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Transport through quantum and microwave cavities is studied by analytic and numerical techniques. In
particular, we consider the statistics for a finite net probability current(Poynting vector) kj l flowing through an
open ballistic Sinai billiard to which two opposite leads/wave guides are attached. We show that if the net
probability current is small, the scattering wave function inside the billiard is well approximated by a Gaussian
random complex field. In this case, the current statistics are universal and obey simple analytic forms. For
larger net currents, these forms still apply over several orders of magnitudes. However, small characteristic
deviations appear in the tail regions. Although the focus is on electron and microwave billiards, the analysis is
relevant also to other classical wave cavities as, for example, open planar acoustic reverberation rooms, elastic
membranes, and water surface waves in irregularly shaped vessels.
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I. INTRODUCTION

Historically, McDonald and Kaufman revealed numeri-
cally the complicated morphology of the eigenstates in a
closed two-dimensional Bunimovich billiard[1]. As is now
well known, the statistics of major eigenfunction amplitudes
follow a Gaussian distribution. The statistics of the squared
amplitudes(the probability density for the case of quantum
billiard) then obeys the Porter-Thomas distribution[2] as de-
scribed by the Gaussian orthogonal ensemble(GOE). This
kind of statistic has been observed experimentally for micro-
wave cavities[3,4] and acoustic resonators[5,6]. These gen-
eral observations do not apply to wave functions that are
scarred along unstable periodic orbits, or show regular pat-
terns associated with bouncing ball motion[7]. Such states
are, however, more rare.

Here we consider what happens when a two-dimensional
billiard is made open by attaching two wave guides(or
leads) and a stationary transport through the system takes
place. In the case of electrons, for example, a current may be
induced by applying a small voltage between the two leads.
The additional flexibility gained in this way gives rise to a
number of interesting cases for the scattering wave-function
statistics. By assuming that the scattering function forms a
random Gaussian complex field, these cases were considered
in [8–10]. In bypassing previous analytical results for wave-
function statistics[11–14] were recovered also for this kind
of open billiards[9,10].

Another rich system for studying “wave-function” prop-
erties and transport is a microwave resonator consisting of a
planar waveguide, whose geometry is chosen to match that
of some specific billiard system[3,14–17]. For TM modes
the two-dimensional complex scattering function,

csxd = usxd + ivsxd, s1d

obeys the Helmholtz equation,

s¹2 + k2dc = 0, s2d

with the Dirichlet boundary conditions throughout. A sche-
matic view of the system is shown in Fig. 1. The energy flow
between input and output waveguides is given by the Poyn-
ting vector j =Imscp=cd. There is also a close similarity
between electron transport and microwaves with acoustic
waves[18]. Neumann boundary conditions are to be imposed
in this case, but as before, there is an energy flow very much
like the Poynting vector.

As indicated, there is thus a close formal similarity be-
tween (noninteracting) electron transport and microwave
propagation in open quantum dots and microwave cavities,
respectively. There is, however, a subtle difference. Electron
transport is usually multichannel(channel refers to the trans-
verse modes in the leads). The total current is therefore the
sum of contributions from all states at the Fermi energy.
Microwaves, the other hand, are injected as single-mode
states. When comparing electron and microwave transport
we should therefore restrict ourselves to monochromatic
single-mode issues.

Based on an assumption thatu andv in (1) are both ran-
dom Gaussian fields, the probability current statistics were
studied both analytically and numerically for transport

FIG. 1. Schematic geometry of an open hard-walled billiard
with a net current in thex direction. Functionsf1sxd and f2sxd define
the boundaries of the cavity.
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through a Bunimovich billiard[10]. Using the one-to-one
correspondence between the Poynting vector in a microwave
billiard and the probability current density, Barth and Stöck-
mann obtained a good agreement with theoretical predictions
[15]. Recently, Brouwer[19] considered the joint distribution
Isr d=Aucsr du2 and the magnitude of the normalized current
density Jsr d=sA/kduIm cp¹cu, whereA is the area of bil-
liard. His considerations are based on Berry’s ansatz for a
chaotic wave function[20],

csr d = o
k

askdeik·r , s3d

where the wave vectorsk are distributed homogeneously on
a circle with constant radiusuk u and the coefficientsaskd are
the random complex coefficients.

The current and wave-function statistics in[9,10] have
focused on the particular situation when the net probability
flow through the cavity is relatively small because of the
particular choice of perpendicular leads. In practice one may
then disregard the net current flow in relation to all other
local currents induced within the cavity. This is obviously the
same as saying that the distribution forj is in practice iso-
tropic. This follows in particular from(3). The purpose of
this work is to go beyond this simplification. We will there-
fore consider the general case of a net current flowing from
the input to the output leads through a chaotic billiard, as
shown in Fig. 1. As mentioned, we will focus on the case of
monochromatic single-mode transmission. Because the
straight leads are opposite each other the current becomes
more directional. By solving the true scattering problem nu-
merically we demonstrate that the assumption that the in-
cavity scattering function is a random Gaussian field is quite
a good one for small net currents. However, with increasing
net currents this assumption gradually becomes invalid. The
effect of net currents in the current statistics was considered
by Ebeling reverberation rooms[21,22]. Here we thus extend
his work to open quantum and microwave billiards.

II. THE CURRENT STATISTICS FOR ANISOTROPIC
RANDOM GAUSSIAN FIELDS

First, following [10] we perform a phase transformation,

csxd → eiacsxd = psxd + iqsxd, s4d

to new fieldspsxd and qsxd with the condition that the sta-
tistical averagekpql=0. This step eliminates phase ambigu-
ity and ensures that the Gaussian random fieldsp andq are
statistically independent. The phase transformation(4) corre-
sponds to diagonalization of the quadratic form in the ex-
pression for the joint probability density

fsu,vd =
1

2pÎku2lkv2l − kuvl2
expH−

1

2sku2lkv2l − kuvl2d

3fku2lv2 + kv2lu2 − 2kuvluvgJ ,

which is now replaced by the product of two independent
probability densities
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fsp,qd = fspdfsqd,

fspd =
1

Î2pkp2l
expS−

p2

2kp2lD ,

fsqd =
1

Î2pkq2l
expS−

q2

2kq2lD .

This step is a matter of convenience, which simplifies the
calculation of the wave function and current distribution.

However, we may not assume that the space derivatives of
fields are statistically independent of the fields. In fact, it
follows from the expression for the current density

j = p = q − q = p s5d

that

kp = ql Þ 0, kq = pl Þ 0, s6d

if the mean currentkj lÞ0. Here we use the following defi-
nition of an average,

k. . .l =
1

A
E

A

d2r . . . , s7d

whereA is the area to be sampled. In this work we letA be
the area of the billiard. The inequalities(6) tell that the fields
are anisotropic. In terms of the Berry wave function(3) the
anisotropy means that the wave vectorsk follow a nonuni-
form angular distribution over a circle. However, we may
assume that

kpl = 0,kql = 0, k=pl = 0, k=ql = 0,

assumptions which are completely justified by our computer
simulations(see Table I).

In order to find the distribution for one component of the
current density, sayjx, we introduce the Gaussian probability
density fsp,px,q,qxd [21,22]. The function and its corre-
sponding characteristic functions are completely determined
by the covariance matrix of the field variables

M =1
kp2l kpqxl kpql kppxl
kpqxl kqx

2l kqqxl kpxqxl
kpql kqqxl kq2l kqpxl
kppxl kpxqxl kqpxl kpx

2l
2

<1
kp2l kpqxl 0 0

kpqxl kqx
2l 0 0

0 0 kq2l kqpxl
0 0 kqpxl kpx

2l
2 . s8d

The structure of the matrix is a consequence of the symmetry
properties of the correlation functions[21]. It also agrees
with our numerical simulations for the wave transmission
through the Sinai billiard(see Table I below). As seen from
the table, the averagekp2l does not equalkq2l. This is also
true for the related pairkpx

2l and kqx
2l. The equalitykpqxl=

−kqpxl is, however, satisfied with good accuracy.

Following [22] we have for the probability density

fsp,px,q,qxd = fsp,qxdfsq,pxd,

fsp,qxd =
1

2pÎD1

expH−
1

2D1
fkqx

2lp2 + kp2lqx
2 − 2kpqxlpqxgJ ,

fsq,pxd =
1

2pÎD2

expH−
1

2D2
fkpx

2lq2 + kq2lpx
2 + 2kpqxlqpxgJ ,

s9d

where

D1D2 = detsM d, D1 = kqx
2lkp2l − kpqxl2,

D2 = kpx
2lkq2l − kpqxl2. s10d

Numerical values ofD1 andD2 are also collected in Table I.
The general form for the characteristic function of a four-
dimensional Gaussian fieldQsad=keiajxl is a product of two
characteristic functions

Qsad = Q1sadQ2sad, s11d

where

Q1sad =E dpdqxfsp,qxdeiapqx

=Î D1

kp2lkqx
2l − skpqxl − iaD1d2 ,

Q2sad =E dqdpxfsq,pxde−iaqpx

=Î D2

kq2lkpx
2l − skqpxl + iaD2d2 . s12d

For the particular casekp2l=kq2l, kpx
2l=kqx

2l, Ebeling[22]
has derived the following distribution for the current compo-
nent:

Ps jxd =
1

2t
expH−

u jxu
t

+
k jxl jx
2t2 J , s13d

where we introduced a parameter,

t2 = ÎD1D2, s14d

which for the present case equals

t2 = kp2lkqx
2l = kq2lkpx

2l =
1

2
k2kp2lkq2l.

As to be expected the net current gives rise to an asym-
metric distributionPs jxd. In the case that the net flow through
the cavity is only a small fraction of the total induced flow
we may, to a good approximation, drop the second term in
the exponential factor. The symmetric form from[10],

Ps jxd =
1

2t
expS−

u jxu
t
D , s15d

is then obtained.
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Let us now consider the general case withkp2lÞ kq2l and
kpx

2lÞ kqx
2l. The distributionPs jxd may then be generated

from Qsad by the following integration:

Ps jxd =KdS jx − p
] q

] x
+ q

] p

] x
DL =

1

2p
E

−`

`

Qsad eiajx da.

s16d

With the notations

a1 =
kpqxl
D1

, a2 =
kqpxl
D2

, b1 =
kp2lkqx

2l
D1

2 , b2 =
kq2lkpx

2l
D2

2 ,

s17d

we therefore obtain

Ps jxd =
1

2pÎD1D2
E

−`

` eizjxdz
Îsiz − a1d2 − b1

Îsiz + a2d2 − b2

.

s18d

Numerical values of the averages in(17) are collected in
Table I. With the special choicea1=−a2 andb1=b2 we re-
cover expression(13).

III. RELATION BETWEEN MEAN NET PROBABILITY
CURRENT DENSITY AND TOTAL CURRENT

In order to estimate a mean value of the net probability
current we consider transmission through a billiard of arbi-
trary form with two straight leads attached to the billiard in
the x direction as in Fig. 1. For convenience we choose the
single incident wave,

cincsx,yd =
1
Îk

eikxfnsyd, s19d

where k is the wave number, and the normalized function
fnsyd refers to thenth transverse mode of the straight input
lead. From(19) we then have

jL = fn
2syd s20d

for the current density within the lead. The corresponding
total currentI is thus equal to 1. If we now take into account
reflectionR and transmissionT because of the billiard, we
have

I = 1 −R= T, s21d

which is also the current in the output lead. Furthermore, for
any cross section within the cavity itself we have

I =E
f1sxd

f2sxd

jx dy. s22d

Finally, an integration ofI over x from input to output leads
gives

k jxl =
ILx

A
=

TLx

A
, s23d

in accordance with the definition in(7). For the special case
of a rectangular billiard withA=LxLy we have the simple
relation

k jxl =
I

Ly
=

T

Ly
, s24d

whereLy is the height. This relation should be a good ap-
proximation, for example, for Sinai and Bunimovich billiards
with moderately large circular sections in the reflecting
walls.

The elementary expressions above suggest a simple way
of estimatingk jxl onceI is known from, for example, mea-
surements. They also explain why the simple isotropic ex-
pression in(15) many times turns out to be a good approxi-
mation also for cases whenI (or T) is large, as found in Ref.
[10]. The mean valuek jxl simply takes a small value whenLy

happens to be large.

IV. NUMERICAL RESULTS FOR AN OPEN CHAOTIC
SINAI BILLIARD

As a numerical application and verification of the analytic
expressions above forPs jxd we consider an open two-
dimensional Sinai hard-walled billiard coupled to a pair of
opposite leads of widthd, as in the inset in Fig. 2. In[10]
numerical results for the current statistics for the Bunimov-
ich stadium was compared with theory, assuming that the net
current density could be approximately set equal to zero as in
(15). One reason for the small current density was the par-
ticular choice of perpendicular leads. In the present case op-
posite leads are lined up perfectly in order to facilitate direc-
tional flow and a noticeable net current, as will be seen
below.

The size of the rectangular part in Fig. 2 isLx3Ly, andR
the radius of the circular cutoff. Here we letLy/Lx=4/3 and
R=Lx/6. In the computations, we have made use of the finite
difference method with a 6003800 numerical grid for the
rectangular area. Two different cases of small and large as-
pect ratios, namelyd/Ly=1/20 andd/Ly=1/10, have been
selected. In the numerical computations we have usedd as a
characteristic length scale. The dimensionless wave fre-
quency is thereforev=dk, wherek is the wave number.

Figure 2 shows the transmission probability vs frequency
v of the incident wave for single-channel transmission. Case
(A) corresponds to minimal transmissionT<0 and k jxl<0
and (D) corresponds toT=0.5 for which k jxlÞ0. For both
(B) and (C) the transmission is maximal or nearly so. For
cases(A) and(B) the aspect ratio is small, while it is chosen
large for(C) and(D). Before presenting the numerical results
it is useful to rewrite the definition of averages in(7) as

kFl =
1

N
o

j

Fj , s25d

whereN is the number of points of a two-dimensional com-
putational grid in the interior of the billiard. The wave func-
tion inside the billiard is normalized as

A

N
o

j

uc ju2 = 1. s26d

Relevant mean values are collected in Table I. The averages
kpl, kpxl, kql, andkqxl are not listed in Table I since they are
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negligibly small;k j yl is also omitted since it must vanish for
the present case.

From Table I we find that the random field inside the
billiard is effectively isotropic, i.e.,D1<D2, whenT is close
to zero(case A). Figure 3 shows the statistics for the wave
function and currents for this case. As shown in the inset the
real part ofc obviously obeys a Gaussian distribution

fspd =E dqxfsp,qxd s27d

very closely, as it should for a random field. The parameter

e =Îkq2l
kp2l

s28d

in Table I gives the relative importance of the real and imagi-
nary parts of the scattering wave function in(4). For case A
the imaginary part evidently dominates. As a result there is a
very small net current density which is consistent with the
small transmission probability as in(24). Since p!q, the
distribution function of the squared modulesr= ucu2=p2+q2

is described well by the Porter-Thomas distributionPsrd
=s1/Î2pr exp s−r /2d for closed billiards with time reversal
[2]. Evolution of the distributionPsrd with increasing trans-
mission probability is given in[9].

The parametere in (28) is closely related to the phase
rigidity of the wave function, introduced by van Langenet
al. [23],

r =
ukp2l − kq2lu2

skp2l + kq2ld2 . s29d

The relation between these two parameters is simply

r = S1 − e2

1 + e2D2

. s30d

The parameterr measures the phase rigidity of a chaotic
complex wave function in the transition between a closed
billiard and a completely open one. We presented in Table I
both parameterse andr. One can see from Table I that these
parameters strongly fluctuate with frequency. The distribu-
tion Psrd was first calculated in[24,25], which is important
to consider for averages over a frequency window[19].
However, here we consider statistics for single-mode trans-
mission at a given fixed frequency.

Our computed current distributionsPs jxd and Ps jd for j
=Îjx

2+ j y
2 are also displayed for case A in Fig. 3. The numeri-

cal results, which derive from all points in the billiard, are
evidently well described by the analytic expression(15) for
zero net current density and the related expression forj de-
rived in [10]. We thus conclude that the wave function is
nearly real at small transmission and is well approximated by
a real isotropic random field for cases like A. Hence, the

FIG. 2. The transmission probabilityT as a function ofv2 for single-channel transmission withv=kd. (For electron quantum transmis-
sion v2 should be replaced byE/E0, whereE0="2/2md2 andm is the electron mass). The inset shows the hard-walled Sinai billiard with
two opposite aligned leads. The cases of small and large aspect ratiosd/Ly=1/20 andd/Ly=1/10 areshown in the left and right panels,
respectively. The statistics discussed in the text refer to(A)–(D).

FIG. 3. Statistics for the transmission through the Sinai billiard
for T<0 (case A shown in Fig. 2). The upper left panel shows the
computed distribution forr= ucu2 together with the Porter-Thomas
distribution Psrd (solid curve). In the inset of the same panel the
computed wave-function statisticsfspd for the real part ofc is
compared with a random Gaussian distribution(solid curve). In the
upper right panel the distribution for the current densityPs jd is
shown together with the theoretical prediction for the casek jxl=0.
Lower panels show the computed distributions for thex andy com-
ponents ofj on a logarithmic scale together with the analytic ex-
pression(15) (straight solid lines).
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Thomas-Porter distribution and the isotropic current distribu-
tion in (15) apply. In case B the net current density is finite,
k jxl /k=0.023, and the mixture of real and imaginary partsp
and q is intermediate withe=0.377. The current statistic is
therefore asymmetric forjx, while it remains symmetric for
j y, as in Fig. 3. The numerical difference between expres-
sions(13) and (18) is small and both of them apply over 4
orders of magnitude. In the right tail, however, there is a
characteristic deviation from the universal distribution.

We now turn to the statistics at the larger aspect ratio
d/Lx=1/10. Thus, cases D and C show larger net current
densitiesk jxl than case B, in spite of its large transmission.
The corresponding current and wave-function statistics are
shown in Fig. 4. As for case B the difference between the
two analytic forms forPs jxd is small and there is good agree-
ment between theory and numerical simulations over several
orders of magnitude. The structure in the right tail is very
much the same as found for case B.

It is surprising that the difference between the exact for-
mula and the approximate one is so small in spite of quite a
large anisotropy of the scattering function(Table I). How-
ever, for larger currents along transport(for jx/t roughly
exceeding 5) there is, as mentioned, a noticeable difference
between analytic formulas and numerical statistics. However,
if plotted on a linear scale as in Fig. 5, this difference appears
quite small. In Figs. 4(c) and 4(d) we notice also that distri-
butions of the real/imaginary parts of the scattering function
p andq do not fit perfectly to the Gaussian distributions. We
therefore conclude that the more the billiard becomes open
because of the leads, the less may the scattering function be
described as a random Gaussian complex field.

V. CONCLUDING REMARKS

We have considered distributions for scattering wave-
function amplitudes(real or imaginary partsp andq) and of

the components of the current density(Poynting vector) for
an open Sinai billiard with two opposite attached straight
leads. We have found that the net currentk jxl with x as the
transport axis is proportional toT/Ly. Assuming that the real
and imaginary parts of the scattering function are random
Gaussian fields[10] and following Ebeling[21,22], we have
derived an analytic distribution for the current components.
We have also solved for the true scattering wave function by
numerical methods.

The distributions have been studied for different values of
the transmission and net currents that increase from zero to
finite values. For small net currents the statistics are found to
be perfectly described by analytical distribution functions.
As the net current is increased, however, the statistics of the
scattering function are found to deviate from predictions
based on the random Gaussian fields. Even at rather small
net current densities, as for C and D in Fig. 2, for which the
wave-function statistics are approximately described by the
Gaussian distribution as in Figs. 4(c) and 4(d), the current
statistics have noticeable features for large currents as shown
in Figs. 4(a) and 4(b). To find a plausible reason for the
deviation we proceed in the following way. In line with[26]
Fig. 6 shows how the current flow for the true scattering state
may be decomposed into “internal” and “external” parts. The
internal part never makes connection with the leads and
therefore does not contribute to the net transport through the

FIG. 4. Current and wave-function statistics for the transmission
through the Sinai billiard for the cases D(a, c) and C(b, d) shown
in Fig. 2. Thin straight lines in(a, b) refer to the exact formula(18)
and dashed lines to the simplified expression in(13). Wave-function
statistics are shown for the real partp of c in (4). The statistics for
the imaginary partq show similar behavior. Thin solid curves in(c,
d) refer to the Gaussian distributions infspd in (27).

FIG. 5. Current statistics for case D in Fig. 2. The thin solid line
shows the exact formula(18).

FIG. 6. Flow lines in a rectangular Sinai billiard with numerical
sizes.(a) Only flows connecting input and output leads are shown.
(b) Internal flows which do not contribute to the net current are
shown.
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cavity. Consequently, the net current is carried by the exter-
nal part. It is noteworthy that the “internal” currents occupy
a major fraction of the billiard and that vortices are related to
these currents only.

To demonstrate that small tails in the current distributions
shown in Fig. 2 are related to the “external” currents we have
performed statistics over the area in which only “internal”

currents circulate. The results displayed in Fig. 7 show that
the internal currents are isotropic and follow the simple ana-
lytic form for Ps jxd in (15) over several orders of magnitude.
Deviations in the tails are opposite the full statistics, includ-
ing both “internal” and “external” currents. Therefore the
detailed behavior of the tails in Fig. 2 are related to the net
current flow between the two opposite leads.

In conclusion, we have shown that the current statistics
for an open chaotic electron/microwave billiard may, to a
good approximation, be obtained by simply replacing the
true scattering wave function by a complex Gaussian random
field. The agreement with numerical simulations is indeed
satisfactory over several orders of magnitude. In spite of the
neglect of boundary effects the simple random-field model
thus proves quite useful. Here we have focused on only two
specific applications, but the analysis is relevant also to other
classical wave cavities as, for example, open planar acoustic
reverberation rooms, elastic membranes, and water surface
waves in irregularly shaped vessels.

Finally, we emphasize that the current statistics over the
billiard area were considered for a fixed frequency, single-
mode, microwave transmission. However, to perform addi-
tional averages over the frequency window ensemble, the
phase rigidity(30) distribution becomes important[19]. Un-
fortunately, after such an ensemble average, the current dis-
tribution cannot be derived in simple analytic forms as in
(13).
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