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We consider the statistics of currents for electron(microwave) transmission through rectangular and circular
billiards. For the resonant transmission the current distribution is describing by the universal distribution[A. I.
Saichevet al., J. Phys. A35, L87 (2002)]. For the more typical case of nonresonant transmission the current
statistics reveals features of the current channeling(corridor effect) interior of the billiard. The numerical
statistics is compared with analytical distributions.
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I. INTRODUCTION

Recently the statistics of the scattering wave function and
currents for electron(microwave) transmission through cha-
otic billiards was considered[1–3]. The statistics was based
on the fact that the scattering function can be described a
complex Gaussian random fieldc=u+ iv with the correlation
kuvl dependent on the conductance and measure of the open-
ness of the billiard. Such a scattering function can be given
as a random superposition of the plane waves obeying the
boundary conditions(the modified Berry function) [4–7].

The scattering function interior of the billiard can be su-
perposed of the eigenfunctions of the billiard. Although the
coefficients of superposition are not random, which is differ-
ent from the Berry function[8], nonetheless superposition of
the Gaussian random fields is also a complex Gaussian ran-
dom field[9,10]. It allowed us to derive analytically the dis-
tribution functions for the scattering function[1], currents
[2], and nodal points(vortices) [6,11,12]. These distributions
were observed as numerically[4,5,11] as well as experimen-
tally for the microwave transmission[13,14].

Surprisingly, the transmission through an integrable bil-
liard is more complicated in comparison to the chaotic bil-
liard. The reason is that the eigenfunctions of the integrable
billiard do not obey the Gaussian distribution. The effect of
channeling of transport currents(the current terminated leads
attached to a billiard) is bright example of peculiar distribu-
tions for transmission through the rectangular billiard[4,15].
The channeling of currents is a consequence of the almost
crystal order of nodal points[5,15]. Since the nodal points
are centers of current vortices[5,16–18], the transport cur-
rents are to flow between rows of the vortices as in “corri-
dors.” For a computation of current flows one can separate
vortical bound currents and unbound currents which are ter-
minated at the leads(transport currents) [19]. However, it is
hardly possible to separate the transport and vortical currents
in experiments. Therefore the statistics of the current density
interior of the integrable billiard is a subject of consideration
of present paper. The main result is that the current statistics
shows the features related to the current channeling except
for the case of resonant transmission.

The interplay between the symmetries of billiards and
leads implies the selection rules for the coefficients of expan-

sion of the scattering function over the eigenstates of the
billiard. The selection rules strongly reduce the number of
eigenstates participating in transmission through the billiard.
Effectively this number is about from 1 to a few as was
shown numerically[4,5]. For transmission through chaotical
billiards this number as a rule exceeds 10 which differs from
transmission through integrable billiards.

II. TRANSMISSION THROUGH
THE RECTANGULAR BILLIARD

A billiard can be opened by attaching leads to some exte-
rior reservoirs and a stationary current through the billiard is
induced by applying suitable voltages to the reservoirs. We
consider leads as stripes attached normally to the billiard as
shown in Fig. 1. The numerical procedure of the solution of
the Helmgoltz equation

− ¹2c = ec s1d

describing transmission through a billiard is well known.
Here we use dimensionless energye=E/E0, E0="2/2m*d2

FIG. 1. The scattering functionucsx,ydu for resonant transmis-
sion through a squared billiard with energye<e11,4=13.52 and
numerical lengthsNx=Ny=400. The numerical width of the leads
d=40. The hopping matrix element between the leads and the bil-
liard is chosen as 0.9.
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whered is the width of the leads. In terms ofE0 we define
also the eigenenergies of the billiard. In order to provide
resonant transmission we imply hopping matrix elements
t,1 connecting the billiard and the leads[4,5,20].

Let us consider a rectangular billiard with lengthsLx,Ly
and eigenfunctions obeying the Dirichlet boundary condi-
tions as

cmnsx,yd = fmsxdfnsyd =
2

A
sinsmpx/Lxdsinsnpy/Lxd, s2d

where m=1,2,3, . . . ,n=1,2,3, . . . ,A=LxLy, and the
eigenenergies

emn= d2p2Sm2

Lx
2 +

n2

Ly
2D . s3d

A. Resonant transmission

Tuning the incident energy to be resonant to the eigenen-
ergy of the billiarde<emn we can achieve a situation that the
scattering function is to be very close to the corresponding
eigenstatecmn interior of the billiard. In Fig. 1 one can see
that for e<e11,4 the scattering function almost exactly fol-
lows the eigenfunctionc11,4. In the squared billiard there is
the second degenerated eigenstatec4,11sx,yd which related to
the first one by a rotation 90°. As seen from Fig. 1, a mini-
mum of the second degenerated eigenstate is located near
leads, which diminishes participation of this state in the
transmission.

Quantitatively a measure of the resonant transmission can
be given by the coefficients of expansion of the scattering
function over the eigenstate(2) interior of the billiard:

csx,yd = o
m,n

cm,nfmsxdfnsyd. s4d

Figure 2 shows that the contribution of the eigenstatem
=11, n=4 is dominant in the scattering function. In order to
resolve the contributions of different eigenstates to the scat-
tering function in Fig. 2, we plotted the squared roots of the
coefficientsucmnu1/2.

We consider the statistics of the local current density,

j sx,yd = Imsc* = cd, s5d

interior of the billiard numerically computed as histograms.
For microwave transmission this current is the Poynting vec-
tor [13]. A pattern of current flow for the resonant transmis-

sion is shown in Fig. 3. One can see that the pattern basically
consists of vortical currents.

Figure 4 shows the numerical results for the statistics of
the current densityPs jd and its componentsPs jxd, Ps j yd for
the resonant transmission.

FIG. 2. The coefficients of expansion of the scattering function
over the eigenstates(2).

FIG. 3. The current densityj sx,yd for resonant transmission
through a squared billiard at the same parameters as given in Fig. 1.

FIG. 4. Statistics of the current densityPs jd (bottom) and its
componentsPs jxd andPs j yd for resonant transmission. The current
distributions(6) and (7) are shown as solid lines.
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These numerical results are compared with the current
distributions derived in[2] for transport through chaotical
billiards,

Ps jad =
p

4k jl
expS−

pu jau
2k jl

D , s6d

Ps jd =
p2j

4k jl2K0S p j

2k jlD , s7d

wherea=x,y, K0sxd is the modified Bessel function of the
second kind, and the average means

k¯l =
1

A
E

A

d2r ¯ , s8d

whereA is the area to be sampled. In our case it will be area
of the cavity, but in principle it could be any area that one
may wish to diagnose. From Fig. 4 one can see qualitative
agreement between the numerical results for the resonant
transmission through the rectangular billiard and formulas
(6) and (7) for the case of transmission through chaotic bil-
liards.

In order to understand this agreement let us present the
scattering function interior the billiard as

c = c0 + c̃,c̃ = o
mn

cmncmn,

wherec0 is the resonant eigenfunction withuc0u<1 andcmn
are nonresonant eigenfunctions with the coefficientscmn
shown in Fig. 2 as weak backgrounducmnu!1. Then we can
approximate the probability current as

j < Imsc0
*c0 = c̃ + c0c̃* = c0d. s9d

Therefore the probability current flows only because of the

backgroundc̃ which can be considered as random noise in
accordance with Fig. 2.

B. Nonresonant transmission

Then it follows that, if effectively a very restricted num-
ber of eigenstates participates in transmission(say, 2 or 3),
the current distribution can substantially differ from the re-
sults shown in Fig. 4. In order to achieve this case we can
choose the incident energy between two resonant states as
shown in Fig. 5(a) by a cross. Then, one can expect that
mainly these resonant states will participate in transmission
roughly equally while other eigenstates can be ignored. The
coefficients of expansion(4) plotted in Fig. 5 for the non-
resonant transmission confirm this assumption.

Figure 6 shows the current density for the nonresonant
transmission shown in Fig. 5. One can see that the current
flows into the interior of the rectangular billiard by the regu-
lar way in “corridors” parallel to the transport axisx, which
is different from Fig. 3. The corridors are related by the
symmetryy→−y. There are three main different corridors.
Moreover, there are regions of depleted currents between the
corridors. In other words, we can say that the density cur-
rents are channeling the interior of the billiard. The channel-

ing effect is a purely geometrical one because of the regular
arrangement of the vortices. As shown in Fig. 7 the current
statisticsPs jxd correlates with these observations where thex
axis is directed along the transport. One can see three dis-
tinctive plateaus: one for positivejx and two for negativejx
responsible for the corridors. Moreover, the distributionPs jxd
shows multiple additional plateaus which are responsible for
the current corridors which are not resolved in Fig. 6. As
seen from Fig. 7 the distributionPs j yd is substantially differ-
ent fromPs jxd.

FIG. 5. (a) Transmission through the rectangular billiard with
numerical sizesNx=500, Ny=400, d=40. The hopping matrix ele-
ment between leads and billiards is equal to 1.(b) The coefficients
of the expansion(4) for the nonresonant transmission shown in(a)
by a cross ate=11.56. Two coefficientscs5,13d=0.592−0.412i and
cs3,14d=0.315−0.607i are dominated in the transmission.

FIG. 6. The density currentj sx,yd for the nonresonant transmis-
sion through a rectangular billiard with parameters given in Fig.
5(a).
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For a description of numerical current statistics for non-
resonant transmission we keep in the expansion(4) only two
contributions in correspondence to Fig. 5(b):

csx,yd = C1cmnsx,yd + C2cm8n8sx,yd, s10d

where the coefficientsC1, C2 are complex. Specific values of
the coefficients are given in Fig. 5. Then it follows from Eq.
(2) that thexth component of the probability density current
takes the form

jxsx,yd = j0usxdvsyd,

usxd = fmsxdfm8
8 sxd − fm8 sxdfm8sxd,

vsyd = fnsydfn8syd, s11d

where the constantj0 is related to the normalization coeffi-
cients of the scattering function and the prime is the deriva-
tive. Using the properties of thed function we can write the
distribution function forjx:

Ps jxd =E
A

dxdyd„g − usxdvsyd… =E
0

Lx dx

usxd
1

v8uv=g/usxd
,

s12d

g= jx/ j0. The same expression can be derived forPs j yd
where

j ysx,yd = j0usxdvsyd,

usxd = fmsxdfm8sxd,

vsyd = fnsydfn8
8 syd − fn8sydfn8syd. s13d

Integration overx in Eq. (12) can be performed numerically.
In the above-considered numerical case the eigenmodes

with quantum numbersm=5, n=3 andm=3, n=4 mainly
participate in the quantum transmission. Substituting these
numbers into Eq.(11) and consequently performing numeri-
cal integration in Eq. (12) we obtain the distribution
Ps jad ,a=x,y, which is shown in Fig. 7(a) by the thin solid
lines. One can see good agreement with numerical statistics.

Finally, we present the current statistics for transmission
in which more than two eigenstates of the rectangular billiard
participate in the transmission shown in Fig. 8. The corre-
sponding incident energy is shown in Fig. 4(a) by a circle.

III. TRANSMISSION THROUGH
A CIRCULAR BILLIARD

A. Resonant transmission

In a similar way we consider transmission through a cir-
cular billiard. The transmission probability is shown in Fig. 9
with numerical sizes given in the figure caption.

FIG. 7. Statistics of the probability current densityPs jd (c) and
its componentsPs jxd andPs j yd (a), (b) for nonresonant transmission
for the energy shown in Fig. 5(a) by a cross. The current distribu-
tion (12) is shown by a thin solid curve. The current distributions
for chaotic billiards(6) and (7) are shown by the dashed curves.

FIG. 8. (a) The coefficients of expansion(4) for nontransmission
through a rectangular billiard with numerical sizes given in Fig. 5
for e=11.8 shown in Fig. 6 by a circle. Distributions of probability
current densityPs jd (d) and its componentsPs jxd andPs j yd (b), (c).
For comparison the current distribution(7) is shown by the dashed
line and the Poisson distributionPs jd=s1/k jldexps−j / k jld is shown
by the solid line.
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As for resonant transmission through the rectangular bil-
liard [Eq. (4)] the scattering function interior of the billiard
can be expanded over the eigenfunctions of the closed circu-
lar billiard,

csx,yd = o
m,n

cm,nJmskmnrd expsimfd, s14d

wherekmn are zeros of the Bessel functions. As is seen from
Fig. 10 for the energy shown by a circle in Fig. 9 the eigen-
function J4sk47rdcoss4fd dominates in the expansion(14).

The current flow for the resonant transmission is shown in
Fig. 11. One can see from Fig. 11 that the probability current
flow behaves as shown in Fig. 3. Therefore we can expect
that current distributions can be described by formulas(6)
and (7). In fact, Fig. 12 confirms that.

B. Nonresonant transmission

Let us consider nonresonant transmission, for example,
taking the incident energye=10.45 between two resonant
peaks as shown in Fig. 9 by a cross. The corresponding pat-
tern of current flow shown in Fig. 13 demonstrates the tan-
gential “corridor” effect. The numerically calculated current

FIG. 9. The transmission probability vs the energy(a) for trans-
mission through a circular billiard with numerical radiusR=250
and lead widthd=30. The hopping matrix elements between the
leads and billiard is equal to 0.95.

FIG. 10. The scattering functionucsx,ydu for the resonant trans-
mission through a circular billiard with energye=10.615<e4,7

=sd/Rd2k4,7
2 and numerical sizes given in Fig. 9.

FIG. 11. The current densityj sx,yd for resonant transmission
through a circular billiard at the same parameters as given in Fig. 9
ande=10.615.

FIG. 12. The current statistics for resonant transmission through
a circular billiard with parameters given in Figs. 9 and 10 compared
with the current distributions(6) and (7) shown as solid lines.
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statisticsPs jd is shown in Fig. 14. One can see a sharp peak
in the distribution related to this “corridor” effect.

IV. SUMMARY AND DISCUSSION

We have considered numerically and analytically the
probability current distributions for quantum transmission
through the two typically integrable billiards: rectangular and
circular ones. This consideration is also related to the micro-
wave transmission for which the current distributions can be
measured directly[13]. For resonant transmission with the
transmission probability near unity the scattering function is
close to those eigenfunction of the billiard the eigenenergy of
which is resonant to the energy of the incident electron(Figs.
1 and 10). Obviously, in the expansion of the scattering func-
tion over the eigenfunction interior of the billiard the reso-
nant eigenfunction dominates. Contributions of different
eigenfunctions form small but wide random noise as shown
in Fig. 2. Since these nonresonant functions are responsible
for the probability current in accordance with Eq.(9), it is
not surprising that the current distributions can be described
by the distributions derived for current interior of the chaotic
billiards [2].

For the case of nonresonant transmission a few(as a rule
two or more) of the eigenfunctions of the billiard dominate
in the scattering function interior of the billiard. The prob-
ability current density(11) is defined mainly by these eigen-
functions. As a result, the current distributions are deeply
nonuniversal. However, the most interesting result is that the
probability density current interior of the billiard demon-
strate the effect of corridor flowing as shown in Figs. 6 and
13. For the rectangular billiard the “corridors” are directed
along the transmission axis(the x axis) and the distribution
lnfPs jxdg displays a few plateaus responsible for these corri-
dors as seen from Fig. 7. The numerical current distributions
agree with formulas derived for the case of two eigenfunc-
tions contributed to the scattering function. For transmission
through the circular billiards the corridors are tangential as
shown in Fig. 13.

Moreover, we note the remarkable similarity between the
current distributions and the level statistics of the nearest
level separations. For the chaotic billiards the level statistics
follows the Wigner-Dyson distribution which is quite similar
to the current distribution(7). The last is shown by the thin
solid line in Fig. 8 for the typical nonresonant transmission.
One can see that the distribution(7) is far from the numeric.
For the integrable billiards the level statistics of the nearest
level separations follows the Poisson formulaPsxd=exps
−xd. We see from Fig. 8 that the current distribution for non-
resonant transmission through the integrable billiard is well
described by the Poisson distribution[21].
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FIG. 13. The probability current density for the nonresonant
transmission through a circular billiard with numerical radiusR
=250 and lead widthd=30 for e=10.45. The hopping matrix ele-
ments between the leads and billiard is equal to 0.95.

FIG. 14. The current distributionPs jd of the flow pattern shown
in Fig. 13 compared with formula(7).
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