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Abstract—Symmetry analysis is performed for the magnetic subsystem of copper metaborate, and a phenom-
enological model is proposed with two two-component order parameters that correspond to ferromagnetism

and antiferromagnetism vectors lying in the tetragonal plane of this crystal. Owing to the  space group of
symmetry of this crystal, the thermodynamic potential contains the Lifshitz invariant having the form of an anti-
symmetric product of the order parameters and their spatial derivatives. Analysis of this model shows that the
temperatures of ordering in the magnetic subsystem and of the formation of a spiral structure in it can be dif-
ferent. This fact allows numerical calculation of the temperature dependences of the spiral wave vector, mag-
netization, and intensities of first- and third-order magnetic satellites in the incommensurate phase that arise in
neutron elastic scattering, as well as the field dependence of the magnetization. The experimental data, includ-
ing a magnetic-field–temperature phase diagram, are satisfactorily described. The parameters of the phenome-
nological thermodynamic potential of the magnetic subsystem of copper metaborate are estimated. © 2004
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Copper oxide compounds exhibit a wide variety of
types of magnetic ordering and magnetic properties.
Such compounds include not only various collinear fer-
romagnets but also weak ferromagnets, spin glasses,
singlet magnets, ferrimagnets, and incommensurate
magnetic structures. Interest in the magnetic properties
of these materials has quickened due to the discovery of
high-temperature superconductors, in which magnetic
correlations are likely to play an important role in the
formation of a superconducting state.

As shown in [1–5], copper metaborate CuB2O4 has
especially interesting magnetic properties. According
to the neutron diffraction data and magnetic measure-
ments, the magnetic subsystem of this crystal trans-
forms from a paramagnetic state into an easy-plane
weak ferromagnet at TN = 20 K. However, the tempera-
ture dependences of the specific heat and magnetic sus-
ceptibility in the tetragonal plane of the crystal exhibit
specific features not only at TN but also at Ti = 10 K. The
magnetic peaks observed in neutron diffraction patterns
in the temperature range from TN to Ti coincide with the
lattice peaks, which reflects the coincidence of the
magnetic unit cell and the crystal unit cell [3]. There-
fore, the phase transition at TN corresponds to a wave
vector at the center of the Brillouin zone, q = 0.

The special high-resolution neutron diffraction
study reported in [3] showed that the crystal did not
undergo any structural phase transitions down to a tem-
1063-7834/04/4603- $26.00 © 20491
perature of 1.5 K. However, as the temperature
decreases below Ti, magnetic satellites appear in the
neutron diffraction patterns in symmetrical positions
with respect to the reciprocal-lattice points of the com-
mensurate phase. These satellites were attributed to a
periodic magnetic structure that is incommensurate to
the lattice structure along the tetragonal axis of the
crystal and represents a spin-density phase-modulated
wave [3]. The presence of higher order magnetic satel-
lites generated by the incommensurate phase in neutron
diffraction patterns near Ti indicates the formation of a
magnetic soliton lattice.

Studies of elastic neutron scattering in strong mag-
netic fields have shown that the incommensurate mag-
netic structure in copper metaborate undergoes a first-
order transition into a commensurate phase when the
magnetic field reaches a certain critical value that is
dependent on temperature [4, 5].

To the best of our knowledge, there is only one case
(described in [6] for the NiBr2 crystal) where the tran-
sition from a commensurate to an incommensurate
phase also occurs with decreasing temperature. Since
the symmetry of NiBr2 prohibits any Lifshitz invari-
ants, the mechanism of the appearance of the incom-
mensurate phase in the crystal is related to a possible
temperature dependence of competing exchange inter-
actions [6]. As will be shown below, the symmetry of
copper metaborate allows a small relativistic Lifshitz
invariant having an unconventional form. This invariant
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allows one to phenomenologically describe the unusual
sequence of phase transitions observed in copper
metaborate and a number of its magnetic properties.

2. INCOMPLETE THERMODYNAMIC 
POTENTIAL OF COPPER METABORATE

The x-ray diffraction and neutron diffraction studies
performed in [3] at room temperature showed that cop-

per metaborate belongs to the space group  and its
lattice parameters are a = 11.528 Å and c = 5.607 Å.
The unit cell contains twelve formula units. The Cu2+

ions occupy two nonequivalent positions; namely,
Cu(b) is in the 4b position with point symmetry S4
(0,0,1/2) and Cu(d) is in the 8d position with point sym-
metry C2 (0.0815, 1/4,1/8). The Cu(b) ion is at the cen-
ter of the square formed by four oxygen ions, and the
Cu(d) ion is surrounded by six oxygen ions localized at
the vertices of a distorted octahedron.

The point group  of the crystal contains eight
symmetry elements [7]:

 

This group has five irreducible representations. Four of
them (Γ1, Γ2, Γ3, Γ4) are one-dimensional, and one (Γ5)
is two-dimensional. The reductions of the magnetic
representations for the two nonequivalent copper sub-
lattices in copper metaborate have the form

 

The magnetic modes that transform according to irre-

ducible representations of the group  in the Cu(b)
copper ion sublattice are

 (1)

 (2)

The modes corresponding to the representations Γ1 and
Γ2 of the 4b position describe antiferromagnetic and
ferromagnetic ordering along the tetragonal c axis,
respectively, while the modes related to the representa-
tion Γ5 describe a noncollinear magnetic structure in
the tetragonal plane. For the Cu(d) copper ion sublat-
tice, the magnetic modes transform as follows:
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Γ1: Sb1z Sb2z,–

Γ2: Sb1z Sb2z,+

Γ5: Sb1x Sb2x Sb1y– Sb2y–,+( ),

Γ5: Sb1y Sb2y– Sb1x Sb2x–,( ).

Γ1: Sd1x Sd2y Sd3x– Sd4y,–+

Γ2: Sd1y Sd2x– Sd3y– Sd4x,+

Γ2: Sd1z Sd2z Sd3z Sd4z,+ + +
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The numeration of ions for this sublattice corresponds

to the sequential application of the  symmetry oper-
ation.

An incommensurate inhomogeneous phase should
be described by inhomogeneous magnetic modes. The
modes that are linear in the spatial derivative along the
c axis are

 

 

 

 

for the 4b position and

 

 

 

 

 

 

 

 

 

 

 

for the 8d position, where f ' ≡ df/dz.
Analysis of the neutron diffraction pattern [3] con-

sisting of 25 purely magnetic peaks showed that the
spins of both the Cu(b) and Cu(d) sublattices of copper
metaborate form a noncollinear magnetic structure in
the commensurate phase (Ti < T < TN). In the Cu(b) sub-
lattice, the antiferromagnetism vector in the tetragonal
plane is dominant, while the ferromagnetism vector

Γ3: Sd1y Sd2x Sd3y– Sd4x,–+

Γ3: Sd1z Sd2z– Sd3z Sd4z,–+

Γ4: Sd1x Sd2y– Sd3x– Sd4y,+

Γ5: Sd1x( Sd2x Sd3x Sd4x,+ + +

–Sd1y Sd2y– Sd3y– Sd4y ),–

Γ5: Sd1x( Sd2x– Sd3x Sd4x,–+

Sd1y Sd2y– Sd3y Sd4y ),–+

Γ5: Sd2z Sd4z– Sd1z Sd3z–,( ).

43
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Γ3: Sb1z Sb2z–( )',

Γ4: Sb1z Sb2z+( )',

Γ5: Sb1y– Sb2y– Sb1x Sb2x+,( )',

Γ5: Sb1x Sb2x– Sb1y Sb2y–,( )',

Γ1: Sd1y Sd2x Sd3y– Sd4x–+( )',

Γ1: Sd1z Sd2z– Sd3z Sd4z–+( )',

Γ2: Sd1x Sd2y– Sd3x– Sd4y+( )',

Γ3: Sd1x Sd2y Sd3x– Sd4y–+( )',

Γ4: Sd1y Sd2x– Sd3y– Sd4x+( )',

Γ4: Sd1z Sd2z Sd3z Sd4z+ + +( )',

Γ5: Sd1y–( Sd2y– Sd3y– Sd4y,–

Sd1x Sd2x Sd3x Sd4x )',+ + +

Γ5: Sd1y( Sd2y– Sd3y Sd4y,–+

Sd1x Sd2x– Sd3x – Sd4x )',+

Γ5: Sd1z Sd3z– Sd2z Sd4z–,( )',
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that is perpendicular to this vector and also lies in the
tetragonal plane, as well as the antiferromagnetism vec-
tor along the c axis, is relatively small. In the Cu(d) sub-
lattice, the antiferromagnetism vector along the c axis
is likely to be dominant, while the orthogonal antiferro-
magnetism vector in the tetragonal plane is relatively
small. A ferromagnetism vector in this sublattice has
not been detected within the limits of experimental
error. In the commensurate phase, the magnetic
moment of a copper ion in the 8d position is far less
than that of a copper ion in the 4b position. All vectors
indicated above correspond to the magnetic modes
found in the symmetry analysis.

In the incommensurate phase (T < Ti), the magnetic
structure is ordered in the tetragonal plane in the form
of a spiral along the c axis. For theoretical analysis of
the magnetic properties of copper metaborate in terms
of the phenomenological thermodynamic potential, it is
essential that its symmetry group not contain inversion

center . This operation enters only in combination

with 90° rotation about the c axis, namely,  and .
Therefore, the thermodynamic potential can contain a
Lifshitz-type invariant that should be bilinear in the
two-component order parameters and their spatial
derivatives and be responsible for the appearance of an
incommensurate phase.

Taking into account all eight single-component and
five two-component homogeneous magnetic modes in
the framework of the phenomenological approach
results in an extremely cumbersome expression for the
thermodynamic potential of the system. Therefore, it is
necessary to separate modes that allow one to describe
the basic experimental properties of copper metaborate.
Since ordering in the tetragonal plane is dominant, we
first consider the corresponding two-component
modes. The following circumstance should be taken
into account in this case. If we represent an arbitrary ith
homogeneous mode in the Γ5 representation in the form
ηi = (ηi1, ηi2), then the corresponding inhomogeneous

mode in this representation is  = (ηi2, ηi1)'. The

invariant ηi ·  =  +  turns out to be the
complete derivative with respect to z, and it is impossi-
ble to construct a Lifshitz invariant for a single mode.
In terms of the theory of representations, this feature is

due to the fact that the antisymmetric square { }
transforms according to the representation Γ2, the vec-
tor component parallel to the tetragonal axis transforms
according to the representation Γ3, and the perpendicu-
lar component transforms according to the representa-
tion Γ5 [8].

1

43
1

43
3

η i'

η i' η i1η i2' η i1' η i2
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2
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Let us represent the incomplete thermodynamic
potential as a functional of two two-component order
parameters, η1 = (η11, η12) and η2 = (η21, η22):

 (5)

where integration is performed over the entire volume
of the crystal, A11 = a11(T – T1), A22 = a22(T – T2), a11 >

0, a22 > 0, B22 > 0, D11 > 0, D11D22 > , ∇η α = (∇η α2,
∇η α1), and H1 is the field conjugate to the parameter η1.
The order parameters are assumed to be dependent on
spatial coordinates.

The parameters η1 and η2 are different linear combi-
nations of the magnetic modes transforming according
to the representation Γ5. The fact that the magnetic sub-
system of copper metaborate below TN is an easy-plane
weak ferromagnet spiraling below Ti allows one to
compose the parameter η1 from ferromagnetic modes
described by Eqs. (1) and (3) and the parameter η2 from
antiferromagnetic modes given by Eqs. (2) and (4). Cor-
respondingly, H1 = (H11, H12) = (Hx, –Hy). However, a
weak ferromagnet is characterized by T1 & 0 and T2 ≈ TN.
It should be noted that, unlike in [3], the order parameter
responsible for the transition at Ti is not chosen in a
explicit form in the thermodynamic potential (5).

The invariant with coefficient C12 is the known Lif-
shitz invariant [8] generalized to the case of two two-
component order parameters; namely, this invariant is
the antisymmetric product of different order parameters
and their spatial derivatives rather than the antisymmet-
ric product of the components of a single order param-
eter and their spatial derivatives.

Out of the invariants of the fourth order, only the
invariant related to the temperature dependence of the
antiferromagnetic parameter is retained in Eq. (5). The
invariants that are quadratic in the spatial derivatives of
the order parameters are taken in the simplest isotropic
form. The presence of the other order parameters in
Eq. (5), as will be shown below, is not a decisive factor
for describing the evolution of the structure of copper
metaborate with decreasing temperature from the para-
magnetic phase above 20 K to the incommensurate
phase below 10 K.
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3. EQUILIBRIUM STATE IN THE MODEL
In the absence of the Lifshitz invariant, the equilib-

rium state in the model described by phenomenological
potential (5) is homogeneous because of the positive
definiteness of the other inhomogeneous terms of the
potential. The Lifshitz invariant disturbs the stability of
this state along the tetragonal axis. To find a new equi-
librium state, we use the fact that higher order magnetic
satellites in neutron diffraction patterns in the absence
of an applied dc magnetic field were detected only in
the vicinity of the transition to the incommensurate
phase [2, 3].

Therefore, we represent the equilibrium state in a
zero applied field in the form

 (6)
η1 p11 qz ϕ11+( )cos p12 qz ϕ12+( )cos,( ),=

η2 p21 qz ϕ21+( )cos p22 qz ϕ22+( )cos,( ),=
P

where the amplitudes pαβ and the phases ϕαβ of a spatial
wave are independent of z. Putting ϕ11 = 0 in Eq. (6), we
set a reference point along the tetragonal axis without
loss of generality. The set of necessary conditions for an
extremum that is obtained from Eq. (5) by variation
with respect to the parameters given in Eq. (6) is rather
awkward. We give only its solution:

 (7)

 (8)

p11 A12q p21 C12q p22–( )/A11q,–=

p12 A12q p21 C12q p22+( )/A11q,–=

p21 p22=

=  Re A12q
2

C12q
2

A11qA22q–+( )/A11qB22[ ]
1/2

{ } ,
(9)q Re

4A11D11C12
2

A11D12 A12D11–( )2
–

D11D22 D12
2

–
---------------------------------------------------------------------------------
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 
 

1/2

A11–

D11
----------------------------------------------------------------------------------------------------------

1/2

 
 
 
 
 
 
 

,=
 (10)

where Aαβq = Aαβ + Dαβq2 and C12q = 2C12q.
Unlike the relationships in [9] considered for a one-

parameter potential, these relationships feature a possi-
ble difference between the temperature of ordering in
the magnetic system (p21 ≠ 0) and the temperature of
formation of a spiral structure in it (q ≠ 0). For example,
a spiral magnetic structure exists in the temperature
range (Tq1, Tq2) with

 (11)

where

 

 

Ordering occurs at the temperature

 (12)

Note that, in the incommensurate phase, according to
Eqs. (7), (8), and (10), the order parameter η1 forms an
elliptical spiral along the tetragonal axis and the order
parameter η2, a circular spiral. The ellipticity of the spi-
ral means that the magnetic moments deviate from the

ϕ11 ϕ21 0, ϕ12 ϕ22 π/2,= = = =
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H

tetragonal plane to form a wave of their components
that are parallel to the tetragonal axis.

We describe the state of the crystal in an external
magnetic field applied along the tetragonal plane with
the equations

 

 (13)

 

 

The passage to the case of a homogeneous applied field
(k = +0) in Φ{η} should be performed only after inte-
grating over the volume of the crystal.

The variational equations permit two solutions char-
acterized by the following common relations:

 

 

 (14)

 

η1 p11q( qz ϕ11q+( )cos p11k kz ϕ11k+( )cos+ ,=

p12q qz ϕ12q+( )cos p12k kz ϕ12k+( ) ),cos+

η2 p21q( qz ϕ21q+( )cos p21k kz ϕ21k+( )cos+ ,=

p22q qz ϕ22q+( )cos p22k kz ϕ22k+( )),cos+

H1 H kz( )cos H kz( )sin–,( ).=

p11q A12q p21q C12q p22q–( )/A11q,–=

p12q A12q p21q C12q p22q+( )/A11q,–=

p11k H A12 p21k–( )/A11,=

p12k H A12 p22k–( )/A11,=

ϕ11q ϕ21q ϕ11k ϕ21k 0,= = = =

ϕ12q ϕ22q ϕ12k ϕ22k π/2.= = = =
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One solution corresponds to a homogeneous state of
the magnetic system,

 (15)

where p2k satisfies the equation

 

The other solution describes an inhomogeneous
state,

 (16)

where p2q and p2k are determined from the set of equa-
tions

 

p21q p22q 0, p21k p22k p2k,= = = =
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Fig. 1. Temperature dependence of the wave vector of the
magnetic structure in copper metaborate at a zero applied
field. Points are experimental data and the solid line is cal-
culation.
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Fig. 3. Field dependence of the magnetization of single-
crystalline copper metaborate in the tetragonal plane at
various temperatures: (1) T = 4.2, (2) 5, (3) 8, (4) 9, (5) 10,
(6) 12, (7) 15, and (8) 18 K.
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The wave vector q is equal to zero or determined by
Eq. (9) depending on the stability of the corresponding
solutions (15) or (16). The stability of a solution
depends on the relation between the parameters of ther-
modynamic potential (5) and the value of the magnetic
field.

4. DISCUSSION OF THE RESULTS

The case where the temperatures of ordering in the
magnetic subsystem and of the formation of a spiral
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Fig. 4. Temperature–field phase diagram of copper metabo-
rate: (1) incommensurate phase and (2) easy-plane weak-
ferromagnetic phase.
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structure in it are different [and are given by Eqs. (11)
and (12)] corresponds to the properties of copper
metaborate described in Introduction. Indeed, for cer-
tain relations between the parameters of thermody-
namic potential (5), we can obtain Tp > Tq2 and a stable
homogeneous state (q = 0) at intermediate tempera-
tures. In this case, the temperature TN for copper metab-
orate can be related to Tp given by Eq. (12) and Ti can
be related to Tq2 given by Eq. (11). Let us compare the
relations derived for the temperature and field depen-
dences of the wave vector and of the order parameters
with the experimental data.

Figures 1–5 show the results of numerical calcula-
tion by Eqs. (6)–(16) using the following coefficients of
the incomplete thermodynamic potential (5):

 

 

 

 

 

 

 

As seen from Figs. 1–5, we failed to achieve excellent
agreement between the calculated and experimental
data; however, the calculated temperature and field
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Fig. 5. Calculated temperature dependences of the intensi-
ties of (1) the fundamental (Iq) and (3) the third (I3q) har-
monics of the antiferromagnetism vector in copper metabo-
rate at a zero applied field.
PH
dependences of the parameters of the magnetic sub-
system of copper metaborate are in satisfactory agree-
ment with the experiment.

In the incommensurate phase, the spontaneous con-
tribution to the magnetization of the whole crystal dis-
appears because of the spiral structure and only the
magnetization induced by an applied field is nonzero
(Fig. 2) [1, 2]. As the applied field increases, a first-
order transition to the easy-plane weak-ferromagnetic
phase occurs; namely, the component of the antiferro-
magnetism vector with q ≠ 0 vanishes in a jump at the
field Hc(T), whereas the component with a zero wave
vector increases in a jump [4, 5]. This behavior of the
magnetic subsystem also manifests itself in the magne-
tization (Fig. 3), which is related to the antiferromag-
netism vector through the Dzyaloshinskiœ invariant
(with coefficient A12). The presence of this invariant
corresponds to nonzero values of magnetization in a
zero field when its field dependence is linearly approx-
imated in fields above Hc(T) [1, 2]. Figure 4 shows the
experimental [2] and calculated temperature–field
phase diagrams in the temperature range 4–10 K.

The presence of higher harmonics in the spiral of the
incommensurate phase is characteristic of the tempera-
ture range where the Lifshitz invariant is comparable to
the anisotropy invariant [9]. For magnetic systems
described by a one-parameter thermodynamic poten-
tial, the wave vector q differs from zero even at the
ordering temperature (Ti = Tp) and the anisotropy
invariant (which is proportional to |η|4 for a tetragonal
crystal) becomes comparable to the Lifshitz invariant
(which is proportional to q |η|2) substantially below Ti,
near the transition to the low-temperature commensu-
rate phase. In copper metaborate, however, q increases
sharply from zero at Ti < Tp (Fig. 1) [3] and the invari-
ants can become comparable only in a narrow vicinity
of Ti or in the range where q varies smoothly. According
to the experimental data in [3], only the former possi-
bility is realized.

Figure 5 shows the calculated temperature depen-
dences of the intensities of the fundamental and third
harmonics of the antiferromagnetism vector at a zero
applied field. To describe them, we added the anisot-
ropy invariant

 

to thermodynamic potential (5). The intensity of the
fundamental harmonic is higher than that of the third
harmonic by a factor of approximately 30 (as observed
in [3] at T = 9.35 K) for E22 = 7 (G g)4/(erg cm)3. As
seen from Fig. 5, this difference increases as the tem-
perature decreases, which hampers the possible obser-
vation of the higher harmonic.

The sharp decrease in the intensity of magnetic
peaks (3, 3, ±q) at T = 1.8 K and the fact that thereafter
q does not vary with decreasing temperature [4, 5] can
be related to a lock-in transition to the commensurate

E22

2
------- η21

2 η22
2

Vd∫
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phase. This transition is accompanied by the sudden
appearance of a gap in the energy spectrum of excita-
tions that are transverse with respect to the order
parameter and by the corresponding decrease in the
correlation functions.
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