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Abstract—A model of the energy band structure of iron borate (FeBO3) is proposed that combines a one-elec-
tron description of the sp states of boron and oxygen with a many-electron description of the d states of iron.
The Green functions of d electrons are calculated using the exact Lehmann spectral representation. The energies
of the d-type quasiparticles are calculated using terms of the d4, d5, and d6 electron configurations. The optical
absorption spectrum of FeBO3 is determined by local excitons and by the electron excitations with charge trans-
fer. The latter excitations control the nature of the dielectric gap in FeBO3 crystals. The model parameters are
determined from a comparison to the exciton energies. The density of single-particle states in FeBO3 is calcu-
lated. The main bands in the calculated optical absorption spectrum agree well with experimental data for ener-
gies up to 3 eV. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Iron borate FeBO3 is one of a few magnets combin-
ing transparency in the visible spectral range with
spontaneous magnetization at room temperature. This
is a weak ferromagnet with nearly antiparallel spin
sublattices of Fe3+ ions in the (111) base plane at tem-
peratures below the Néel temperature TN = 348 K [1].
The FeBO3 crystals possess a calcite structure belong-

ing to the space group  [1, 2], in which Fe3+

ions are surrounded by an oxygen octahedron of an
almost cubic symmetry; bond lengths: Fe–O, 2.028 Å
and Fe−Fe, 3.601 Å; O–Fe–O bond angles, 91.82° and
88.18° [3]. Under normal ambient conditions, FeBO3 is
an insulator with a fundamental absorption edge at

 = 2.9 eV [4]. Despite many years of research, there
has been permanent interest in studying the properties
of FeBO3 crystals. Recent investigations revealed a
structural phase transition in FeBO3 [5], a collapse of
the magnetic moment of Fe3+ ions under pressure [6],
peculiarities in the concentration dependence of the
magnetic and optical properties of some solid solutions
of the VxFe1 – xBO3 system [7], and the light-induced
breakage of the magnetic order under conditions of
pulsed optical pumping [8].

At the same time, relationships between the
observed properties and the electron structure of FeBO3
have not yet been established even on a qualitative
level. There are difficulties in application of the stan-
dard band theory to FeBO3, which are related to strong
electron correlations involving the d electrons of iron.
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Indeed, a one-electron approach to the d5 electron con-
figuration of Fe3+ ion leads to a partly filled band and
the metallic state. In the Hubbard model with strong
electron correlations, whereby U @ W (U is the Cou-
lomb interaction parameter and W is the width of a half-
filed d band), we obtain an antiferromagnetic state of
the Mott–Hubbard dielectric. However, in FeBO3 (as
well as in many other real substances), a simple pattern
based on the Hubbard model is complicated by the
presence of a large number of d(f) orbitals.

This paper proposes a many-electron model taking
into account all d orbitals and strong electron correla-
tions involving d electrons. Within the framework of
this model, the density of single-particle states of d
electrons contains contributions due to local quasiparti-
cles with energies

where Ei(dn) denotes the ith term of the dn configura-
tion. In the case of FeBO3
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become significant. An analogous approach was
employed in the analysis of magnetism in
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 metals [9, 10]
and layered cuprates [11]. The model parameters are
determined from a comparison to the energies of exci-
ton peaks in the optical absorption spectrum. The cal-
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The paper is organized as follows. Section 2
describes the proposed many-electron multiband model
of FeBO3. Section 3 is devoted to calculation of the
local Green functions of d electrons, which is compared
to the exact Lehmann spectral representation. Section 4
considers the experimental absorption spectrum of
FeBO3 measured in a broad energy range. Section 5
compares the calculated density of states N(E) to the
experimental absorption spectra. Finally, in Section 6
we will discuss the temperature dependence of these
spectra.

2. A MANY-ELECTRON MULTIBAND MODEL
OF THE ELECTRON STRUCTURE OF FeBO3

The ab initio one-electron energy band calculations
performed for FeBO3 using the density functional
method in the local spin density approximation [12]
and the generalized gradient approximation [13],
together with the calculation of molecular orbitals of a
FeB6O6 cluster [7], revealed the following electron
structure of FeBO3. The empty conduction band εc con-
sists predominantly of the s and p states of boron. The
top of the valence band εv is formed mostly by the s and
p states of oxygen. The energy gap Eg0 between valence
and conduction bands in the antiferromagnetic phase
amounts to 2.5 eV [12], which is quite close to the fun-
damental absorption edge (Eg0 = 2.9 eV). The band of
d electrons occurs at the top of the valence band, and
the crystal field parameter is ∆ ≈ 1 eV [12]. The degree
of hybridization of the d electrons of iron with the s and
p electrons of oxygen is very small [7, 12], much
smaller as compared to the case of 3d metal oxides.
This is related to a very strong hybridization inside the
BO3 group, where the (BO3)3– ion does in fact exist and
the electron orbitals of oxygen are closed to boron
(which accounts for the small p–d hybridization). This
circumstance significantly simplifies the many-electron
model, for which the dn (n = 4, 5, 6) terms of iron in the
crystal field can be calculated, rather than the terms of
a metal–oxygen complex (as in copper oxides [11]).

The intraatomic part of the Hamiltonian for d elec-
trons can be written as

(1)

where nλσ = aλσ , aλσ is the operator of d electron
creation on one of the five orbitals λ with the spin pro-
jection σ (  = – σ). The first term in (1) describes the
atomic d levels in the crystal field. A small uniaxial
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component of the crystal field is ignored and it is
assumed that

The other terms in Hamiltonian (1) represent the Cou-
lomb intraorbital (Uλ) and interorbital (Vλλ ') repulsion
and the Hund exchange Jλλ ' . For the sake of simplicity,
we neglect the orbital dependence of the Coulomb
matrix elements, assuming that the three parameters
(U, V, and J) are related by the well-known condition
U = 2V + J.

The kinetic energy of d electrons, as determined by
interatomic hopping, is described by the Hamiltonian

(2)

where  is the matrix element of hopping between ith
and jth lattice sites. The main matrix element corre-
sponds to the hops between nearest neighbors: t ~

/|εp – εd|. However, in view of the weak p–d hybrid-
ization between Fe and O atoms, this element is also
small, t ! U, which accounts for the strong electron
correlation effects. Thus, the model parameters are the
two Coulomb integrals, U and J, the crystal field mag-
nitude ∆, the position of the one-electron d level rela-
tive to the top of the valence band εv (δ = εd – εv), and
the hopping integral t. The parameters will be deter-
mined by comparison with the experimental optical and
photoemission spectra (see Section 4).

The Fe3+ ion has a d5 configuration that can occur in
various spin and orbital terms. The considerations
below will also imply the knowledge of the terms of
d4 (Fe4+) and d6 (Fe2+) configurations for description of
the hole and electron creation in the many-electron sys-
tem. The energies of terms in each of these dn configu-
rations are expressed via the Racah parameters A, B,
and C [14, 15]. The B, C and ∆ values for the terms of
Fe3+ ion were determined in [16]: B = 680 cm–1, C =
3160 cm–1, and ∆ = 12700 cm–1.

With neglect of a small uniaxial component of the
crystal field, three t2g levels and two eg levels are degen-
erate. For the d5 configuration, the ground state 6A1

(with Sz = +5/2) is described by the wave function

(3)

where  (λ = 1, 2, 3) and  (λ = 1, 2) are the oper-
ators of creation of t2g and eg electrons, respectively, in
one of the orbital states λ with the spin projection σ;
and |0〉 is the vacuum state for d electrons. The lowest
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excited term 4T1 has a nonzero orbital moment and the
spin S = 3/2.

The other excited terms with S = 3/2 can be written
in a similar manner. For example, the term 4A1 has a

configuration of  with an energy of 

The low-spin excited term 2T2 with a configuration of

 has an energy of 

Let us also write the ground and lower excited terms
of the d4 and d6 configurations. For d4, the main term 5E

for S = 2, Sz = 2 has a configuration of  with an
energy of 

In what follows, we will also consider the term 3T1 with
S = 1 and an energy of 

and the term 1E( ) with S = 0 and the energy

For d6, the main term 5T2 has a configuration of

 with an energy of 

the excited spin triplet 3T1 has an energy of E1(d6), and

the spin singlet 1A1( ) has an energy of E0(d6). For
the given values of B and ∆ for each term, the corre-
sponding energies relative to the lowest term of each
configuration can be numerically determined using the
Tanabe–Sugano diagrams [14, 15] (see Fig. 1 below).
Note that a half-occupied d5 configuration should pos-
sess the electron–hole symmetry. This symmetry is
revealed when the one-electron energies are measured
from the chemical potential level (see Section 5).

3. ONE-PARTICLE GREEN FUNCTION 
OF d ELECTRONS

For establishing a relationship between many-elec-
tron terms and the spectrum of one-particle excitations
determining the density of single-particle states, N(E),
we use an approach based on the generalization of Hub-
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bard’s ideas. Since the hops between atoms are small,
the exact one-particle Green function Gkσ(ω) =

〈〈 akσ 〉〉  in the zero-order approximation with respect
to t reduces to the local function G(0)(ω). A consistent
method for calculating the Green functions at t/U ! 1
is provided by the representation of Hubbard’s X oper-
ators constructed on the eigenstates of Hat . In our case,
these are the aforementioned terms of dn configura-
tions. For the initial Hubbard model without orbital
degeneracy, the corresponding perturbation theory has
been developed in [17, 18] and the case of arbitrary
degeneracy was considered in [19].

The structure of the Green functions of d electrons
is revealed by the exact Lehmann spectral representa-
tion [20], in which electrons are described as super-
positions of various quasiparticles. According to this,
for T = 0,

(4)

where the quasiparticle energies are

(5)

and their spectral weights are determined by the matrix
elements

(6)

Here, |m, N〉  denotes the mth many-electron eigenstate
of a system with N electrons,

so that index m is essentially the band index numerating
quasiparticles possessing the spin 1/2, the charge e (as
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Fig. 1. A diagram of terms for Fe4+, Fe3+, and Fe2+ ions in
FeBO3. The cross indicates the occupied lowest sublevel of

the term 6A1 of Fe3+ ion at T = 0. Figures at the levels indi-
cate the energies (in eV) relative to the lowest sublevel.
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seen in the matrix elements), the energy  , and
the spectral weight Am (Bm).

At a finite temperature, Lehmann’s representation
can be written, for example, for the retarded Green
function (see [21, 22]),

(7)

where  = Em(N + 1) – En(N) – µ and Wn is the sta-
tistical weight of state |n〉  determined by the Gibbs dis-
tribution with the thermodynamic potential Ω:

At T ≠ 0, both the ground state |0, N〉  and excited states
|n, N〉  are populated. In this case, quasiparticles are
denoted by two indices, m and n, and are considered as
excitations in a many-electron system, whereby elec-
tron added to the N-electron system in the state |n, N〉
induces a transition to the final (N + 1)-electron state
|m, N + 1〉.

In Lehmann’s representation, |m, N〉  is the unknown
state of the whole crystal. As will be shown below,
the same structure is inherent in the local Green func-
tion G(0) according to the generalized tight binding
method [19]. This function is determined by the local
many-electron terms |m, N〉  obtained in Section 2. In the
case of FeBO3, significant contributions result from the
terms with N = 4, 5, and 6. Denoting |m, N〉  ≡ |p〉 , we
define Hubbard’s X operator at site f as

(8)

In standard writing, X operators appear with cum-
bersome notation indicating the initial and final states.
In order to simplify this notation, we will use the idea
of Zaitsev [17], according to which a pair of indices
(p, q) is replaced by the so-called root vector (p, q) 
a(p, q) ≡ a. Since the set of these vectors is denumera-
ble, we introduce the numeration a  an and then
indicate only the number n of the root vector:

This essentially implies that we construct a table of the
correspondence between pairs (p, q), vectors an, and
indices n necessary for explicitly calculating the com-
mutation relations. Let us define vectors a so as to cor-
respond to the process of electron annihilation, Nq –
Np = +1. Then, the operators of electron creation (anni-
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JOURNAL OF EXPERIMENTAL 
hilation) in state |fλσ〉  can be written in the X represen-
tation as

(9)

(10)

Since the Hamiltonian Hat in the representation of
the Hubbard operators is diagonal, the local Green
functions of d electrons are immediately calculated as

(11)

where Ωn = Em'(N + 1) – Em(N

 

) is the quasiparticle

energy and 
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) =  +  is the occupation
factor. Evidently, the Green functions (11) realize Leh-
mann’s representation inside the unit cell but, in con-
trast to noncomputable energies and matrix elements in
such a representation, all quantities entering into
expression (11) can be calculated via the local charac-
teristics of terms. Here, index 
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the total spectral weight is the same as that of free
electrons.

In the diagram technique developed for 

 

X

 

 operators
[17–19], the series of perturbation theory are con-
structed for the matrix Green function,

rather than for the electron Green function related to the
former in the 

 

X

 

 representation (9) as

It is possible to write a generalized Dyson equation for

the Green function , in which the perturbation renor-
malizes both the mass operator and the spectral weight.
In the simplest Hartree–Fock approximation, the mass
operator is determined as the Fourier transform of the
hopping integral 
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). As a result, the dispersion of
quasiparticles is described by the following equation:
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There is an obvious analogy between Eq. (12) and
the dispersion equation obtained in the one-electron
tight binding method: the structures of these expres-
sions are identical. However, there are important dis-
tinctions as well: first, the local energies Ωn include
(unlike the one-electron energies ελσ) intracell Cou-
lomb interactions; second, the band index n of a quasi-
particle is determined by a pair of indices of the initial
and final states (differing from the band index λ of free
electrons); third, the band structure of quasiparticles
depends (via the occupation factors F(n)) on the density
of electrons, temperature, and external fields; and
fourth, a one-electron rigid band model cannot be
developed for quasiparticles.

For determining the occupation numbers and the
factors F(n), it is necessary to solve an equation for the
chemical potential. In the X representation, this equa-
tion can be written as

(13)

where  is the occupation number for the mth
term of dN configuration at the f site. Each term of dN

contributes N electrons to their total number Ne . A solu-
tion of this equation for FeBO3 at T = 0 appears as

for all m and N ≠ 5, and as

for N = 5. For the other d5 configurations, the occupa-
tion numbers are zero. We take into account that, for S =
5/2 in a magnetically ordered phase, the term E5/2(d5) is
split with respect to the spin projection and only the
lowest sublevel is occupied in each sublattice (+5/2 and
–5/2 for sublattices A and B, respectively). Of course,
there are zero-point quantum spin fluctuations leading
to small population of the sublevels adjacent to S = 5/2
(Sz = 3/2); this small effect is considered below (see
Section 5).

Interatomic hopping in the antiferromagnetic phase
is suppressed by the spin–polaron effect [23]. For the
hops between nearest neighbors, the effective hopping
integral is determined by the product of occupation fac-
tors for the two sites belonging to different sublattices
(A and B) [24]. For the lowest Hubbard band, the effec-
tive hopping Hamiltonian tv differs from the one-elec-
tron integral t,

(14)

where  and  are the occupation numbers of
state |p〉  in the sublattices A and B, respectively; |+5/2〉

Ne N X f
mN mN,〈 〉 ,

f m N, ,
∑=

X f
mN mN,〈 〉

X f
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2 t2 XA

+5/2 +5/2,〈 〉 XA
+2 +2,〈 〉+( )=

XB
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and |+2〉  are the spin sublevels of the terms E5/2(d5) and
E2(d4) split with respect to the spin projection in the
internal molecular field. For the sublattice A, the level
|+5/2〉  is occupied (being the lowest sublevel), while for
the sublattice B (where the lowest level is |–5/2〉) the
level |+5/2〉  at T = 0 is unoccupied. Therefore, for

FeBO3 at T = 0,  = 0 and, hence, the
occupation numbers of all d4 and d6 sublevels are also
zero and the widths of the Hubbard bands are close to
zero too.

As a result, it is the poles of the local Green function
(11) that determine single-particle contributions of the
d-type to N(E). Figure 1 shows the lowest levels of the
d4, d5, and d6 configurations (the cross indicates the
occupied lowest sublevel of the term 6A1 of the Fe3+

ion). Nonzero occupation factors are inherent in the
transitions 6A1  d4 (hole creation) and 6A1  d6

(electron creation), but the matrix elements γλσ(n) given
by formula (10) are nonzero only when the difference
between the spins of terms |p〉  and |q〉  is 1/2. In the case
under consideration, this implies that nonzero spectral
weight and nonzero contribution to the density of states
N(E) will be only due to transitions between the lowest
terms of all configurations:

(15)

The energy levels Ωv and Ωc, or the energy band Ωv(k)
and Ωc(k) appearing with allowance for the weak inter-
atomic hopping are analogs of the lower and upper Hub-
bard subbands. In addition, it is of interest to consider the
quasiparticles for which the matrix element (10) differs
from zero, while the spectral weight in the ground state
is zero because of zero occupation numbers: such states
are referred to as virtual. The virtual states can acquire
nonzero weights upon a change in the electron config-
uration (e.g., in CuO2 layers after hole doping [12]) or
upon optical pumping of excited levels. For FeBO3, an
example of such a virtual d state is offered by a quasi-
particle with an energy of 

(16)

For comparison with experiment, it is necessary to
determine the model parameters as discussed below.
Previously, the optical absorption was studied sepa-
rately in various spectral intervals. For this reason, the
next section is devoted to the experimental absorption
spectrum of FeBO3 measured in a broad energy range,
E ≤ 3 eV, covering the entire bandgap width Eg0.

4. OPTICAL ABSORPTION SPECTRUM
OF FeBO3 IN A BROAD ENERGY RANGE

Previously [25–27], the optical absorption and the
magneto-optical Faraday effect in iron borate were

XB
+5/2 +5/2,〈 〉

Ωv E5/2 d5( ) E2 d4( ),–=

Ωc E2 d6( ) E5/2 d5( ).–=

Ωv' E3/2 d5( ) E2 d4( ).–=
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studied in the visible and near-infrared (1.0–2.3 eV)
spectral range. The results of analogous measurements
in the region of strong absorption (2.6–3.3 eV) were
reported in [4]. For the sake of convenience, we present
the absorption spectrum of FeBO3 measured in a broad
energy range.

FeBO3 single crystals were grown by V.V. Rudenko
by spontaneous crystallization from solution melt. The
crystals had the shape of thin hexahedral plates of a
greenish color. The thicknesses of plates selected for
the optical measurements were about 80 µm for the
former spectral interval and 20 µm for the latter, the
sample area in both cases being about 2 mm2. Orienta-
tion of the plates corresponded to the easy magnetiza-
tion plane, with the hard axis (coinciding with the opti-
cal axis of the crystal) being normal to the plate surface.
Thus, by applying a small external field parallel to the
plane of the crystal, it was possible to readily change
the magnetic moment direction in the plane. The optical
absorption spectra were measured using an automated
spectrometer in a temperature range from 80 to 300 K.

The combination of a high Néel temperature (TN =
348 K) and transparency in the visible spectral range
allows us to perform a detailed comparison of the opti-
cal absorption and magneto-optical effects in the trans-
mission mode in the region of three absorption bands
wit minimum energies. Our measurements revealed the
same three groups of absorption bands (A, B, and C,
Fig. 2) as those reported in [4, 25–27]. These bands can
be interpreted within the framework of the proposed
many-electron model as described below. The main dif-
ference of our interpretation consists in that, in addition
to the d–d transitions 6A1g(6S)  

4T1g(4G) (group A),
6A1g(6S)  

4T2g(4G) (group B), and 6A1g(6S)  
4A1g,

4Eg(4G) (group C), the C band contains contributions
due to the p–d transitions with charge transfer. We use
the data of Fig. 2 and the X-ray photoelectron spec-
trum [12] for determining the Coulomb parameters of
the model.
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Fig. 2. The optical absorption spectrum of a FeBO3 single
crystal measured at 83 K.
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Proceeding from expressions for the d–d exciton
energies, the parameters of A–C bands, and the addi-
tional peaks observed in the Kerr effect in terms of the
Racah parameters, it was found [28] that B = 680 cm–1

and ∆ ≈ 12700 cm–1 for FeBO3; from the same data, we
readily obtain C = 3160 cm–1. Note that these values
of B and C are somewhat lower than the analogous
parameters of the free Fe3+ ion, but the ratio C/B = 4.65
is typical. The crystal field parameter ∆ = 1.57 eV is
greater as compared to the result (∆ = 1 eV) of the band
calculations [12]. Using the known values of B and C,
we determine the positions of the lowest excited terms
of d5 configurations with spins 3/2 and 5/2 (see Fig. 1)
relative to the ground term 6A1 from the Tanabe–Sugano
diagrams [14]. The lowest terms of d4 and d6 configu-
rations are also schematically depicted in Fig. 1. Their
quantitative characteristics are not presented here
because, generally speaking, each dn configuration has
its own level (depending on the chemical potential)
from which the energies are measured. Moreover, even
determination of the positions of excited terms relative
to the lowest term for d4 and d6 configuration require
knowledge of the corresponding B and ∆ values.

Although the energies of these terms will not be
required below, we present here for reference the corre-
sponding energies determined from the Tanabe–Sug-
ano diagrams assuming that the B and ∆ for F4+, Fe3+,
and Fe2+ are the same (in eV):

Fe4+: E(5E) = 0, E(3T1) = 0.59, E(1T2) = 1.60,

Fe2+: E(5T2) = 0, E(1A1) = 0.17, E(3T1) = 0.76,

E(3T2) = 1.18.

At the same time, the difference E(dn+1)–E(dn) of the
energies of these terms has the meaning of energy
increment per added electron. A peak at this energy is
present on the density of single-particle states N(E). In
particular, for the lowest and highest Hubbard sub-
bands, we obtain

(17)

In FeBO3 at T = 0, the level Ωv is filled, while the
level Ωc is empty. This implies that the level Ωv deter-
mines the d-type peak in the experimental X-ray photo-
electron spectra or the X-ray absorption spectra.
Indeed, such a peak was observed in the X-ray photo-
electron spectra at a binding energy of 1.4 eV [12].
Measuring the energies of single-particle states from
the top of the valence band εv, we set Ωv–εv = –1.4 eV.

As can be seen from the optical absorption spectra,
the intensity of peak C is much greater than those of
peaks A and B. According to the commonly accepted
interpretation of this fact, peak C is formed not only by
d–d exciton (6A1  4A1), but makes a contribution due

Ωv εd 3∆/5 4V 4J ,–+ +=

Ωc εd 2∆/5– U 4V .+ +=
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to the p6d5  p5d6 transition with charge transfer. The
latter transition, reflecting the formation of a hole at the
top of the valence band and the filling of level Ωc , has
the energy Ωc–εv = 2.8 eV. Using the optical data, we
can also determine the Hund exchange parameter J.
The ground term 6A1 and the excited term 4A1 of the d5

configuration possess the energies (independent of the
crystal field) indicated in Section 2. The difference in
these energies, determining the exciton energy for
band C (22600 cm–1), is E(4A1)–E(6A1) = 4J, from
which it follows that J = 5650 cm–1 = 0.70 eV. This
value of the Hund exchange is typical of 3d elements.

5. THE DENSITY
OF SINGLE-PARTICLE STATES IN FeBO3

A scheme of the density of states obtained for the
proposed model is depicted in Fig. 3. The diagram
shows empty s and p conduction bands with the bottom
of the band εc, filled valence s and p bands with the top
of the band εv , and the bandgap εc – εv = Eg0 = 2.9 eV.
Thin solid lines (with neglect of the electron dispersion
and damping, described by delta functions) show the
energies of local d quasiparticles. With allowance for
the spin–polaron suppression of interatomic d–d hop-
ping in the magnetically ordered phase (14), the dia-
gram shows only the local d maxima. A fluctuational
contribution to the formation of narrow d bands cer-

tainly exists, being estimated as  ~ t2n0, where n0 is the
concentration of zero-point quantum fluctuations [24].
For a three-dimensional isotropic antiferromagnet, the
typical value of S – 〈Sz〉  ≈ 0.078 [29] yields n0 = 0.03
and tv ≈ 0.035 eV, with the corresponding bandwidth of
2ztv ≈ 0.42 eV.

The upper filled d band Ωv (15) is situated below the
top of the valence band, while the lower empty d band
Ωc is below the bottom of the conduction band (inside
the bandgap). Thus, the dielectric gap is determined by
the excitations with charge transfer, p6d5  p5d6,
from the top of the valence band to the conduction Ωc
(charge transfer gap in terms of Zaanen et al. [30]. Note
that the energy of transitions between lower and upper
Hubbard bands,

(18)

can be considered as the effective Coulomb repulsion
energy Ueff. In the Hubbard model Ueff = U, but in our
case Ueff ≠ U (because of the orbital effects): Ueff = U +
4J – ∆. This parameter (in comparison to the d-band
width) determines the character of strong electron cor-
relations in the system studied. The experimental val-
ues of Ωv and Ωc presented in Section 4 yield Ueff =
4.2 eV. For J = 0.7 eV and ∆ = 1.57 eV, we obtain U =
2.97 eV and V = (U–J)/2 = 1.15 eV.

tv
2

Ωc Ωv– E2 d6( ) E2 d4( ) 2E5/2 d5( ),–+=
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A solution of Eq. (13) for the filled d5 configuration
is the chemical potential occurring between the empty
level Ωc and the filled level Ωv:

Measuring energies relative to the chemical potential
clearly reveals the electron–hole symmetry of the system:

The spectral weights of states Ωv and Ωc (with
allowance for spin) is unity, rather than two as in the
case of free electrons. In the diagram of Fig. 3, primed

symbols indicate the virtual levels  (16),  =

E  – E2(d4), and  = E(4A1) – E2(d4). The spec-
tral weight of these levels in the ground state is zero,

while the energies of transitions –Ωv, –Ωv, and

–Ωv coincide with the exciton energies εA, εB , and
εC. Under the conditions of optical pumping of the
terms 4T1, 4T2, and 4A1, their populations are no longer
zero and the spectral weights of the virtual levels ,

,  are proportional to the concentration of opti-
cally excited Fe3+ ions. Thus, the exciton transitions
inside the same dn configuration can be represented by
a virtual level in the one-electron density of states, and
the Ωv   transition corresponds to the appearance
of a hole in the band Ωv and electron in the band Ω'.

Let us consider interpretation of the optical absorp-
tion spectrum within the framework of the proposed
model. Since the exciton band A was used for determin-
ing the model parameters, the coincidence of theoreti-

µ 1
2
--- Ωc Ωv+( ) εd

U
2
---- ∆

10
------ 4V 2J .–+ + += =

Ωc µ– U
2
---- ∆

2
---– 2J+ Ωv µ–( ).–= =

Ωv' Ωv''

T4
2( ) Ωv''

Ωv' Ωv''

Ωv'''

Ωv'

Ωv'' Ωv'''

Ωv'

Fig. 3. Schematic diagram of the density of states in a mag-
netically ordered phase of FeBO3. The Fermi level is situ-
ated above the top of the valence band εv.
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cal and experimental energies for this band is trivial. At
low temperatures, band A exhibits splitting into compo-
nents A1–A4. Line A1 is interpreted as a magnon satel-
lite of the pure exciton line, and bands A2–A4, as mag-
non repetitions of the exciton–magnon line A1 [25].
Indeed, at low temperatures, the spin levels ES(dn) are
split by the internal molecular field I〈Sz〉  with respect to
the spin projection Mz:

(19)

At T = 0, only the sublevel Mz = +5/2 of the term 6A1 is
occupied, so that transitions to the lower sublevel
Mz = +5/2 of the 4T1 term require the participation of a
magnon.

As for the peak B, this absorption band corresponds
to the exciton with εB = E(4T2)–E(6A1). The band C con-
tains contributions due to exciton εC = E(4A1)–E(6A1)
and due to transitions from the top of the valence band
to the bands Ωc (excitation with charge transfer).

6. TEMPERATURE DEPENDENCE 
OF THE INTENSITY OF BAND A

The temperature dependence of the band structure of
local quasiparticles is revealed by general formula (7)
showing temperature blurring of the distribution func-
tion. However, magnetic materials exhibit a stronger
dependence due to interrelated electron and magnetic
subsystems. All the absorption lines A1–A4 shift by
40 cm–1 toward lower energies when the temperature
increases in the range from 30 to 200 K [28]. For the A1
component, relation (19) yields

As the temperature T grows, the value of 〈Sz〉  decreases
so that ∆E shifts toward smaller energies. The results
of measurements of the sublattice magnetization
〈Sz〉(T) [31] show that

Using this estimate and the shift of exciton A1,

it is possible to evaluate the Fourier transform of the
interatomic exchange integral for q = 0 as I ≈ 0.015 eV.
This value determines the Néel temperature and, in the
simplest variant of the mean field approximation,

This yields TN = 317 K, which is quite close to the
experimental value of TN = 348 K. We can also relate

ES dn Mz,( ) ES dn( ) I Sz〈 〉 Mz.–=

∆E T( ) E5/2 d5 +5/2,( ) E3/2 d5 +3/2,( )–=

=  ∆E 0( ) I Sz〈 〉 .+

Sz〈 〉 30 K( ) Sz〈 〉 200 K( )–

Sz〈 〉 30 K( )
---------------------------------------------------------------- 1

8
---.≈

∆E 30 K( ) ∆E 200 K( ) 5
2
--- I

1
8
---,×≈–

TN IS S 1+( )/3.=
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the magnetic and electron parameters by assuming that
I = Jz, where J is the indirect exchange interaction
between neighboring Fe3+ ions. Estimating this quan-
tity as

we obtain tv ≈ 0.05 eV. In Section 4, the fluctuation con-
tribution was estimated as tv ≈ 0.035 eV. Therefore, the
electron, magnetic, and optical properties of FeBO3 in
the proposed model exhibit a sufficiently good mutual
agreement.

7. CONCLUSIONS

A question can arise as to how correct are the results
of one-electron energy band calculations [12, 13] and
can these results be applied to a system such as FeBO3
with electron–spin correlations. Indeed, calculations
[12] performed in the approximation of the local spin
density functional ignore the correlation effects. As a
result, the Fermi level falls within a partly occupied d
band that implies the metallic state. Calculations [13]
performed in the generalized gradient approximation
take into account nonlocal corrections to the density
functional, although it is not clear whether this
approach adequately describes the regime of strong
electron correlations. Nevertheless, the antiferromag-
netic phase exhibits a dielectric state [13]. The calcula-
tion of pressure-induced changes in the magnetic state
also rather well reproduces the magnetic and structural
phase transitions observed recently [5, 6].

We believe that the results of band calculations in
the local density functional approximation can be used
as the initial information that should be supplemented
by corrections for the transition from one-electron
description of d electrons to local quasiparticles–excita-
tions between dn and dn + 1 terms. There are no reasons
for not believing the results of band calculations for the
s and p states of boron and oxygen. The bandgap width

 is close to the experimental value, the crystal field
∆ is 1.5 times the value according to the band theory,
and the d band width in this theory is significantly over-
estimated.

On the other hand, it is by no means possible to use
the level positions and occupation statistics obtained
for the one-electron d band. The strong electron corre-
lations not only split the d band into Hubbard’s sub-
bands, but (even more importantly) change the statistics
of quasiparticles of the d type. As was demonstrated
above, this gives rise to very unusual virtual states with
the spectral weights determined by the nonstoichiome-
try or the incident light intensity.

Recently, [32], we interpreted the phase transition
under pressure in FeBO3 within the framework of the
same model as being due to the intersection of the lev-
els of terms 6A1 and 4T2 caused by increasing crystal
field ∆. The model parameters in [32] were partly deter-

J 2tv
2/Ueff,∼

Eg
0( )
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mined using the results of band calculations [12] and
partly based on the optical data. Subsequently, it was
established that this approach can lead to ambiguous
results, since the theoretical and experimental values of
the same quantity are not independent. In this study, we
have used only experimental data for determining the
model parameters. As a result, the values of U ≈ 3 eV
and J ≈ 0.7 eV have proved to be much greater than
those obtained in [32]. However, the conclusions [32]
concerning the nature of the phase transition in FeBO3
under pressure remain fully valid.

To summarize, we have constructed a many-elec-
tron model of the band structure of FeBO3 taking into
account both the one-electron s and p states of boron
and oxygen and many-electron terms of Fe2+, Fe3+, and
Fe4+ ions formed under the conditions of strong intra-
atomic d–d correlations. The density of one-electron
states exhibits a set of narrow peaks related to local
quasiparticles of the d type on the background of
valence and conduction bands. Each quasiparticle cor-
responds to an electron with charge e, spin 1/2, and a
reduced spectral weight. Only the sum of the spectral
weights of all quasiparticles gives the one-electron
spectral weight. Using this approach, it is possible to
identify, with good fit to experiment, the main features
of the absorption spectrum of FeBO3 related both to
excitons and the electron excitations with charge trans-
fer. The parameters of electron and magnetic structures
are also well consistent.
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