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Current statistics for transport through rectangular and circular billiards
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We consider the statistics of currents for electfanicrowave transmission through rectangular and circular
billiards. For the resonant transmission the current distribution is describing by the universal distfiBution
Saichevet al,, J. Phys. A35, L87 (2002)]. For the more typical case of nonresonant transmission the current
statistics reveals features of the current channefoaridor effecy interior of the billiard. The numerical
statistics is compared with analytical distributions.
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I. INTRODUCTION sion of the scattering function over the eigenstates of the

Recently the statistics of the scattering wave function andilliard. The selection rules strongly reduce the number of
currents for electroimicrowave transmission through cha- €igenstates participating in transmission through the billiard.
otic billiards was considerefl—3]. The statistics was based Effectively this number is about from 1 to a few as was
on the fact that the scattering function can be described 8hown numericallyf4,5]. For transmission through chaotical
complex Gaussian random fiejg=u+iv with the correlation  billiards this number as a rule exceeds 10 which differs from
(uv) dependent on the conductance and measure of the opefiansmission through integrable billiards.
ness of the billiard. Such a scattering function can be given
as a random superposition of the plane waves obeying the
boundary conditiongthe modified Berry function[4—7]. Il. TRANSMISSION THROUGH

The scattering function interior of the billiard can be su- THE RECTANGULAR BILLIARD
perposed of the eigenfunctions of the billiard. Although the
coefficients of superposition are not random, which is differ-
ent from the Berry functiofi8], nonetheless superposition of
the Gaussian random fields is also a complex Gaussian ra
dom field[9,10]. It allowed us to derive analytically the dis-
tribution functions for the scattering functigid], currents
[2], and nodal pointgvorticeg [6,11,13. These distributions
were observed as numericall§,5,1] as well as experimen- -V2y=ey (1)
tally for the microwave transmissigi.3,14. . - - .

Surprisingly, the transmission through an integrable pil-describing transmission through a billiard Is V\ée" k*ncz)wn.
liard is more complicated in comparison to the chaotic bil-€reé we use dimensionless energyE/Eo, Eo=f"/2m'd
liard. The reason is that the eigenfunctions of the integrable
billiard do not obey the Gaussian distribution. The effect of -
channeling of transport currenthe current terminated leads . ‘ . . . f' . . . ' .
attached to a billiardis bright example of peculiar distribu-
tions for transmission through the rectangular billigddl5).

The channeling of currents is a consequence of the almost . . .\ . . .' . . ' . .

crystal order of nodal pointg5,15. Since the nodal points

A billiard can be opened by attaching leads to some exte-
rior reservoirs and a stationary current through the billiard is
induced by applying suitable voltages to the reservoirs. We
Bonsider leads as stripes attached normally to the billiard as
shown in Fig. 1. The numerical procedure of the solution of
the Helmgoltz equation

are centers of current vorticg5,16—18, the transport cur- .

rents are to flow between rows of the vortices as in “corri- . . ' ‘ . ' . . ' . .
dors.” For a computation of current flows one can separate X

vortical bound currents and unbound currents which are ter- _

minated at the lead@ransport currenyg19]. However, it is . ' . ' . ' . . . ' .
hardly possible to separate the transport and vortical currents

in experiments. Therefore the statistics of the current density y

interior of the integrable billiard is a subject of consideration

of present paper. The main result is that the current statistics FIG. 1. The scattering functiof(x,y)| for resonant transmis-

shows the features related to the current channeling excepgion through a squared billiard with energy~ €114=13.52 and

for the case of resonant transmission. numerical lengths\,=N,=400. The numerical width of the leads
The interplay between the symmetries of billiards andd=40. The hopping matrix element between the leads and the bil-

leads implies the selection rules for the coefficients of expankard is chosen as 0.9.
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FIG. 2. The coefficients of expansion of the scattering function

over the eigenstate®).

whered is the width of the leads. In terms &), we define
also the eigenenergies of the billiard. In order to provide
resonant transmission we imply hopping matrix elements
t<<1 connecting the billiard and the leaf%5,20.

Let us consider a rectangular billiard with lengthsL,
and eigenfunctions obeying the Dirichlet boundary condi-
tions as

2
Pnr(X,Y) = Dml(X) dly) = Ksin(mwx/Lx)sin(nwy/Lx), (2
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FIG. 3. The current density(x,y) for resonant transmission
through a squared billiard at the same parameters as given in Fig. 1.

sion is shown in Fig. 3. One can see that the pattern basically

where m=1,2,3,...n=1,2,3,... A=L,L and the cons_ists of vortical currents. . -
:2:3,...n=1,2,3, .. A=LLy, Figure 4 shows the numerical results for the statistics of

the current density(j) and its componentB(j,), P(j,) for

eigenenergies

2 2 feai
6mn:d2772(m2 . nz) @ the resonant transmission.
Ly L
-2
A. Resonant transmission = -4
Tuning the incident energy to be resonant to the eigenen- % -6
ergy of the billiarde= €,,, we can achieve a situation that the -
scattering function is to be very close to the corresponding -8
eigenstata/,,, interior of the billiard. In Fig. 1 one can see 1 o y
that for e~ €, 4 the scattering function almost exactly fol- j/<i>
lows the eigenfunction/s; 4 In the squared billiard there is X
the second degenerated eigenstate,(x,y) which related to -2
the first one by a rotation 90°. As seen from Fig. 1, a mini- =,
mum of the second degenerated eigenstate is located near f 4
leads, which diminishes participation of this state in the = "
transmission.
Quantitatively a measure of the resonant transmission can 8
be given by the coefficients of expansion of the scattering
function over the eigenstat@) interior of the billiard: -1 0 i /<> 1
y
POGY) = 2 ConnnX) hn(Y). 4)
mn 0.03
Figure 2 shows that the contribution of the eigenstate . 0.02
=11,n=4 is dominant in the scattering function. In order to E ’
resolve the contributions of different eigenstates to the scat-
tering function in Fig. 2, we plotted the squared roots of the 0.01
coefficients|c,|*/2
We consider the statistics of the local current density, °o > !
jy) = Im(y’ V ), (5) V<>

interior of the billiard numerically computed as histograms.

FIG. 4. Statistics of the current densiB(j) (bottom) and its

For microwave transmission this current is the Poynting veceomponents(j,) and P(j,) for resonant transmission. The current
tor [13]. A pattern of current flow for the resonant transmis- distributions(6) and(7) are shown as solid lines.
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These numerical results are compared with the current
distributions derived in2] for transport through chaotical
billiards,

T _M>
P(J)——4<j>2Ko 20" (7)

where a=x,y, Ky(x) is the modified Bessel function of the
second kind, and the average means

o= ey
( >—AfAdr : (8)

whereA is the area to be sampled. In our case it will be area
of the cavity, but in principle it could be any area that one
may wish to diagnose. From Fig. 4 one can see qualitative

0.8
0.6
0.4
0.2

PHYSICAL REVIEW E 70, 016208(2004)

11

125 13

agreement between the numerical results for the resonant FiG. 5. (a) Transmission through the rectangular billiard with
transmission through the rectangular billiard and formulasumerical sizedN,=500, N,=400,d=40. The hopping matrix ele-
(6) and (7) for the case of transmission through chaotic bil- ment between leads and billiards is equal tgk).The coefficients
liards. of the expansiori4) for the nonresonant transmission showr(an

In order to understand this agreement let us present thiey a cross ae=11.56. Two coefficients(5,13=0.592-0.41Rand

scattering function interior the billiard as

(ﬂ: lﬂo + Tﬁ,?ﬁ= E Cmnwmnv

c(3,14=0.315-0.607 are dominated in the transmission.

ing effect is a purely geometrical one because of the regular

arrangement of the vortices. As shown in Fig. 7 the current
whereyy, is the resonant eigenfunction witty|~1 and¢/m,  statisticsP(j,) correlates with these observations wherexthe
are nonresonant eigenfunctions with the coefficieat§  axis is directed along the transport. One can see three dis-
shown in Fig. 2 as weak backgroufg},{<1. Then we can tinctive plateaus: one for positivig and two for negative,

approximate the probability current as

responsible for the corridors. Moreover, the distributiii,)

. . ~ ~ shows multiple additional plateaus which are responsible for
= 1m(coth V ¢+ oty V iho). (9 the current corridors which are not resolved in Fig. 6. As

Therefore the probability current flows only because of theseen from Fig. 7 the distributioR(j,) is substantially differ-

background?b which can be considered as random noise in
accordance with Fig. 2.

B. Nonresonant transmission

Then it follows that, if effectively a very restricted num-
ber of eigenstates participates in transmisgigay, 2 or 3,
the current distribution can substantially differ from the re-
sults shown in Fig. 4. In order to achieve this case we can

choose the incident energy between two resonant states as

shown in Fig. $a) by a cross. Then, one can expect that
mainly these resonant states will participate in transmission
roughly equally while other eigenstates can be ignored. The
coefficients of expansiof) plotted in Fig. 5 for the non-
resonant transmission confirm this assumption.

Figure 6 shows the current density for the nonresonant
transmission shown in Fig. 5. One can see that the current
flows into the interior of the rectangular billiard by the regu-
lar way in “corridors” parallel to the transport axis which
is different from Fig. 3. The corridors are related by the
symmetryy—-y. There are three main different corridors.

ent fromP(j,).

Loy

Moreover, there are regions of depleted currents between the FIG. 6. The density curreljtx,y) for the nonresonant transmis-
corridors. In other words, we can say that the density cursion through a rectangular billiard with parameters given in Fig.

rents are channeling the interior of the billiard. The channelb(a).
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— Oj /<j> FIG. 8. (a) The coefficients of expansiq#) for nontransmission
y through a rectangular billiard with numerical sizes given in Fig. 5
0.1 for e=11.8 shown in Fig. 6 by a circle. Distributions of probability
= c current densityP(j) (d) and its componentB(j,) andP(j) (b), (c).
o For comparison the current distributigr) is shown by the dashed
0.05 line and the Poisson distributid®(j)=(1/{j))exp(—j/{j)) is shown
—_ by the solid line.
L
. xdx 1
I P(jy) = f dxdys(y - u(x)u(y)) = j TR
j I<j> A 0 v=y/u(x)

(12
FIG. 7. Statistics of the probability current densRyj) (c) and .
its component®(j,) andP(j,) (a), (b) for nonresonant transmission v=ixlio-
for the energy shown in Fig.(8 by a cross. The current distribu- Where
tion (12) is shown by a thin solid curve. The current distributions
for chaotic billiards(6) and(7) are shown by the dashed curves.

The same expression can be derived Rfj,)

Jy(x.y) = jou(x)o(y),

U(X) = ¢ml(X) Py (X),

For a description of numerical current statistics for non-
resonant transmission we keep in the expan&igmonly two

contributions in correspondence to FighB v(Y) = én(Y) bp (¥) = di(Y) (). (13
: Integration ove in Eq. (12) can be performed numerically.
PXy) = CothmrXY) + Cothrn (XY), (10 In the above-considered numerical case the eigenmodes

with quantum numbersn=5, n=3 andm=3, n=4 mainly

where the coefficient€,, C, are complex. Specific values of participate in the quantum transmission. Substituting these
the coefficients are given in Fig. 5. Then it follows from Eq. numbers into Eq(11) and consequently performing numeri-
(2) that thexth component of the probability density current cal integration in Eqg.(12) we obtain the distribution
takes the form P(j.), a=x,y, which is shown in Fig. @) by the thin solid
lines. One can see good agreement with numerical statistics.

Finally, we present the current statistics for transmission
in which more than two eigenstates of the rectangular billiard
participate in the transmission shown in Fig. 8. The corre-

u(x) = ¢m(x)¢rln’(x) = 1 (X) Py (X), sponding incident energy is shown in Figaxby a circle.

Ix(%,y) = joux)v(y),

Ill. TRANSMISSION THROUGH
0(y) = énly) b (y), (1) A CIRCULAR BILLIARD
where the constarjy, is related to the normalization coeffi- A. Resonant transmission
cients of the scattering function and the prime is the deriva- In a similar way we consider transmission through a cir-
tive. Using the properties of thé function we can write the cular billiard. The transmission probability is shown in Fig. 9
distribution function forj,: with numerical sizes given in the figure caption.
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FIG. 11. The current density(x,y) for resonant transmission
through a circular billiard at the same parameters as given in Fig. 9

FIG. 9. The transmission probability vs the ene(gyfor trans-
and e=10.615.

mission through a circular billiard with numerical radits250

and lead widthd=30. The hopping matrix elements between the

leads and billiard is equal to 0.95. The current flow for the resonant transmission is shown in
Fig. 11. One can see from Fig. 11 that the probability current

As for resonant transmission through the rectangular bilflow behaves as shown in Fig. 3. Therefore we can expect
liard [Eq. (4)] the scattering function interior of the billiard that current distributions can be described by formus
can be expanded over the eigenfunctions of the closed circ@nd (7). In fact, Fig. 12 confirms that.
lar billiard,

(x,y) = E Crn,ndm(Kmd) €xplime), (14) B Nonresonant transmlss|orl1 |

mn Let us consider nonresonant transmission, for example,
wherek,,, are zeros of the Bessel functions. As is seen fromtakIng the |nC|de_nt energy= 10.45 between two reso_nant
Fig. 10 for the energy shown by a circle in Fig. 9 the eigen—peaks as shown in Fig. 9 by a cross. The corresponding pat-

: . . . tern of current flow shown in Fig. 13 demonstrates the tan-
function J(k,r)cog4¢) dominates in the expansiofl). gential “corridor” effect. The numerically calculated current

0.08

0.06
Soo04

0.02

i<j>

FIG. 10. The scattering functigm/(x,y)| for the resonant trans- FIG. 12. The current statistics for resonant transmission through
mission through a circular billiard with energy=10.615~¢, 7 a circular billiard with parameters given in Figs. 9 and 10 compared
=(d/R)2k‘2L7 and numerical sizes given in Fig. 9. with the current distribution§6) and(7) shown as solid lines.
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IV. SUMMARY AND DISCUSSION

We have considered numerically and analytically the
probability current distributions for quantum transmission
through the two typically integrable billiards: rectangular and
circular ones. This consideration is also related to the micro-
wave transmission for which the current distributions can be
measured directly13]. For resonant transmission with the
transmission probability near unity the scattering function is
close to those eigenfunction of the billiard the eigenenergy of
which is resonant to the energy of the incident electfigs.

1 and 10. Obviously, in the expansion of the scattering func-
tion over the eigenfunction interior of the billiard the reso-
nant eigenfunction dominates. Contributions of different
eigenfunctions form small but wide random noise as shown
in Fig. 2. Since these nonresonant functions are responsible
for the probability current in accordance with H), it is

not surprising that the current distributions can be described
by the distributions derived for current interior of the chaotic
billiards [2].

For the case of nonresonant transmission a (f@sva rule
two or morg of the eigenfunctions of the billiard dominate
in the scattering function interior of the billiard. The prob-
ability current density11) is defined mainly by these eigen-
functions. As a result, the current distributions are deeply
. _ nonuniversal. However, the most interesting result is that the

FIG. 13. The probability current density for the nonresonant, ohapility density current interior of the billiard demon-
transmission through a circular billiard with numerical radRs gt ate the effect of corridor flowing as shown in Figs. 6 and
=250 and lead widtll=30 for e=10.45. The hopping matrix ele- 13 For the rectangular billiard the “corridors” are directed
ments between the leads and billiard is equal to 0.95. along the transmission axighe x axis) and the distribution

In[P(j,)] displays a few plateaus responsible for these corri-
statisticsP(j) is shown in Fig. 14. One can see a sharp pealdors as seen from Fig. 7. The numerical current distributions

in the distribution related to this “corridor” effect. agree with formulas derived for the case of two eigenfunc-
tions contributed to the scattering function. For transmission
0.08 . : : : through the circular billiards the corridors are tangential as

shown in Fig. 13.

0.07 1 Moreover, we note the remarkable similarity between the
current distributions and the level statistics of the nearest
0.06 1 level separations. For the chaotic billiards the level statistics
follows the Wigner-Dyson distribution which is quite similar
0.05 1 to the current distributiori7). The last is shown by the thin
. solid line in Fig. 8 for the typical nonresonant transmission.
&-0.04 ] One can see that the distributi¢n) is far from the numeric.
For the integrable billiards the level statistics of the nearest
0.03 T level separations follows the Poisson formuPéx)=exp(
0.02 | -x). We see from Fig. 8 that the current distribution for non-
’ resonant transmission through the integrable billiard is well
0.01 ] described by the Poisson distributifiil].
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