PHYSICAL REVIEW E 70, 056211(2004

Statistics of wave functions and currents induced by spin-orbit interaction in chaotic billiards
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We show that the wave function and current statistics in chaotic Robnik billiards crucially depend on the
constant of the spin-orbit interacti@®Ol). For small constant the current statistics is described by universal
current distributions derived for slightly opened chaotic billiafBiaichevet al,, J. Phys. A.35, L87 (2002]
although one of the components of the spinor eigenfunctions is not universal. For strong SOI both components
of the spinor eigenstate are complex random Gaussian fields. This observation allows us to derive the distri-
butions of spin-orbit persistent currents which well describe numerical statistics. For intermediate values of the
statistics of the eigenstates and currents, both are deeply nonuniversal.
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I. INTRODUCTION field E and magnetic fieldB directed along the axis is
The physical properties of mesoscopic systems are H:i(p—9A>2+hK . (p—gA) @
strongly affected by quantum interference effects, and one of 2m’ c c S

the intriguing phenomena is the persistent current in a ring .

threaded by a magnetic flyg,3]. Since electrons have spin Where m'=0.023n is the effective mass andi’K=6

as well as charge, it is therefore of interest to study if the spin< 102 eV cm is the SOI coefficient in an InAs structure

degree of freedom can play some effective and significantl7]. The dominant mechanism for the SOI in a two-

role in persistent current phenomena. Based on the discovefjmensional electron gg2DEG) is attributed to the Rashba

of the geometric phasp#], many authors have investigated term [12,18. Using the characteristic scale of a Q& we

the persistent currents in one-dimensiofidD) rings induced  rewrite Eq.(1) in dimensionless form foB=0

by the geometric phases, which originate from the interplay

between an electron’s orbital and spin degrees of freedom —_y2 B<——l—)

[5—-9]. General properties of charge and spin transport in 2D

systems with the Rashijd 0] spin-orbit coupling have ac- J J

quired intense attention late[t1,12. ﬁ(‘ - i—> -V?
First the persistent current in ballistic chaotic billiards was

considered by Kawabafd 3]. He derived the semiclassical \yhere g=2m'KR. We consider that the electric field is di-

formula of the typical mean value of the persistent currentected normal to the plane of the QD. The confining potential

for a single billiard and the average persistent current for afs approximated by a hard wall potential to consider the QD

ensemble of billiards at finite temperature. These formulags 3 pilliard. An expression for current density can be ob-
are used to show that the persistent current for chaotic bikained as followg19]:

liards is much smaller than that for integrable ones. The per-
sistent currents in the ballistic regime therefore become an -~ &H)
experimental tool to search for the quantum signature of le/loz_cm
classical chaotic and regular dynamics. The nearest neighbor 0
level statistics and nodal point distribution in a rectangularwherej,=ef/m’LS.
quantum dot with the Rashba spin-orbit interacti@Ol) Historically, McDonnell and Kauffmann first numerically
were considered recently by Berggren and Ouchter[a4y. revealed the complicated eigenfunction structures in a closed
In the present article we consider the statistics of the pertwo-dimensional Bunimovich billiard20]. It is well known
sistent currents produced by SOI in chaotic billiards such aghat the statistics of the eigenfunction’s amplitude obeys a
the Robnik(cardioid one. For open chaotic billiardsvith- ~ Gaussian distribution. The evolution of statistics of the
out SO the current statistics, as was sho{#j, has very eigenspinor eigenfunctions in a chaotic billiard with growth
simple exponential behavior and this was confirmed experief the SOI constant was considered 24]. It was shown that
mentally for microwave transmission through chaotic bil-the eigenfunction statistics crucially depend on the ratio be-
liards [15,19. tween the squared SOI constant and the eigenenergy. If this
In 11I-V semiconductor heterostructures SOI is intrinsic ratio is small, one of the eigenstate components is a complex
because of the lack of inversion symmetry. For the two-random Gaussian fiel(RGF), whereas the other is not and
dimensional electron gas confined in a quantum(@@®) by  depends on the billiard boundary. In the opposite case, both
a gate voltage the Hamiltonian for an electron in the electricspinor components are independent RGFs with the same

=ImPT'V¥) +B¥T(n X )P, (3)
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(b)

FIG. 1. Spatial structures @8) the upper¢| and(b) the lower
|x| components of the spinor eigenfunction of a cardioid with pa-
rameterk=0.45 fore=522.251 ang3=0.25.

varianceq21]. Here we consider the statistics of the persis-

tent currents induced by spin-orbit interaction in a chaotic

Robnik billiard.
The Schrodinger equation with the Hamiltonig) takes
the following dimensionless form:

-V + Ly = €,

- V2 +BL ¢ = ey, (4

whereL=4d/dx-idldy, e=2m'R’E/h%. We imply the Di-
richlet boundary conditions for both components of the
eigenstate in the Robnilk2] billiard. Numerically, for solu-
tion of Eq. (4) we used the boundary integral meth{#8]
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FIG. 2. Current distribution®(j,) (a) andP(j) (b) for the Rob-
nik billiard for e=2013.2x=0.45,8=0.1(j)=2.7X 10°%. The cur-
rent distributiong7) and(8) are shown by thin solid lines.

that the current is determined by only one compongntith
accuracyO(B?). Since this state is a complex RGF it imme-
diately follows that the current distributions are given by
formulas derived if1,15]:

developed with account of SOI. However, for small and large - i
SOl constants Eq4) allows analytical estimations. P(j,) = Ij)exp(— 2 (j(; ) a=XxyY, (7)
Il. WEAK SPIN-ORBIT INTERACTION . .
_ T i
For small SOI constanB< \e we can approximate a so- P(j) = 4<j>2KO<Tj>)' (8)
lution of Eqg. (4) as[21]
where j=|j|, Ko(2) is the modified Bessel function of the

¢ =+ O(B) (5

B

L0+ ) = Clu == ST0x=30) +i(y = Yol

X

where ¢4, are eigenfunctions of the Schrédinger equation
-V2ii,= eps, for B=0, andC=x,+iy, is some arbitrary com-
plex constant. The solutiofb) demonstrates that the second
componeniy(x,y) linearly increases in the billiard region, as
it is clearly seen from the numerical solution shown in Fig. 1.
Then it follows from Eq(5) that, if the eigenfunctiong, are
a random Gaussian field, the upper compongns also a
RGF, whereas the lower componeptis not. Numerically
this result was demonstrated[ia1] for the cardioid Robnik)
billiard

(P +Yy? = K2 =X2+y? + 2kX + K°.

(6)

second kindj)=(me/4)((U?){v?)—(uv)?), andu andv are
real and imaginary parts of the eigenfunction of the billiard
d=u+iv.

The numerical results for current statistics compared with
analytical distributiong7) and(8) are shown in Fig. 2. The
distributionP(j,) is not shown in Fig. 2 since it is very close
to P(j,). One can see good agreement of the theory with the
numerics for small SOI constant.

IIl. STRONG SPIN-ORBIT INTERACTION

Using the equality_*L=-V? we can obtain from Eq4)

For the second Kramers degenerate state the lower com-

ponent is correspondingly a RGF, whereas the upper compo-

nent is not.
Using these results we can find the current distributions
Substituting the solutio5) into Eq. (3) one can easily find

_ B __BL
X_E_L+L¢1 ¢_6_L+LX' (9)
Substituting the first relation into E@4) we obtain
[V4+ (B2 +2e)V2+ €2]¢p=0. (10

A solution of this equation can be presented as the superpo-
sition
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¢ =agy+ by, (11) y
wherea andb are arbitrary complex coefficients and where = 3
each function satisfies to the following equations § j
2 2 5
4
—v2¢1=(e+ﬂ—+ﬁx/1+—§>¢l, 12 :
2 2 B 7
( ) 5 0 5
J,, <>
2 2
4 0.04
‘V2¢2:<E+E_‘E\/1+_Z>¢z- 13
2 2 B 0osf
1 AY
Although these equations formally look like the Schrodinger S 002 ! \\
ones for the billiard, in fact, they are not because the Dirich- X A
let boundary conditions are implied only ahbut not sepa- 0.01 .
rately on¢, and ¢,. 0 e
For strong SOB?> € Egs.(12) and(13) can be written as (b) © 1 _/? 3 4
follows: =
—quﬁ - (2€+ﬁ2)¢ (14) FIG. 3. Current distributions(j,) (a) and P(j) (b) for the
! b Robnik billiard for «=0.45 £=57.684 3=50 B=-1.056 q=
-0.043 (j)=3.373.(a) The numerical current distribution[IR(j,)]
_ V2¢ - ﬁ¢ (15) (thin solid line is compared with Eq(29) (thick solid line. (b) The
2 52 2 numerical current distributiorP(j) (thin solid line is compared

with formulas (8) (dashed ling and (30) (thick solid ling. The
Correspondingly, one can see that the characteristic wavatatistics was performed over 200 000 points.
length of the first contributiong, is \;~2m/\2e+B?
=2/ B while the second contributioth, has the character- i —n _
istic wavelength\, ~ 273/ e. These characteristic lengths are XEEEIW, - BE=Pc= Ty BW= 0t Py (7
demonstrated in Fig. 5 below. Moreover &€ we can  Since the functiongp and q are statistically independent
neglecte in the denominator of Eq9) and rewrite Eq(9) as  RGFs, their derivatives are also statistically independent
RGFs. Therefore the functiorisandw are statistically inde-

Tt = pendent RGFs. Moreover, if some functibms obeying the
X IBL ¢ ¢ ﬁLX' (16 Dirichlet boundary condition, the(fVf)=0, where
As in a 2DEG the solutionp consists of a fast fluctuating _1 2 18
part ¢, and a slowly varying partp,. Substituting Eq(11) ()= X (18)

into the first relation(16) we obtain that the slowly varying ) -
part contributes to the lower componeptas e/ B2<1. Be- andAis the area of the billiard. Hence we can state that all

cause of the second relatioh6) the same result takes place four functionsp,q,t,w are statistically independent RGFs.
for the upper component. Thus, we can ignore the slowly These conclusions are completely confirmed in the numerics
varying part in the solution in Eql1) (¢= ¢,). Then Eq. [21] for strong SOI. _

(14) becomes the Schrodinger equation with spectra /2 In view of the above let us present the eigenstate as

and eigenfunctiong where ¢ is approximately a real func- (1) o(r) +iq(r)

tion. However, because of the Kramers degeneracy the = < ) = ( _ )
eigenstate is an arbitrary superpositioh+BiCoy)¥ with x(r) or) +iw(r)
complexA and B whereC is the operator of complex con- Then the probability curren®) can be written as follows:
jugation. As a result in the numerics as a rule we obtain both -

components of the spinor eigenstate as complex functions. 1 =PV d-aVp+tVw-wVt+ge(pw-qt) - Bey(pt

+qw), (20)

IV. CURRENT STATISTICS wheree, ande, are the unit vectors directed along thend

As we consider the chaotic billiard, the eigenfunctions arey @xes, respectively. In order to derive the current distribu-
mainly RGFs[20]. Bouncing modes are exceptional. There_tlons.[say, the distributiorP(j,)], we use the characteristic
fore in the general case the upper component can be préinction[1]
sented asp=u+iv whereu andv are real RGFs. Although O(a,) = (o) (21)
andv might be statistically dependent, there is a phase trans- X ’
formation ¢— €%¢p=p+iq which makesp andq statistically ~ From Eqs(20) and(21) it follows that we need eight RGFs
independenfpg)=0 [1]. Then it follows from Eq.(16) that  ®=(p t, q W, t py W G, Pc=9p/ X, ..., with the probability
the lower componeny takes the form density of these fields given 4@4]

(19
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5 003 o1 0.246 -6.4 0.247 -6.6
2 g AK;= L AK,= .
00 005 -6.46 305.7, -6.6 319.
0.01 (25)
@ Bor o p oot -tz o 1 0002 One can see that these numerical results agree well with the
0.0 0.04 above estimations for correlations. The eight-dimensional
5 004 e probability function is decomposed as
= 0.02
0.02 A f(D) = f(u,t) f(v, W) f(t,u)f(w,vy), (26)
© o

-0005 0 [ 0005 @ 05 o ¢ 0005 where
0.04 0.04

a
=4

f(t)

f(a,b) = iexp(— %((bz)a2 +(a?)b? - 2(ab)ab)> ,

(27)

I'=(a)(b%—(ab)>. As Eq.(25) shows, we can take approxi-

FIG. 4. The numerical distributions of the real parts of the uppermately equall’ for each pair of RGFs in the distribution

(left) and lower componentsight) of the eigenspinor state for three fun_ction (26) for strong SOl C(_)nstar}G. Then a simple_ but
characteristic values 8. (a), (b) B<e (8=0.25 e=522.25, (c), tedious procedure of integration over eight GRFs gives us
(d) B2~ € (B=10,6=87.59, and(e), () B2> e (B=50,e=57.684. the following form for the characteristic functiqi2l):

0.02 0.02

© obos o poos T Er—

t

Solid lines show the Gaussian distributions. 1
O(a,) =~ = : (28)
1 1 (1+Ta)?+4pXpH7a
- - = ht-1
@)= 47,z\fre“<ex‘“< K q’) 22 where  T=(pA(B)~(pty?=(GR(W) ~(qws)?= ()(pD)

~(tpo?= (WG ~(Wa)?, B=BI2~(pty/(p?). Following
where the covariant matrix consists of mean valdés [1] we have for the distributiofP(j,)
=(d*®). In numerical computations we use that the average

- . . 1 (~
over the billiard are18) is equivalent to an average over an p(; y = _f O(laexn - ia.i.)d
eight-dimensional GRR: (1 2w ) _. (adexp-iaj)da

- ;Fex”(‘ a1|jx|> 1 p( azuxﬂ
<. . > :f déd f((ID) e (23) 86!\”1 + CYZ\“JF a \’,F a, \F

(29
Equation(17) establishes that there are only the following
correlations: (tp)=—(pt)=(1/B8)(p2 and (way)=—(qw)
:(1/,8)<q)2(). Therefore the covariant>88 matrix is decom-
posed into four X 2 matrices:Kzeajf‘:l K; with

wherea; ,=\1+a?F o, a=B(p?)/\T.

The same expression can be obtainedF@y). In order to
derive the distribution function for let us consider the joint
distribution function. Followind1] we obtain

P <ptx>) <<q2> <qwx>> B =i f - .
i - ()=]| adalajo(a. (30)
“ ((ptx> 2 ) Kz Qwy W3 )’ n=ij a da J(aj)0(a

The numerical current distributions are shown in Fig. 3,
compared with the analytical distributio(®9), (8), and(30)
)- (24)  with (j) calculated numerically from Eq30). The compari-
son demonstrates very good coincidence of theory with nu-
merics. The numerical distributid®(j,) is not shown in Fig.
3(a) since it is very close t®(j,). To ensure that the numeri-
cal computation of the spinor eigenfunctions in the Robnik

:(<t2> <tpx>) :<<w2> (wap)
T\apy ) T \wgy (P

Let us estimate the matrix elements of the covariant matrix
Because of normalization of the eigenstfitéx ¥ ¥ =1 and
Eq. (18) we obtazin<p2>~1/A. The area of the cardioid bil billiard was accurate for the large SOI constg#50 we
liard A:Tr(lfz" )z4'414 forK:O'A;S' I\{Ioreovzer, frgszq. chose the eigenenergy rather loesx57.684. It gives the
(17) we obtain(tp,y =Bt ~ BIA, (p) = ((VP)I=BXP?).  characteristic wavelength of the eigenfunction=2m/ g3

Numerical calculations give fg8=50 the following result ~q.1.
(e=57.68%:

V. CONCLUSION

L= (0'247 6'463 AK, = (O'ZG 6'62) Finally we demonstrate the statistics of the real parts of
6.46 340.9° 6.6 319.2° the eigenfunctions for three characteristic values of the SOI
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It is promising that experimental techniques to image
wave functions and coherent electron flows in semiconductor
devices are becoming available using scanned probe micro-
scopes[25]. However, these techniques hardly allow us to
measure current statistics. Microwave billiards are remark-
able equivalents of quantum mechani{&§]. As a result,
Stockmann and co-workers measured current and vortex sta-
tistics in chaotic microwave billiardgl5,1§. Therefore the
most promising way to measure spin-orbit currents is to find
the equivalent of the Rashba Hamiltonig) in electromag-
netic systems. Recently we have found such a correspon-

FIG. 5. The Fourier image of the real part of the upper compo-dence of the Rashba SOl in an infinitely long microwave
nentp for 2> e (B=50, e=57.684. waveguide filled with ferritg27] with a cross section equal

to that of the billiard. The longitudinal component of the
constan{Fig. 4). The statistics of the imaginary parts has the€lectric field corresponds to the componentwhile the lon-
same behavior. One can see that for small SOI only the uppédiitudinal component of the magnetic field relates to the de-
component is a complex RGF while the statistics of thefivative of y. Although the boundary conditions in this sys-
lower component depends on the billiard geom¢yj. For ~ tem are different from the Dirichlet boundary conditions
moderate constants of SOB2~ e) [Figs. 4c) and 4d)] the  implied on the quantum billiard, we believe that the type of
wave function statistics as well as the current statistics ar@oundary conditions is not important for statistics of eigen-
deeply nonuniversal. Finally, for the strong SOI constantfunctions because locally the eigenfunction can be presented
(B?>¢), both components of the eigenspinor are complex@S @ random superposition of plane wayt® Berry func-
RGFs as is seen from Figsieland 4f). However, as shown 10N [28]). The role of the boundaries in the statistical prop-
in Figs. 4e) and 4f) we can see small deviations from the €rties of the eigenfunctions of the chaotic billiard was stud-
Gaussian distributions ne@=0 andt=0 which are related 1€d recently in[29,30. It was shown that the boundaries are
to the small second contribution in EL1). This contribu-  réSponsible for logarithmic corrections in the long-range cor-
tion can be resolved if we plot the Fourier transform of some/€lation properties of the eigenfunctions and for depletion of
component of the eigenspinor, say,as shown in Fig. 5. Nhodal points near the boundary.
Mainly the Fourier components are collected in a circle with
|k|=v8?+2¢ in accordance with Eq(14). There are also a
few Fourier components nefki=0 which are contributed by A.S. is grateful to K.-F. Berggren for numerous fruitful
the solution¢, of Eq. (15). However, Fig. 5 demonstrates discussions. This work was supported by the Russian Foun-
that the second contributiog, with characteristidk,~e/8  dation for Basic ResearcfRFBR Grant No. 03-02-17039

is negligibly small in comparison to the first contributign ~ A.S. acknowledges the support of the Swedish Royal Acad-
with characteristik; = 3. emy of Sciences.
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