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We show that the wave function and current statistics in chaotic Robnik billiards crucially depend on the
constant of the spin-orbit interaction(SOI). For small constant the current statistics is described by universal
current distributions derived for slightly opened chaotic billiards[Saichevet al., J. Phys. A.35, L87 (2002)]
although one of the components of the spinor eigenfunctions is not universal. For strong SOI both components
of the spinor eigenstate are complex random Gaussian fields. This observation allows us to derive the distri-
butions of spin-orbit persistent currents which well describe numerical statistics. For intermediate values of the
statistics of the eigenstates and currents, both are deeply nonuniversal.
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I. INTRODUCTION

The physical properties of mesoscopic systems are
strongly affected by quantum interference effects, and one of
the intriguing phenomena is the persistent current in a ring
threaded by a magnetic flux[2,3]. Since electrons have spin
as well as charge, it is therefore of interest to study if the spin
degree of freedom can play some effective and significant
role in persistent current phenomena. Based on the discovery
of the geometric phase[4], many authors have investigated
the persistent currents in one-dimensionals1Dd rings induced
by the geometric phases, which originate from the interplay
between an electron’s orbital and spin degrees of freedom
[5–9]. General properties of charge and spin transport in 2D
systems with the Rashba[10] spin-orbit coupling have ac-
quired intense attention lately[11,12].

First the persistent current in ballistic chaotic billiards was
considered by Kawabata[13]. He derived the semiclassical
formula of the typical mean value of the persistent current
for a single billiard and the average persistent current for an
ensemble of billiards at finite temperature. These formulas
are used to show that the persistent current for chaotic bil-
liards is much smaller than that for integrable ones. The per-
sistent currents in the ballistic regime therefore become an
experimental tool to search for the quantum signature of
classical chaotic and regular dynamics. The nearest neighbor
level statistics and nodal point distribution in a rectangular
quantum dot with the Rashba spin-orbit interaction(SOI)
were considered recently by Berggren and Ouchterlony[14].

In the present article we consider the statistics of the per-
sistent currents produced by SOI in chaotic billiards such as
the Robnik(cardioid) one. For open chaotic billiards(with-
out SOI) the current statistics, as was shown[1], has very
simple exponential behavior and this was confirmed experi-
mentally for microwave transmission through chaotic bil-
liards [15,16].

In III-V semiconductor heterostructures SOI is intrinsic
because of the lack of inversion symmetry. For the two-
dimensional electron gas confined in a quantum dot(QD) by
a gate voltage the Hamiltonian for an electron in the electric

field E and magnetic fieldB directed along thez axis is

H =
1

2m* Sp −
e

c
AD2

+ "KFs 3 Sp −
e

c
ADG

z
, s1d

where m* =0.023m is the effective mass and"2K=6
310−10 eV cm is the SOI coefficient in an InAs structure
[17]. The dominant mechanism for the SOI in a two-
dimensional electron gass2DEGd is attributed to the Rashba
term [12,18]. Using the characteristic scale of a QDR, we
rewrite Eq.(1) in dimensionless form forB=0

H̃ =1 − ¹2 bS ]

] x
− i

]

] y
D

bS−
]

] x
− i

]

] y
D − ¹2 2 , s2d

whereb=2m*KR. We consider that the electric field is di-
rected normal to the plane of the QD. The confining potential
is approximated by a hard wall potential to consider the QD
as a billiard. An expression for current density can be ob-
tained as follows[19]:

j̃ = j /j 0 = − c
dkHl
j0dA

= ImsC† = Cd + bC†sn 3 sdC, s3d

where j0=e" /m*L3.
Historically, McDonnell and Kauffmann first numerically

revealed the complicated eigenfunction structures in a closed
two-dimensional Bunimovich billiard[20]. It is well known
that the statistics of the eigenfunction’s amplitude obeys a
Gaussian distribution. The evolution of statistics of the
eigenspinor eigenfunctions in a chaotic billiard with growth
of the SOI constant was considered in[21]. It was shown that
the eigenfunction statistics crucially depend on the ratio be-
tween the squared SOI constant and the eigenenergy. If this
ratio is small, one of the eigenstate components is a complex
random Gaussian field(RGF), whereas the other is not and
depends on the billiard boundary. In the opposite case, both
spinor components are independent RGFs with the same
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variances[21]. Here we consider the statistics of the persis-
tent currents induced by spin-orbit interaction in a chaotic
Robnik billiard.

The Schrödinger equation with the Hamiltonian(2) takes
the following dimensionless form:

− ¹2f + bLx = ef,

− ¹2x + bL+f = ex, s4d

whereL=] /]x− i ] /]y, e=2m*R2E/"2. We imply the Di-
richlet boundary conditions for both components of the
eigenstate in the Robnik[22] billiard. Numerically, for solu-
tion of Eq. (4) we used the boundary integral method[23]
developed with account of SOI. However, for small and large
SOI constants Eq.(4) allows analytical estimations.

II. WEAK SPIN-ORBIT INTERACTION

For small SOI constantb!Îe we can approximate a so-
lution of Eq. (4) as [21]

f = cb + Osbd s5d

x = −
b

2
fsx + iyd − Cgcb = −

b

2
fsx − x0d + isy − y0dgcb,

where cb are eigenfunctions of the Schrödinger equation
−¹2cb=ebcb for b=0, andC=x0+ iy0 is some arbitrary com-
plex constant. The solution(5) demonstrates that the second
componentxsx,yd linearly increases in the billiard region, as
it is clearly seen from the numerical solution shown in Fig. 1.
Then it follows from Eq.(5) that, if the eigenfunctionscb are
a random Gaussian field, the upper componentf is also a
RGF, whereas the lower componentx is not. Numerically
this result was demonstrated in[21] for the cardioid(Robnik)
billiard

sx2 + y2 − k2d2 = x2 + y2 + 2kx + k2. s6d

For the second Kramers degenerate state the lower com-
ponent is correspondingly a RGF, whereas the upper compo-
nent is not.

Using these results we can find the current distributions.
Substituting the solution(5) into Eq. (3) one can easily find

that the current is determined by only one componentf with
accuracyOsb2d. Since this state is a complex RGF it imme-
diately follows that the current distributions are given by
formulas derived in[1,15]:

Ps jad =
p

4k jl
expS−

pu jau
2k jl

D, a = x,y, s7d

Ps jd =
p2j

4k jl2K0S p j

2k jlD , s8d

where j = uj u, K0szd is the modified Bessel function of the
second kind,k jl=spe /4dsku2lkv2l−kuvl2d, and u and v are
real and imaginary parts of the eigenfunction of the billiard
f=u+ iv.

The numerical results for current statistics compared with
analytical distributions(7) and (8) are shown in Fig. 2. The
distributionPs j yd is not shown in Fig. 2 since it is very close
to Ps jxd. One can see good agreement of the theory with the
numerics for small SOI constant.

III. STRONG SPIN-ORBIT INTERACTION

Using the equalityL+L=−¹2 we can obtain from Eq.(4)

x =
bL+

e − L+L
f, f =

bL

e − L+L
x. s9d

Substituting the first relation into Eq.(4) we obtain

f¹4 + sb2 + 2ed¹2 + e2gf = 0. s10d

A solution of this equation can be presented as the superpo-
sition

FIG. 1. Spatial structures of(a) the upperufu and (b) the lower
uxu components of the spinor eigenfunction of a cardioid with pa-
rameterk=0.45 fore=522.251 andb=0.25.

FIG. 2. Current distributionsPs jxd (a) andPs jd (b) for the Rob-
nik billiard for e=2013.2,k=0.45,b=0.1,k jl=2.7310−6. The cur-
rent distributions(7) and (8) are shown by thin solid lines.
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f = af1 + bf2, s11d

wherea andb are arbitrary complex coefficients and where
each function satisfies to the following equations

− ¹2f1 = Se +
b2

2
+

b2

2
Î1 +

4e

b2Df1, s12d

− ¹2f2 = Se +
b2

2
−

b2

2
Î1 +

4e

b2Df2. s13d

Although these equations formally look like the Schrödinger
ones for the billiard, in fact, they are not because the Dirich-
let boundary conditions are implied only onf but not sepa-
rately onf1 andf2.

For strong SOIb2@e Eqs.(12) and(13) can be written as
follows:

− ¹2f1 < s2e + b2df1, s14d

− ¹2f2 <
e2

b2f2. s15d

Correspondingly, one can see that the characteristic wave-
length of the first contributionf1 is l1,2p /Î2e+b2

<2p /b while the second contributionf2 has the character-
istic wavelengthl2,2pb /e. These characteristic lengths are
demonstrated in Fig. 5 below. Moreover forb@e we can
neglecte in the denominator of Eq.(9) and rewrite Eq.(9) as

x < −
1

b
L†f, f < −

1

b
Lx. s16d

As in a 2DEG the solutionf consists of a fast fluctuating
part f1 and a slowly varying partf2. Substituting Eq.(11)
into the first relation(16) we obtain that the slowly varying
part contributes to the lower componentx as e /b2!1. Be-
cause of the second relation(16) the same result takes place
for the upper componentf. Thus, we can ignore the slowly
varying part in the solution in Eq.(11) sf<f1d. Then Eq.
(14) becomes the Schrödinger equation with spectra 2e+b2

and eigenfunctionsf wheref is approximately a real func-
tion. However, because of the Kramers degeneracy the

eigenstate is an arbitrary superpositionsA+BiĈsydC with

complexA and B whereĈ is the operator of complex con-
jugation. As a result in the numerics as a rule we obtain both
components of the spinor eigenstate as complex functions.

IV. CURRENT STATISTICS

As we consider the chaotic billiard, the eigenfunctions are
mainly RGFs[20]. Bouncing modes are exceptional. There-
fore in the general case the upper component can be pre-
sented asf=u+ iv whereu andv are real RGFs. Althoughu
andv might be statistically dependent, there is a phase trans-
formationf→eiuf=p+ iq which makesp andq statistically
independentkpql=0 [1]. Then it follows from Eq.(16) that
the lower componentx takes the form

x = t + iw, bt = px − qy, bw = qx + py. s17d

Since the functionsp and q are statistically independent
RGFs, their derivatives are also statistically independent
RGFs. Therefore the functionst andw are statistically inde-
pendent RGFs. Moreover, if some functionf is obeying the
Dirichlet boundary condition, thenkf ¹ fl=0, where

k¯l =
1

A
E d2x . . . , s18d

andA is the area of the billiard. Hence we can state that all
four functionsp,q,t ,w are statistically independent RGFs.
These conclusions are completely confirmed in the numerics
[21] for strong SOI.

In view of the above let us present the eigenstate as

C = Sfsr d
xsr d

D = Spsr d + iqsr d
tsr d + iwsr d

D . s19d

Then the probability current(3) can be written as follows:

j̃ = p = q − q = p + t = w − w = t + bexspw− qtd − beyspt

+ qwd, s20d

whereex andey are the unit vectors directed along thex and
y axes, respectively. In order to derive the current distribu-
tions [say, the distributionPs jxd], we use the characteristic
function [1]

Qsaxd = keiaxjxl. s21d

From Eqs.(20) and(21) it follows that we need eight RGFs
F=sp tx q wx t px w qxd ,px=]p/]x, . . ., with the probability
density of these fields given by[24]

FIG. 3. Current distributionsPs jxd (a) and Ps jd (b) for the

Robnik billiard for k=0.45 ,e=57.684,b=50 ,b̃=−1.056 ,a=
−0.043 ,k jl=3.373.(a) The numerical current distribution lnfPs jxdg
(thin solid line) is compared with Eq.(29) (thick solid line). (b) The
numerical current distributionPs jd (thin solid line) is compared
with formulas (8) (dashed line) and (30) (thick solid line). The
statistics was performed over 200 000 points.
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fsFd =
1

4p2Îdet K
expS−

1

2
F+K−1FD s22d

where the covariant matrix consists of mean valuesK
=kF+Fl. In numerical computations we use that the average
over the billiard area(18) is equivalent to an average over an
eight-dimensional GRFF:

k¯l =E d8F fsFd . . . . s23d

Equation(17) establishes that there are only the following
correlations: ktpxl=−kptxl=s1/bdkpx

2l and kwqxl=−kqwxl
=s1/bdkqx

2l. Therefore the covariant 838 matrix is decom-
posed into four 232 matrices:K= % j=1

4 Kj with

K1 = S kp2l kptxl
kptxl ktx

2l
D, K2 = S kq2l kqwxl

kqwxl kwx
2l
D ,

K3 = S kt2l ktpxl
ktpxl kpx

2l
D, K4 = S kw2l kwqxl

kwqxl kqx
2l

D . s24d

Let us estimate the matrix elements of the covariant matrix.
Because of normalization of the eigenstateed2x C†C=1 and
Eq. (18) we obtainkp2l,1/A. The area of the cardioid bil-
liard A=ps1+2k2d<4.414 fork=0.45. Moreover, from Eq.
(17) we obtainktpxl=bkt2l,b /A, kpx

2l< 1
2ks¹pd2l<b2kp2l.

Numerical calculations give forb=50 the following result
se=57.684d:

AK1 = S0.247 6.46

6.46 340.9
D, AK2 = S0.26 6.6

6.6 319.2
D ,

AK3 = S 0.246 − 6.46

− 6.46 305.7
D, AK4 = S0.247 − 6.6

− 6.6 319.2
D .

s25d

One can see that these numerical results agree well with the
above estimations for correlations. The eight-dimensional
probability function is decomposed as

fsFd = fsu,txdfsv,wxdfst,uxdfsw,vxd, s26d

where

fsa,bd =
1

2p
expS−

1

2G
skb2la2 + ka2lb2 − 2kablabdD ,

s27d

G=ka2lkb2l−kabl2. As Eq.(25) shows, we can take approxi-
mately equalG for each pair of RGFs in the distribution
function (26) for strong SOI constantb. Then a simple but
tedious procedure of integration over eight GRFs gives us
the following form for the characteristic function(21):

Qsaxd <
1

s1 + Gax
2d2 + 4b̃2kp2l2ax

2
, s28d

where G=kp2lktx
2l−kptxl2<kq2lkwx

2l−kqwxl2<kt2lkpx
2l

−ktpxl2<kw2lkqx
2l−kwqxl2, b̃=b /2−kptxl / kp2l. Following

[1] we have for the distributionPs jxd

Ps jxd =
1

2p
E

−`

`

Qsuaxudexps− iaxjxddax

=
1

8aÎ1 + a2ÎG
F 1

a1
expS−

a1u jxu
ÎG

D −
1

a2
expS−

a2u jxu
ÎG

DG
s29d

wherea1,2=Î1+a27a , a=b̃kp2l /ÎG.
The same expression can be obtained forPs j yd. In order to

derive the distribution function forj let us consider the joint
distribution function. Following[1] we obtain

Ps jd = jE
0

`

a da J0sajdQsad. s30d

The numerical current distributions are shown in Fig. 3,
compared with the analytical distributions(29), (8), and(30)
with k jl calculated numerically from Eq.(30). The compari-
son demonstrates very good coincidence of theory with nu-
merics. The numerical distributionPs j yd is not shown in Fig.
3(a) since it is very close toPs jxd. To ensure that the numeri-
cal computation of the spinor eigenfunctions in the Robnik
billiard was accurate for the large SOI constantb=50 we
chose the eigenenergy rather low,e=57.684. It gives the
characteristic wavelength of the eigenfunctionl=2p /b
<0.1.

V. CONCLUSION

Finally we demonstrate the statistics of the real parts of
the eigenfunctions for three characteristic values of the SOI

FIG. 4. The numerical distributions of the real parts of the upper
(left) and lower components(right) of the eigenspinor state for three
characteristic values ofb. (a), (b) b2!e sb=0.25,e=522.25d, (c),
(d) b2,e sb=10,e=87.57d, and(e), (f) b2@e sb=50,e=57.684d.
Solid lines show the Gaussian distributions.
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constant(Fig. 4). The statistics of the imaginary parts has the
same behavior. One can see that for small SOI only the upper
component is a complex RGF while the statistics of the
lower component depends on the billiard geometry[21]. For
moderate constants of SOIsb2,ed [Figs. 4(c) and 4(d)] the
wave function statistics as well as the current statistics are
deeply nonuniversal. Finally, for the strong SOI constant
sb2@ed, both components of the eigenspinor are complex
RGFs as is seen from Figs. 4(e) and 4(f). However, as shown
in Figs. 4(e) and 4(f) we can see small deviations from the
Gaussian distributions nearp=0 andt=0 which are related
to the small second contribution in Eq.(11). This contribu-
tion can be resolved if we plot the Fourier transform of some
component of the eigenspinor, say,p as shown in Fig. 5.
Mainly the Fourier components are collected in a circle with
uku=Îb2+2e in accordance with Eq.(14). There are also a
few Fourier components nearuku=0 which are contributed by
the solutionf2 of Eq. (15). However, Fig. 5 demonstrates
that the second contributionf2 with characteristick2<e /b
is negligibly small in comparison to the first contributionf1
with characteristick1<b.

It is promising that experimental techniques to image
wave functions and coherent electron flows in semiconductor
devices are becoming available using scanned probe micro-
scopes[25]. However, these techniques hardly allow us to
measure current statistics. Microwave billiards are remark-
able equivalents of quantum mechanics[26]. As a result,
Stöckmann and co-workers measured current and vortex sta-
tistics in chaotic microwave billiards[15,16]. Therefore the
most promising way to measure spin-orbit currents is to find
the equivalent of the Rashba Hamiltonian(2) in electromag-
netic systems. Recently we have found such a correspon-
dence of the Rashba SOI in an infinitely long microwave
waveguide filled with ferrite[27] with a cross section equal
to that of the billiard. The longitudinal component of the
electric field corresponds to the componentf, while the lon-
gitudinal component of the magnetic field relates to the de-
rivative of x. Although the boundary conditions in this sys-
tem are different from the Dirichlet boundary conditions
implied on the quantum billiard, we believe that the type of
boundary conditions is not important for statistics of eigen-
functions because locally the eigenfunction can be presented
as a random superposition of plane waves(the Berry func-
tion [28]). The role of the boundaries in the statistical prop-
erties of the eigenfunctions of the chaotic billiard was stud-
ied recently in[29,30]. It was shown that the boundaries are
responsible for logarithmic corrections in the long-range cor-
relation properties of the eigenfunctions and for depletion of
nodal points near the boundary.
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