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The ground state of a two-dimensional antiferromagnet with S = 1/2 interacting with acoustic phonons in a mag-
netic field was studied by the quantum Monte Carlo method in the nonadiabatic approximation. Oscillations of
the amplitude of the root-mean-square displacement of ions and the average phonon occupation number in a
magnetic field were found. Local maxima were revealed in the distribution functions of site magnetic moments
and ion displacements. The saturation magnetization was calculated as a function of the spin–phonon coupling
constant. © 2004 MAIK “Nauka/Interperiodica”.
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Phase separation in manganites and the formation of
strips in undoped cuprate superconductors are bright
effects in condensed state physics. Such effects associ-
ated with strip structures are also observed in the spin
system with four-spin interaction on a square lattice [1].
The model with four-spin interaction is a particular
case of a more general model of spin interaction with
acoustic phonons.

Additional incommensurable maxima in the mag-
netic and nuclear structural factors were calculated for
a ferromagnet with spin–phonon interaction on a
square lattice [2]. Several maxima were also found in
the density of states of bound spin–phonon quasiparti-
cles. Under the action of an external magnetic field, the
bound state of spins and phonons decays, resulting in
an increase in the average number of phonons. This
communication is devoted to the determination of the
behavior of the amplitude of the root-mean-square dis-
placement of ions in a magnetic field and the saturation
magnetization, which has the constant value ms = 1 for
systems with spin–phonon interaction within the adia-
batic approximation [3, 4].

Consider the ground state of a quasi-two-dimen-
sional magnet with the interplane exchange interaction
that is several orders of magnitude smaller than the
intraplane exchange interaction. Therefore, the consid-
eration will be restricted to the spin interaction between
the nearest neighbors and with the acoustic modes of
in-plane lattice vibrations. The Hamiltonian for a
0021-3640/04/7901- $26.00 © 20053
bound spin–phonon system in the harmonic approxi-
mation takes the form

(1)

where Sz, ± are the components of the spin operator S =
1/2 on a lattice site, ui, j is the ion displacement along
the lattice translation vectors, M is the ion mass, and K
is the elastic lattice constant; J > 0. Using the canonical
transformation

(2)

the variables ui, j will be converted to the phonon cre-
ation and annihilation operators b+ and b with the
momenta qβ = 2πn/L, n = 1, 2, …, L; β = x, y; and the
lattice constant a = 1. The transformed Hamiltonian has
the form
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The calculations involve the spin–phonon coupling
constant α normalized to the exchange interaction and
the distance r normalized to the lattice constant. As the
computational method, a quantum Monte Carlo method
was selected. The method combined the worldline
algorithm and the continuous time algorithm [5] on a
plane with the size N = 32 × 32 with periodic boundary
conditions at the temperature β = J/T= 10. The compu-
tational method was described in detail in [2].

The root-mean-square displacement of an ion is
determined as

In the ground state of a harmonic oscillator with α  0,
the number of phonons equals zero. Therefore, it is
important to calculate the variation of zero-point vibra-
tions due to the action of the magnetic system on the

+ α "
2MΩ q( )
--------------------- iqr( ) bq b q–

++( )exp
n m,
∑

qx qy,
∑

× 1 qxcos– i qxsin–( )[ Sn m, Sn 1+ m,

+ 1 qycos– i qysin–( )Sn m, Sn m, 1+ ] "Ω q( )bq
+bq,

q

∑+

Ω q( ) ω0 2 qx( )cos– qy( )cos– ; ω0
2K
M
-------.= =

u2〈 〉 "
2MN
-------------

2nq 1+
Ω q( )

-----------------.
q

∑=

Fig. 1. Field dependence of the magnetization in an AFM
and in a spin liquid for ω0 = J and α/αc2 = (1) 0, (2) 1, and
(3) 1.5. The inset displays the dependence of the saturation
magnetization on the normalized spin–phonon coupling
constant for ω0/J = (1) 1 and (2) 6.
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elastic subsystem; that is,  = 〈u2(α)〉  – 〈u2(α = 0)〉 .
Below, the normalized value

will be used. 
In this work, two characteristic cases of the interac-

tion of the spin and elastic subsystems are considered.
These are the case when the threshold of the band of
magnon excitations Wtm exceeds the threshold of the
band of phonon excitations Wtph, which corresponds to
the crossing of the dispersion curves of magnons and
phonons, for example, at ω0/J = 1, and the opposite case
when Wtph > Wtm for ω0/J = 6. Typical dependences of
the magnetization on the external magnetic field are
presented in Fig. 1 for the magnetically ordered state
and the magnetically disordered singlet state. The criti-
cal field of magnetic saturation for an antiferromagnet
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Fig. 2. Distribution functions of site ion displacements nor-
malized to the maximum displacement um at H = 0 for ω0 = J,
α/αc2 = 1, and H/J = (a) 0.5, (b) 2, and (c) 5.
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(AFM) is in good agreement with the known result
Hc = 2zSJ. If the spin–phonon coupling parameter
exceeds the critical value αc1, at which the isotropy of
spin–spin correlation functions becomes broken [2],
the saturation field increases and the saturation magne-
tization ms decreases. The corresponding values of ms

determined in the range of fields Hc < H < 2Hc are dis-
played in the inset in Fig. 1. Here, the spin–phonon cou-
pling parameters are normalized to the critical value
αc2, at which the long order disappears and a quantum
spin liquid is formed. In the region of low fields, the
magnetization grows linearly with increasing field even
in the spin liquid state but with a smaller slope of m(H).
This dependence qualitatively differs from the depen-
dence of the magnetization in the spin liquid with dimer
ordering, for which m(H)  0 at H < ∆, where ∆ is the
energy gap in the spectrum of triplet excitations [6].

The elastic stresses induced by the spin subsystem
have a hierarchical structure. The distribution function
of ion displacements depicted in Fig. 2a exhibits sev-
eral local maxima. In the region of local stresses, spins
form singlet states. The existence of states is confirmed
by the distribution function of the site magnetic
moment P(Sz  0) ≠ 0 (Fig. 3) and by the calculation
of the four-spin correlation function of parallel spin
pairs

(4)

The minima in the distance dependence of the four-spin
correlation function presented in Fig. 4 correspond to
the characteristic distance between the square-lattice
sites with either zero values of the magnetic moment or
an antiparallel arrangement of spins on the sites. Two
such distances are observed in a magnetic field H < Hc,
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Fig. 3. Distribution functions of site magnetic moments for
ω0 = J, α/αc2 = 1, and H/J = (1) 0.5, (2) 3, and (3) 5.
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and one minimum in R(r) exists in the saturation field.
The wave function of this state can be represented as a
linear combination of the singlet and triplet states of
dimers ψ ~ u(|↑↓〉  – |↓↑〉 ) – v |↑↑〉 , where the coeffi-
cients u and v  depend on the field and the spin–phonon
coupling parameter u2 ~ (1 + δ/J), v 2 ~ (1 – δ/J), and
δ = α(ui – ui + 1).

The local singlet state decays in the magnetic field
through the formation of two antiferromagnetic domain
boundaries in which the loss in the Zeeman energy of
the triplet with the effective exchange interaction J – δ
is compensated by the gain in the exchange energy of
the boundaries J + δ. Estimations of the energy with
regard to the exchange energy only for the longitudinal
spin components lead to the critical magnetization mc =

/2 , above which the local
stresses disappear.

4 3δ 1.5K δ/α( )2–+ 2( )

Fig. 4. Four-spin correlation functions for pairs of parallel
spins calculated according to Eq. (4) for ω0 = J, α/αc2 = 1,
and H/J = (a) 0.5, (b) 2, and (c) 5 in the (1) [100] and
(2) [010] directions.
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The field dependences of the average occupation
number of phonons and the root-mean-square displace-
ment of ions are displayed in Fig. 5. The oscillations in
the dependences Nph(H) and 〈U2(H)〉 are due to the decay
of the bound spin–phonon state 〈Sα … Sβbγ … bν〉 
〈Sα … Sβ〉〈 bγ … bν〉  in the magnetic field corresponding
to the effective bond energy. The resulting phonons
give rise to new local maxima in the distribution func-

Fig. 5. (a) Average occupation numbers of phonons and
(b) amplitudes of root-mean-square ion displacements

/  normalized to the maximum zero-

field value for (1) ω0/J = 1 and α/αc2 = 1 and (2) ω0/J = 6
and α/αc2 = 1.35 calculated as a function of the magnetic
field.
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tion of ion displacements (Fig. 2b). In the saturation
field, the dispersion of the distribution function
P(ui/umax) decreases. In this case, it can be approxi-
mated by a double-peaked Gaussian function; this can
also be done for the distribution function of site mag-
netic moments P(Sz) depicted in Fig. 3. Thus, in fields
H > Hc, the nonuniformity of the interrelated spin-den-
sity and elastic-stress distributions is retained.

In conclusion, the main results will be emphasized.
Interaction between the elastic and magnetic sub-
systems leads to a disordered single state with a hierar-
chical structure of ion displacements. The decay of
bound spin–phonon particles in magnetic fields induces
phonons, which are pinned at domain boundaries. As a
result, the field dependence of the amplitude of the
root-mean-square displacement has an oscillating
shape. In the saturation field, the nonuniformity of the
distributions of site magnetic moments and ion dis-
placements is retained, and the saturation magnetiza-
tion monotonically decreases with increasing spin–
phonon coupling constant.
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