, s3d

where k is the wave vector related to the energy byE=
−2 cosk, cms jd , j =1,2,3, are theeigenfunctions of(2), and
v is the hopping matrix element between the edge of the lead
and the QD. Thev will be varied in our calculations. The
eigenvalues of the Hamiltonian(2) are real,

E1,3
B =

«1 + esLd
2

7 h, E2
B = «1, s4d

with h2 = D«2 + 2u2, D« =
«1 − esLd

2
, s5d

and the eigenstates read

u1l =
1

Î2hsh + D«d1 − u

h + D«

− u
2, u2l =

1
Î21 1

0

− 1
2 ,

u3l =
1

Î2hsh − D«d1 u

h − D«

u
2 . s6d

As a result, we get the following expression for the effective
Hamiltonian[16],

Heff =1E1
B −

v2u2eik

hsh + D«d
0

v2ueik

Î2h

0 «1 − v2eik 0

v2ueik

Î2h
0 E3

B −
v2u2eik

hsh − D«d
2 ,

s7d

which is symmetric. Its complex eigenvalueszk and eigen-
vectorsukd are [16]

z2 = «1 − v2eik,

z1,3=
«1 + esLd − v2eik

2
7ÎS esLd − «1 + v2eik

2
D2

+ 2u2

s8d

and

u1d = 1a

0

b
2, u2 =10

1

0
2, u3 =1 b

0

− a
2 , s9d

where

a = −
f

Î2jsj + vd
, b =Îj + v

2j
,

f =
v2ueik

Î2h
, v = − h +

D«v2eik

2h
, j2 = v2 + f2. s10d

The eigenfunctions are biorthogonal,Heff ukd=zkukd with [7]

skuld ; kk* ull = dk,l . s11d

Using the eigenvalues(8) and eigenfunctions(9) of the ef-
fective Hamiltonian, the amplitude for the transmission
through the double QD takes the simple form[19],

t = − 2pio
l

kLuVuldsluVuRl
E − zl

. s12d

Substituting Eqs.(3), (6), and (9) into the matrix elements
kLuVuld and sl uVuRl we obtain

kLuVu2d = o
m

kE,LuVumlkmu2d=
v
2
Îsin k

p
,

s2uVuRl = o
m

s2umlkmuVuE,Ll = −
v
2
Îsin k

p
,

kLuVu1d = s1uVuRl = vÎsin k

2p
fc1s1da + c3s1dbg,

kLuVu3d = s3uVuRl = vÎsin k

2p
fc1s1db − c3s1dag. s13d

The transmission probability isT= utu2.
The spectroscopic values such as the positions in energy

of states are originally defined for the discrete eigenstates of
Hermitian Hamilton operators that describe closed quantum
systems. The decay widths do not appear explicitly in this
formalism since the eigenvalues of the Hamiltonian are real.
They are calculated from the tunneling matrix elements by
means of the eigenfunctions of this Hamiltonian. The corre-
sponding values for resonance states are energy dependent
functions since the eigenvalues as well as the eigenfunctions
of the non-Hermitian effective Hamilton operator(1) depend
on energy. Nevertheless, spectroscopic values for resonance
states can be defined, and that by solving the fixed-point
equations[7],

Ek = ReszkduE=Ek
, s14d

and defining
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Gk = 2 ImszkduE=Ek
. s15d

The valuesEk and Gk characterize a resonance state whose
position in energy isEk and whose decay width isGk. This
resonance state causes a resonance of Breit-Wigner type in
the cross section when it is well separated from other reso-
nance states. In the regime of overlapping resonances, the
relation betweenEk and Gk on the one hand, and the reso-
nances seen in the cross section on the other hand, is less
well defined.

In the denominator of theS matrix, the eigenvalueszk of
the effective HamiltonianHeff appear in their full energy de-
pendence. That means that at every energyE of the system,
the contribution of every resonance statek is taken into ac-
count in correspondence to the valuezksEd. This fact be-
comes important whenzksElÞkdÞzksEkd and the contribution
of the resonance statek cannot be neglected at the energy
E=El, i.e., when the resonance states overlap.

Another definition of the spectroscopic values of a reso-
nance state is by means of the poles of theS matrix. This
(standard) definition of the spectroscopic values in the
framework of theSmatrix theory is not a direct one since the
poles of theSmatrix give information on the resonances, but
not on the spectroscopic properties of the resonance states.
The S matrix has a pole only when the energy is continued
into the complex plane. We remind, however, that theS ma-
trix describing physical processes is defined for real energies
E, and uSu2ø1. It is not surprisingly therefore that the two
definitions do not coincide completely. In the following, we
will characterize the resonance states by the energy depen-
dent eigenvalueszk and eigenfunctionsukd of the effective
HamiltonianHeff as well as by the valuesEk andGk, but not
by the poles of theS matrix. The reason for doing this is the
clear definition of the spectroscopic valuesEk andGk also in
the regime of overlapping resonances[7] by means of the
effective HamiltonianHeff that describes the open quantum
system.

It may happen that, at a certain point,zk=zl for two dif-
ferent statesk andl. Such a point might be considered as the
analog of a double pole of theS matrix. However, the coa-
lescence of two eigenvalueszk, zl at a certain energyEc does
not mean that also the poles exactly coincide. Therefore, we
will not consider double poles of theS matrix in the follow-
ing, but will look at the points and their energiesEc where
the two eigenvalueszk, zl coalesce. In such a case, the trans-
mission is determined mainly by interferences between the
two resonance statesk and l. These interferences influence
strongly the line shape of resonances[7,15].

Generally, two resonance statesk and l avoid crossing in
the complex plane, i.e., the eigenvalueszk andzl coalesce at
an energyE=Ec, which is different from the energiesEk, El.
The phenomenon of avoided crossing of resonance states in
the complex plane is in complete analogy to the well-known
phenomenon of avoided crossing of discrete states. In the
latter case, the crossing point can be found by opening the
system and varying the coupling strength of the discrete
states to the continuum, i.e., by continuing into the complex
plane. In both cases, the crossing point influences strongly
the properties of the states although it is hidden[3].

The formalism for the description of double QDs with
more complicated structure is given in Ref.[16]. We will not
repeat it here. We will, however, use it to obtain some nu-
merical results for the transmission through double QDs with
a larger number of states.

III. BRANCH POINTS IN THE COMPLEX PLANE

Let us define the value

F = S esLd − «1 + v2eik

2
D2

+ 2u2 s16d

by which the two eigenvaluesz1,3 differ according to Eq.(8).
F is real only whenk=np ;n=0,1, . . ..WhenF.0, Eq. (8)
gives repulsion of the two levels 1 and 3 in their energies
Reszkd. When, however,F,0, there is a bifurcation of the
decay widths Imszkd.

Most interesting is the caseF=0 since the eigenvalues
and eigenvectors ofHeff have some special properties under
this condition. From Eq.(8) follows z1=z3 for the eigenval-
ues, i.e., the conditionF=0 defines a point of coalesced ei-
genvalues. According to Eq.(9), the components of the

FIG. 1. The evolution of Reszkd (a) and Imszkd (b), k=1,3 (solid
lines), k=2 (dashed line), of the three eigenvalues of the effective
HamiltonianHeff as a function ofv at E=Ec=0.9847. The param-
eters of the double DQ system are chosen as«1=1, esLd=2−L /5,
u=1/4, L=3. At v=vc=0.9013 the two eigenvaluesz1 andz3 coa-
lesce. The Resz1d and Resz3d approach each other whenv,vc,
while the corresponding Imsz1d and Imsz3d bifurcate whenv.vc.
At the branch point in the complex planeEcÞEk,El.
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(complex) eigenvectorsu1d and u3d become infinitely large,
and

u1d = ± i u3d when F = 0. s17d

Also the normalization condition(11) is fulfilled when F
=0 due to the biorthogonality of the eigenfunctions, since the
difference between two infinitely large numbers may be 0 or
1. These relations between the eigenvalues and eigenvectors
of Heff that follow from the conditionF=0, hold not only for
the special case considered here. They hold also for the
eigenvectors of an effective Hamiltonian that describes at-
oms under the influence of a laser field[6]. More generally,
they characterize the eigenstates of an effective Hamiltonian
that describes an open quantum system[3,7,20].

The point at whichF=0 is a branch point in the complex
plane [2,3,7]. This point separates the scenarios with level
repulsion on the one hand and width bifurcation on the other
hand [3,7]. The study on the basis of a schematical model
provided the following additional results: level repulsion is
accompanied by the tendency to reduce the differences be-
tween the widths of the two states, while width bifurcation is
accompanied by level clustering.

According to Eq.(8), the two eigenvaluesz1 andz3 of the
effective Hamiltonian (7) coalesce when ResFd=0 and
ImsFd=0. The first condition gives

vc
4 = fesLcd − «1

cg2 + 8uc
2. s18d

From the second condition andE=−2 cosskd, we find the
energy at which the coalescence takes place,

Ec =
2fesLcd − «1

cg
vc

2 . s19d

In Fig. 1, we present the typical evolution of the real and
imaginary parts of the eigenvalueszk of the effective Hamil-
tonian Heff as a function of the coupling constantv. The
parameters of the system aree=2−L /5, «1=1, u=0.25, L
=3. With these parameters, it follows from Eqs.(18) and(19)

FIG. 2. The transmission probability through the double QD vs
v and energy. Each single QD has one level at«1=1. It is esLd=2
−L /5 andL=3. The eigenenergies of the double QD are shown by
stars. The case(a) corresponds to Fig. 1. The coupling constant
between the single dots and the wire isu=1/4. Thepoint of coa-
lesced eigenvalues isvc=0.9013,Ec=0.9847 and the solutions of
the fixed point equations(14) give Ek=El ÞEc as can be seen from
Fig. 1. In the case(b), the coupling constantu=uc=0.1443 between
the single dots and the wire is chosen in correspondence to Eq.(21).
Therefore,Ek=El coincides withEc=7/5 atv=vc.

FIG. 3. The evolution of Reszkd (a) and Imszkd (b), k=1,3 (solid
lines), k=2 (dashed line), of the three eigenvalues of the effective
HamiltonianHeff as a function ofv at E=Ec=0. The parametersu
=1/4, L=10, «1=0, esLd=2−L /5 of the double QD system are
chosen in such a manner thatesLd=«1=0 at E=0. Here, the two
eigenvalues coalesce;vc=81/4u1/2=0.8409.
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that the eigenvaluesz1,3 coalesce whenv=vc=s1/2
+9/25d1/4=0.9013 andE=Ec=0.9847. The results shown in
Fig. 1 are obtained for the energyE=Ec. Although there are
three eigenstates, onlyz1 and z3 coalesce at the pointE
=Ec,v=vc. The second eigenstate does not interact with the
two other ones since it is not directly coupled to the leads. It
is coupled to the leads only via the two single QDs, and this
coupling is symmetrical. This result is in accordance to Eq.
(7). It can be seen further, that the two statesu1d andu3d with
energies Reszkd, Reszld coalesce(when v=vc) at the energy
E=Ec. At this branch point in the complex planeEk
ÞReszkduE=Ec

, El ÞReszlduE=Ec
. This means, the two reso-

nance statesu1d and u3d do cross atE=Ec but not at the
energyEk or El. In Fig. 2(a), the corresponding transmission
probability versusv andE is shown.

Let us consider now the behavior of the eigenvalues of the
effective Hamiltonian as a function ofv at the energyE
=Ek whereEk=Re(zksEkd) is solution of Eq.(14). In general
case, it is not easy to find the solution of the fixed point
equation. However, for the energy(19) at which the eigen-
valueszk coalesce, Eq.(14) can be easily solved analytically.
From Eqs.(8), (18), and(19) we obtain

Ek = esLcd =
2fesLcd − «1

cg
vc

2 s20d

and

uc
2 =

fesLcd − «1
cg2

8
S 4

esLcd2 − 1D . s21d

With the parameters chosen in Fig. 1, the last equation im-
plies that solutions exist ifesLdø2. We can consider there-
fore the evolution of the eigenvalueszk with v at E=Ek
=esLd=7/5 andlook for the point where the two eigenvalues
coalesce. The critical values at the branch point in the com-
plex plane areuc=0.1443 andEc=7/5. Theevolution of the
eigenvalueszk with v for uc, Ec, L=3 is similar to that given
in Fig. 1. It is not shown here. The corresponding transmis-
sion picture, Fig. 2(b), is also similar to Fig. 2(a). The main
difference is the smaller spreading of the eigenvalues ofHB
and the smaller transmission probability according to the
smaller valueu in the case withEk=El =Ec. In both cases, the
transmission is more spread in energy atv,vc than atv
ùvc. This is in accordance with level repulsion seen in the
eigenvalue trajectories at smallv and level attraction appear-
ing at largev. There is a transmission peak atv<1 near the
upper borderE=2 in both cases. This peak follows from the

FIG. 4. (a) The transmission probability through the double QD
vs v and energy for the case shown in Fig. 3.(b) The same as(a)
but for fixed v=0.2 (dashed line), v=0.53 (solid line), and v
=0.83 (dot-dashed line). At v=0.53, the double QD is a perfect
filter. FIG. 5. The evolution of the real and imaginary parts of the

eigenvalueszk, k=1,3 (solid lines), k=2 (dashed line), as a function
of the lengthL for the same double QD system as in Fig. 1 butv
=1. Ec= ±Î2. The critical values of the lengthL at the two points of
coalescence of eigenvalues areL1c=1.4645,L2c=8.5355.(a,b) E=
−Î2−0.1,(c,d) E=−Î2, (e,f) E=−Î2+0.1, and(g,h) E=Î2.
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energy dependence of the Reszkd: the positions of the two
resonance states with large width approachE=2 with v<1
(see Fig. 1 where the eigenvalues are shown for an energy
E,2). We can state therefore that the characteristic features
of the transmission pictures do not depend on whether the
two states avoid crossing or cross in the complex plane.

In Fig. 3, we present the peculiar symmetrical behavior of
the eigenvalueszk versusv at E=0 for the resonant case with
the parametersesLd=«1, L=5. In this case we have, accord-
ing to Eqs.(18) and (19), Ec=0 andvc=81/4u1/2. At v,vc,
the widths of the two states 1 and 3 are equal, Imsz1d
=Imsz3d, while at v.vc their positions are equal, Resz1d
=Resz3d. The state 2 is not involved in the crossing scenario
as in Fig. 1.

The transmission probability versus energy andv is pre-
sented in Fig. 4. It has the same symmetrical behavior as the
eigenvalue pictures. Of special interest is, as Fig. 4(b) shows,
that this symmetrical case is atv=0.53 a perfect filter: the
transmission probability is equal to one in a large energy
range.

Up to now, we traced the appearance of a branch point in
the complex plane by enlarging the coupling strengthv be-
tween system and leads. In such a case, the branch points at

which two eigenvalues coalesce, appear in a natural manner.
It is less evident that the branch points in the complex plane
can be seen in all parameters of the double QD system that
define Eq.(18). We can take arbitrary but fixed values ofv
and u and consider the lengthL or even the energyE as a
parameter in order to trace the coalescence ofz1 andz3 at Lc
andEc. The corresponding equations for achieving the coa-
lescence are

esLcd = «1
c ± Îvc

4 − 8uc
2; Ec = ±

2

vc
2
Îvc

4 − 8uc
2. s22d

A whole branch cut occurs alongL when u=uc, v=vc, and
E=Ec are fixed but«1 is not fixed. We consider in the fol-
lowing one branch point corresponding to a fixed value of«1.

The case withL as a parameter is shown in Fig. 5 for the
same double QD system as in Fig. 1, butv=1. There are two
branch points in the complex plane corresponding toE1c
=Î2, L1c=1.4645 andE2c=−Î2, L2c=8.5355. WhenL,L1c
and E.Î2, the two levels 1 and 3 avoid crossing as in
the foregoing cases. In the regionL1c,L,L2c and
−Î2,E,Î2, the levels do not cross at all in the complex
plane due to their different widths: one of them is trapped by

FIG. 6. (a) The probabilityT for transmission
through the double QD vsE and v for Lc

=8.5355. (b) The transmission probability as a
function ofE for fixed v=0.85. It has one narrow
peak on the background caused by the two broad
resonance states. Parameters:«1=1,esLd=2
−L /5 ,u=1/4 as inFig. 1.

FIG. 7. The evolution of the real(left column)
and imaginary(right column) parts of the eigen-
valueszk, k=1,3 (solid lines), k=2 (dashed line),
as a function of energy for transmission through
the same double QD system as in Fig. 1, butv
=1 as in Fig. 5. The point of coalesced eigenval-
ues isEc=Î2. The critical length isLc=1.4645.
(a,b) L=Lc−0.1, (c,d) L=Lc, and (e,f) L=Lc

+0.1.
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the other one due to the strong interaction via the continuum
(i.e., via the modes propagating in the leads). ForL.L2c and
E,−Î2, the levels again avoid crossing in the complex
plane since the widths and with them the external coupling
of the states via the continuum decrease in approaching
E=−2.

The appearance of two branch points in the complex
plane in Fig. 5 illustrates in a very convincing manner the
interplay between internal and external interaction in ap-
proaching a branch point. In any case, a branch point sepa-
rates regions with avoided level crossingsL,L1c,L.L2cd
from those without any crossing of the levelssL1c,L,L2cd
in the complex plane. One should underline, however, that
the first branch point influences the physical observables
such as the transmission probability[Fig. 6(a)], indeed. The
second branch point occurs as a threshold effect far from the
energiesE1 andE3 of the two states. The two eigenvaluesz1
andz3 coalesce at the energyEc=−Î2!Ek−Gk/2, El −Gl /2,
i.e., at the tails of the resonance states. This does not have
any influence on the transmission probability.

In Fig. 6(b), the transmission probability is shown atL
=L2c. It shows one peak, caused by the narrow resonance
state, on the background created by the two broad resonance
states. The narrow resonance is of Fano type by taking into
account that the background decreases in approaching the
two bordersE= ±2. The transmission probability for other
values ofL.L1c is similar to that shown in Fig. 6.

In Fig. 7, we show the analog pictures for theE depen-
dence of the eigenvalueszk. Due to the fact that the energy is
bounded from belowsE=−2d and abovesE=2d, the energy
dependence of Imszkd cannot be neglected. It is especially
large for states that are strongly coupled to the continuum.

While the energy dependence of Imszkd is more or less sym-
metrically aroundE=0, the Reszkd show an unsymmetrical
behavior as a function of energy. It is of special interest, that
the branch points in the complex plane appear also in the
energy dependence of Reszkd and Imszkd. An example is the
branch point atEc=Î2, Lc=1.4645 that can be seen in Fig. 7.

IV. TRANSMISSION THROUGH A DOUBLE DOT SYSTEM
WITH DIFFERENT COUPLING STRENGTHS

TO THE TWO LEADS

Till now we considered the case that the double QD is
coupled to the left and to the right reservoir with the same
strengthv. The couplings may be, however, different from
one another. Such a case is interesting, also from a theoreti-
cal point of view, since the effective Hamiltonian becomes
unseparable when the two coupling strengths differ from one
another. This is in contrast to Eq.(7) where the double QD is
assumed to be coupled symmetrically to the reservoirs and,
according to Eqs.(8) and (9), the eigenstateu2d does not
interfere with the other two statesu1d and u3d.

Following Ref.[16] we can write Eq.(1) as follows

kmuHeffunl = Emdmn+ o
C=L,R

1

2p
E

−2

2

dE8
VmsE8,CdVnsE8,Cd

E + i0 − E8

= Emdmn− fv2cms1dcns1d − w2cms3dcns3dgeik,

s23d

where v, w are the coupling strengths between the system
and, respectively, the right and left reservoirs. Substituting
the eigenstates of the closed double QD system(2) into (23)
we obtain the following expression for the(symmetrical) ef-
fective Hamiltonian

Heff =1
E1

B −
sv2 + w2du2eik

2hsh + D«d
−

usv2 − w2deik

2Îhsh + D«d
usv2 + w2deik

2Î2h

−
usv2 − w2deik

2Îhsh + D«d
«1 − sv2 + w2deik/2

usv2 − w2deik

2Îhsh − D«d
usv2 + w2deik

2Î2h

usv2 − w2deik

2Îhsh − D«d
E3

B −
sv2 + w2du2eik

2hsh − D«d
2 . s24d

The transmission probability for a system with different
couplings of the double QD to the reservoirs demonstrates
new features that appear whenv andw differ strongly from
one another(Fig. 8). In the calculations, we have chosen the
following parameters for the double QD system:esLd=2
−L /5, L=4, u=0.15,«1=1. Then from Eq.(4) we haveE1

B

=0.8665,E2
B=«1=1, E3

B=1.3345 for the three states of the
closed system. The positions of the real parts Reszkd ,k
=1,2,3, of thethree eigenvalues of the effective Hamil-
tonianHeff are given in Fig. 8, left column, forE=1.0, 0.92,
and 1.26.

Let us at first tune the energy of the incident particle to be
resonant with the eigenenergyE=E2

B=1 of the closed sys-

tem. As it can be seen from Fig. 8(a), we can have resonant
transmission through the system at this energy only for
w,1/2. Correspondingly, the transmission probability de-
creases for largew, Fig. 8(b). Next, let us takeE=0.92 that
approachesE1 for w<1/3 according to Fig. 8(c). Resonance
transmission through the system is possible, at this energy,
only whenwù1/3 andv=0.06. Since Resz1d is almost con-
stant as a function ofw whenw.1/3, also the transmission
remains almost constant forw.1/3. Obviously the trans-
mission is symmetrical relative tov↔w. As a result we ob-
tain the peculiar picture of transmission probability shown in
Fig. 8(d). A similar picture is obtained if the energy is tuned
to the third eigenenergy that isE=E3=1.26 for largew, as
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shown in Figs. 8(e) and 8(f). We mention, however, that at
larger u the transmission picture is less peculiar. Maximum
transmission appears whenw<v andv is about two or three
times larger thanu.

V. TRANSMISSION THROUGH A DOUBLE DOT SYSTEM
WITH MORE THAN THREE STATES

We show now results of some calculations for the trans-
mission through a more realistic double QD system with
more than one state in each of the single QDs. The number
of propagating modes in the leads as well as in the wire,
connecting the two single QDs, is restricted to one as in the
foregoing calculations.

In Fig. 9, we show the transmission through such a double
QD system with two states in each single QD as a function of
energy E and lengthL for u=0.25 and for four different
coupling strengthsvø1. The results show the change of the
transmission picture as a function ofL for different v. At
small v, the transmission takes place mainly at the energies
Ek

B of the discrete states of the double QD. This behavior is
called usually resonant transmission. At largerv, however,
the transmission peaks have nothing in common with the
positionsEk

B of the eigenstates ofHB. Here, the energy andL
dependence of the transmission follows basically that of the
wave inside the wire,e=3/2−L /7. The transmission picture
given in Fig. 9 corresponds to those shown in Ref.[16].
Transmission zeros appear for allv at Es

s0d=s«1
s+«2

sd /2,
where «k

ssk=1,2;s= l ,rd are the eigenenergies of, respec-
tively, the left and right single QD. It isEl

s0d=Er
s0d=3/4 in

Fig. 9.
The eigenvalue pictures corresponding to Fig. 9 are

shown in Fig. 10. As long asv is small, the energies Reszkd
show a dependence on the parameterL that is typical for
interacting(discrete) states. The Reszk,ld of the two outermost
states avoid crossing at a certainL=Lcr where the decay

FIG. 8. Left column: the evolution of the real parts of the eigen-
values of Eq.(23) as a function ofw for v=0.1, E=1.0 (a), v
=0.06,E=0.92 (c), andv=0.1, E=1.26 (e). The parameters of the
closed double QD system areL=4, u=0.15, «1=1, esLd=2−L /5.
The circles at thex axes denote the energiesE. Right column: the
transmission probability through the double QD vs couplingv with
the left reservoir andw with the right reservoir. The energiesE are
the same as in the corresponding figures of the left column.

FIG. 9. The transmission through a double
QD vs E andL for v=0.25 (a), 0.5 (b), 0.75 (c),
and 1.0(d). The solid lines represent the five real
eigenvaluesEk

B of the HamiltonianHB as a func-
tion of L. The dashed lines show the eigenenergy
of the wiree=3/2−L /7. The eigenenergies of the
two single QDs are equal:«1=1/2, «2=1, andu
=0.25. The transmission zero atE0=3/4 is inde-
pendent ofL andv.
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widths 2Imszk,ld cross. At largerv, however, the eigenvalue
pictures change since the widths of the two outermost states
do no longer cross in the complex plane. Though the trajec-
tories projected onto the energy axis cross at a certain value
of L, the decay widths do not cross at all. This is due to the
large difference between Imsz1d and Imsz3d as a consequence
of resonance trapping(width bifurcation).

We can see from the eigenvalue trajectories Fig. 10 that
Fig. 9(d) corresponds also to resonant transmission in spite
of the fact that its structure is completely different from that
in Fig. 9(a). The point is that the eigenvalues ofHeff differ
fundamentally from those ofHB if the coupling of the states
via the continuum is strong. The transmission peak appears
at the position of a narrow resonance state. Besides this state,
there are two broad and two narrow resonance states lying
each very close to one another. The interferences between
them are obviously destructive.

Another interesting result seen in Fig. 10 is that the decay
width of the state in the middle of the spectrum vanishes at

L<3 for all v. At this value ofL, the middle state crosses the
energyEs0d=3/4 where the transmission is zero. For a dis-
cussion of the transmission zeros see Ref.[16].

In Fig. 11, the transmission through a double QD with
altogether five states is shown as a function of energy andv
for two different lengths of the wire,L=2 and 5. Each of the
two single QDs has two levels at«1=1/2 and«2=1, and the
mode in the wire isesLd=2−L /4. Transmission zeros appear
at E=3/4 (for a detailed discussion of the transmission zeros
see Ref.[16]).

The eigenvalue pictures corresponding to Fig. 11 atE
=0.75 are shown in Fig. 12. We see a bifurcation of the
widths as discussed in Sec. III as well as the corresponding
branch points in the complex plane. At largev, there are two
broad resonance states according to the two modes propagat-
ing in the two leads. The remaining three states are narrow at
largev. They are trapped by the two broad states. As shown
in Fig. 12, the two outermost states coalesce only atL
=3.03. The resonance state in the middle of the spectrum

FIG. 10. The evolution of real
(left) and imaginary(right) parts
of the five eigenvalues of the
HamiltonianHeff as a function of
the lengthL for a double QD sys-
tem. The coupling of the system
to the continuum isv=0.35 (a,b),
0.8 (c,d), and 1.1(e,f). The param-
eters of the system areu=0.25,
E=0.25, e=3/2−L /7. The ener-
gies of the two single QDs are the
same:«1=1/2, «2=1. The trans-
mission of this double QD is
shown in Fig. 9

FIG. 11. The transmission through a double
QD vsv andE with the lengthL=2 (a) and 5(b).
The parameters areu=0.25, esLd=2−L /4, «1

=1/2, «2=1. The transmission zero atE0=3/4 is
independent ofv andL.
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coalesces, however, with another state at lower energy for all
three lengthsL shown in Fig. 12.

The eigenvalue pictures calculated at different energies
differ from one another in some details. The eigenvalue Fig.
12 corresponds to Fig. 1 calculated at a positive energyE.
The two broad states are shifted to higher energy whenv is
large. The shift is in the opposite direction when the eigen-
value pictures are calculated at negative energy. The calcu-
lation at E=0 gives a symmetrical picture corresponding to
Fig. 3. In this case, the positions of all states at largev are
almost constant. The resonance trapping mechanism occurs
symmetrically atE=0: the two outermost states coalesce at a
somewhat higher value ofv than the two states lying nearer
to the center of the spectrum. The state in the middle of the
spectrum does not coalesce with any other state. It corre-
sponds to the mode moving in the wire and is symmetrically
coupled to the states at higher and at lower energy whenE
=0. This result corresponds completely to those shown in
Fig. 3.

The figures show clearly that the transmission peaks ap-
pear at the positions of the eigenstates ofHB only whenv is
small. At largerv, the transmission is determined by inter-
ferences between the contributions from the different states.
Nevertheless, it is resonant in relation to the eigenstates of
the effective HamiltonianHeff. Level repulsion at smallv and
level attraction at largev cause features of the transmission
pictures for a double QD with altogether five states(Figs. 11
and 12) that are the same as those of a double QD with
altogether only three states(Figs. 1–4). The only difference
is the appearance of transmission zeros(Fig. 11) when the
two single QDs are coupled to one another so that the double
QD is effectively different from a 1d-chain as in Figs. 11 and
12, see Ref.[16].

In Fig. 13, the transmission through a QD with five states
in each single QD is shown, and Fig. 14 gives the corre-
sponding eigenvalue trajectories of all 11 states. The main
features discussed for the cases with a smaller number of
states remain. This holds true also for the transmission zeros,
the positions of which are determined by the energies of the
eigenstates of the two single QDs. One of the differences to
the cases with altogether three or five states is the following.
The eigenenergy trajectories atE=0 are symmetrical around
the energyE=0 in Fig. 3 with only one state in each single
QD, while the symmetry is somewhat disturbed in Fig. 14
with more states in each single QD. In the latter case, the two
outermost states do not approach each other completely. The
lower state approaches one of the states out of the middle,
and the upper state becomes trapped by these two states. As
a consequence, the region with maximum transmission does
not occur in the middle of the spectrum but at a somewhat
lower energy. The reason for this asymmetry is the follow-
ing: the functions Reszkd of ten states are raising with energy
while all the Imszkd are vanishing at the two limitsE= ±2 of
the energy window(compare Fig. 7). Therefore, the widths
of the states at lower energy are larger than those of the
states at higher energy so that they trap the higher-lying
states. For details of the resonance trapping phenomenon, see
Ref. [7].

Common to all the pictures shown in this section is that
the single-channel transmission through a double QD is of
resonant character although its structure depends strongly on
the strengthv by which the dot is coupled to the attached
leads. The point is that the evolution of the eigenvalues of
the effective HamiltonianHeff as a function of external pa-
rameters changes fundamentally at branch points in the com-
plex plane. The transmission through the double QD shows a

FIG. 12. The evolution of real(left) and
imaginary(right) parts of the five eigenvalues of
the HamiltonianHeff as a function of the coupling
strengthv for a double QD. The length of the
wire is L=0.7 (a,b), 2 (c,d), and 3.03(e,f). Pa-
rameters: u=0.25, E=0.75, esLd=2−L /4, «1

=1/2, «2=1. The transmission of this double QD
is shown in Fig. 11.
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correspondingly sensitive dependence on the external param-
eters. Qualitative changes in the transmission picture are
caused by branch points in the complex plane which separate
the scenario with avoided level crossing from that without
any crossing in the complex plane. While transmission oc-
curs in the whole energy region with several peaks in the
case with avoided level crossings, there is a smaller number
of peaks of mostly different height in the case without any
level crossings in the complex plane. The position of these
peaks changes as a function ofL. Common to both scenarios
are only theL independent transmission zeros(for a detailed
discussion of the transmission zeros see Ref.[16]).

The two coupling strengthsv and u stand, respectively,
for the coupling of the double QD as a whole to the leads

(environment) and the coupling of the two single QDs to the
wire (inside the double QD system). The ratiov /u charac-
terizes therefore the ratio between external and internal in-
teraction of the states of an open quantum system. When the
external coupling is much larger than the internal coupling,
the external coupling of the levels via the modes propagating
in the two leads, prevents the formation of a uniform QD. In
the opposite case of a large internal coupling, the relatively
weak external coupling is unable to break the uniform QD.
Most interesting is, of course, the transition region between
the two different types of bonds in double QDs.

It is worthwhile to notice the following. The two levels
that are the outermost ones of the spectrum, cross or avoid
crossing in the complex plane atE=0. The distance in en-

FIG. 13. The transmission through a double
QD vs v and E with the parametersL=1.5 and
u=0.2. Each single QD has five levels at«i

=1/4, 1/3, 1/2, 3/4, and 1. Theenergy in the
wire is e=1−L /8. The four transmission zeros
are independent ofv andL. The eigenenergies of
the closed double QD are shown by stars.

FIG. 14. The evolution of the
11 eigenvalueszk of the effective
HamiltonianHeff as a function of
v at E=0. (a) Reszkd, (b) Imszkd.
L=1.5, u=0.2. Each single QD
has five levels at«i =1/4, 1/3,
1/2, 3/4 and 1. The eigenenergy
of the wire is e=1−L /8. The
transmission of this double QD is
shown in Fig. 13.
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ergy to the crossing or avoided crossing, which occurs be-
tween two other levels, is smaller than their decay widths.
That means, effectively all states are involved in the scenario
of avoided level crossing in the complex plane.

Additionally, we mention that the dependence of the
transmission on the lengthL of the wire is determined by the
manner the wave propagates inside the wire. It can be re-
placed by another relation betweene andL than that used in
our calculations or by the analog relation betweene and the
width d of the wire. In the last case,L can be kept constant in
studying the dependence of the transmission fromd, see the
discussion at the end of Ref.[16].

VI. SUMMARY

The results considered in the present paper are obtained in
the formalism worked out in Ref.[16] for the description of
a double QD system. The formalism is based on theSmatrix
theory with use of the effective Hamiltonian that describes
the spectroscopic properties of the open quantum system.
The formalism is applied in Ref.[16] to the description of
transmission zeros in the conductance through double QDs.
These zeros are determined by the spectroscopic properties
of the constituents of the double dot system and by the man-
ner the single QDs are coupled. They appear at all ratiosv /u
of the coupling strengths. Our present study is devoted,
above all, to the transmission peaks. Their positions and
widths depend on the ratiov /u and are influenced by branch
points in the complex plane. At these points, the transition
between the two scenarios with avoided level crossing and
no crossing in the complex plane takes place. In any case, the
transmission is resonant.

As long asv /u is small, the levels repel in energy(as the
discrete eigenstates ofHB) and the decay widths of the dif-
ferent states are of comparable value. This causes some
spreading of the transmission probability over a relatively
large energy region. At largev /u, however, the levels attract
in energy and the decay widths bifurcate. This causes trans-
mission peaks at the positions of the narrow states that ap-
pear on the smooth background created by the broad states.
The positions of the transmission peaks depend, in this case,
strongly on the length of the wire or on another parameter
that controls the propagation of the mode inside the wire.
The two different scenarios are separated by a branch point
in the complex plane. At such a point, two eigenvalues(zk
and zl) of the effective Hamiltonian coalesce at the energy

E=Ec. Sometimes, Ec=Ek=El. Mostly, however, Ek
ÞReszkduE=Ec

andEl ÞReszlduE=Ec
, and the branch point in the

complex plane is not a double pole of theS matrix.
We underline that the resonance phenomena appearing in

the transmission through double QDs are the same as those
observed in, e.g., the scattering on nuclei or atoms[7]. The
role of the branch points in the complex plane for the trans-
mission through a double dot system agrees with that dis-
cussed in a schematical study[3] and for a double-well sys-
tem [13]. In our model double QD, however, the energy
dependence of the eigenvalueszk of the effective Hamil-
tonian Heff is relatively strong. Especially, Imszkd shows a
strong energy dependence due to the energy window with
thresholds at a lower and an upper finite energy. The spec-
trum is therefore bounded from below and from above, and
the eigenvalues of the effective Hamiltonian cannot always
satisfyingly be approximated by the poles of theS matrix.

The results discussed here are true for single-channel
transmission through a double QD system that consists of
two single QDs with similar energy spectra and a narrow
wire that couples the two single QDs and allows the propa-
gation of only one mode. When the energy spectra of the two
single QDs are very different from one another and the cou-
pling strengthu to the wire is small, the transmission picture
at largev differs from that discussed above. In such a case,
the transmission is hindered at largev, above all due to the
energy gap between the levels of the two single QDs through
which the transmission takes place.

In the present paper, the behavior of a simple model is
considered that reflects many characteristic features of real-
istic double QDs with more complicated structure, see Ref.
[16]. The results obtained may guide the construction of
double QDs. The position of transmission zeros and trans-
mission peaks can be controlled by varying the coupling
strengthsv and u as well as the propagation of the mode
inside the wire. An example is the broad plateau with maxi-
mal transmission shown in Fig. 4(b). Using the interplay
between internal and external interaction allows one to con-
trol the properties of QDs in a systematic manner.
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