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Abstract—A model is proposed for calculating the thermodynamic functions and the equilibrium density of a
one-dimensional chain of molecules (atoms) adsorbed inside a narrow nanotube. The model considers both the
interaction between introduced atoms (molecules) and their interaction with the nanotube walls. The quantum-
mechanical effects resulting in discrete energy levels of a particle and in its smeared position between neighbors
are taken into account. In calculating the free energy at a nonzero temperature, the phonon contribution and the
particle transitions to excited levels are considered. The model is applied to calculate the thermodynamic
parameters of adsorbed hydrogen molecules inside extremely narrow single-wall carbon nanotubes of the (3,3)
and (6,0) type. It is shown that external pressure gives rise to a sequence of first-order phase transitions, which
change the density of adsorbed hydrogen molecules. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The experimental detection of carbon nanotubes in
1991 [1] has offered new opportunities for both tech-
nology and fundamental physics. The nanometer scale
and one-dimensionality inherent to such structures
have led to discoveries of interesting mechanical,
chemical, and electrical properties in them [2]. One of
the remarkable properties of carbon nanotubes (CNTs)
is their ability to adsorb various atoms or molecules.
The huge specific area of the CNT surface (as large as
several hundred square meters per gram) allows adsorp-
tion of large amounts of inert gases, hydrogen, metals,
water, etc. For example, it was experimentally shown in
[3] that CNTs can absorb more than 3.5 wt % of hydro-
gen, which makes them promising hydrogen accumula-
tors. It was also shown in [3] that this application of
CNT can be economically advantageous in the motor
industry even in the case of a hydrogen content of
≅ 6.5%.

One-dimensional chain systems in which particles
cannot jump over one another (single-file systems)
have been studied in a large number of papers [4–6].
Recently, such systems with an extremely small chan-
nel diameter (4–5 Å) have been successfully produced
by annealing zeolite AlPO4–5 whose channels con-
tained hydrocarbons [7, 8]. A quantum theory of molec-
ular separation was developed in [9, 10]. This theory
predicts that isotopes (especially those of hydrogen)
can be efficiently separated inside extremely narrow
channels at low temperatures, because isotopes differ in
the quantized energy levels of their transverse motion.
1063-7834/04/4603- $26.00 © 20584
In other theoretical papers, dedicated to the diffusion of
particles during their longitudinal motion in these sys-
tems, it was shown that diffusion is characterized by
extraordinary properties under these conditions. For
example, the mean square of particle displacements 〈z2〉
is proportional to the square root of the observation
time t1/2 rather than to the time t, as is usually the case.
This extraordinary property was convincingly proved
experimentally in [11]. Theoretical analysis of chain
systems is significantly complicated by the fact that the
positions of adsorbed particles strictly correlate with
the positions of all other particles in the system. For this
reason, analytical results are scarce or are obtained
using various approximations. The conventional
approximate techniques applied in such studies are the
Monte Carlo methods [diffusion Monte Carlo (DMC)
or canonical methods], the one-dimensional lattice gas
model, and the molecular-dynamics (MD) method. The
DMC method [12] allows one to perform quantum-
mechanical calculations of the thermodynamic param-
eters, correlation functions, and the equilibrium particle
density in terms of the wave function of the system.
However, since calculations are complicated, the tem-
perature effects are usually ignored in the DMC
method. The canonical Monte Carlo method [13]
makes it possible to include the temperature effects.
However, this method is based on the classical-mechan-
ical dynamics equations and interparticle interaction
potentials; hence, the quantum-mechanical effects are
ignored. Furthermore, any Monte Carlo computation
involves a large number (~106) of different configura-
tions, which complicates such calculations. The lattice
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gas model [6] is also based on classical interaction
potentials and disregards the quantum-mechanical
effects. Moreover, in this model, particles are posi-
tioned discretely at N equidistant sites separated by
potential barriers of height Eb. In this case, the fre-
quency of hopping to a neighboring site is calculated as
P = P0exp(–Eb/kBT), where the pre-exponential factor
P0 is dictated by the activation mechanism. Unfortu-
nately, this model is statistical and ignores actual
motion of adsorbate molecules inside the nanotube.
Moreover, the parameter P0 cannot be calculated within
the model and is fitted. The molecular dynamics meth-
ods [14, 15] (both the non-empirical one and that based
on empirical interaction potentials of atoms or mole-
cules) allow calculations of the dynamics of atoms in
terms of the forces acting on the atoms. A fundamental
constraint of any MD calculation is the fact that atoms
are assumed to obey the classical Newtonian equations
of motion rather than the quantum-mechanical laws.
This method disregards the zero-point oscillations of
atoms, energy quantization, and tunneling effect.
Therefore, any MD calculation cannot adequately pre-
dict even qualitative results for particle motion at a low
temperature when the particle kinetic energy is lower
than the potential barrier height, Ekin < Eb. We also note
that certain recent studies partially include the quantum
effects in the MD calculation scheme for simple sys-
tems [16, 17].

2. MODEL

This paper is devoted to a theoretical study of the
equilibrium properties of a one-dimensional chain of
atoms (molecules) interacting with one another via a
pair potential V(r) and with the tube walls via a poten-
tial Vtube(r). The study is based on a model that allows
calculation of the thermodynamic properties of such a
system at various temperatures and includes the quan-
tum effects. The interaction potentials are determined
using ab initio calculations. The behavior of hydrogen
molecules inside ultrathin single-wall carbon nano-
tubes of the (3,3) and (6,0) type [18] with a diameter of
4.07 and 4.70 Å, respectively, is studied. To verify the
assumption of strictly one-dimensional motion of
adsorbate molecules along the axis of each of these
nanotubes, molecular-dynamic calculations are carried
out for the hydrogen molecule dynamics inside the nan-
otubes at various temperatures. It is established that the
maximum value of the angle α between the moving
molecule and the nanotube axis is small (α ≅  5° for the
(3,3) tube at T = 200 K); hence, the motion of adsorbed
particles can be considered one-dimensional.

The model is based on the solution of the one-
dimensional Schrödinger equation for a particle
(hydrogen molecule) moving along the nanotube axis
in the potential that is the sum of the potentials V(r – Rr)
and V(r – Rl ) produced by the right-hand and left-hand
neighbors (identical molecules) of the particle, respec-
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tively, and of the potential produced by the nanotube
atoms:

 (1)

 (2)

where εi is the particle energy in state i. Both neighbors
of the particle are assumed to be fixed. This case corre-
sponds to the mean-field approximation, in which the
positions of the neighbor particles inducing the poten-
tial are replaced with their averages. The position of the
particle itself is described by the probability density
|Ψi(r)|2. In the case of T ≠ 0, where the particle can
transfer to the excited energy levels εi, the average
energy of the particle is calculated using the Gibbs dis-
tribution

 (3)

where Z is the partition function.
The interaction potential Vtube(r) between the mole-

cule and the nanotube walls is defined as the change
∆Etot in the total energy of the system consisting of the
nanotube and the hydrogen molecules at its axis (with a
sufficiently large distance between hydrogen molecules
to remove their interaction) as the molecule position
along the tube axis is varied. The maximum values (in
kelvins) of the potential Vtube(r) for the (6,0) and (3,3)
nanotubes are Vmax ≅  2300 and 211 K, respectively.
Such a significant difference is explained as follows. In
the (6,0) nanotube, atoms on its sides are opposite to
each other and their influences on the hydrogen mole-
cule are in phase. In the (3,3) nanotube, atoms on oppo-
site sides alternate and their influences on the hydrogen
molecule are in antiphase, which decreases the poten-
tial Vtube(r) amplitude by an order of magnitude. The
period of the potential Vtube(r) for the (6,0) tube is

longer than that of the (3,3) tube by a factor of . Sim-
ilarly, the interaction potential V(r – R) between the
hydrogen molecules is defined as the change in the total
energy of the system (consisting of the nanotube and
the hydrogen molecules at its axis) as the distance
between the molecules is varied.

The total energy Etot of the system is determined
from ab initio calculations using the VASP software
package [19, 20], based on an expansion in terms of
plane waves and on the Vanderbilt pseudopotentials
[21], within the density functional formalism. The use
of the plane-wave basis is appropriate for studying peri-
odic one-dimensional systems such as CNTs. The use
of the Vanderbilt pseudopotentials allows one to signif-
icantly decrease the number of plane waves necessary
for the calculation. In the calculations we carried out,
the maximum kinetic energy Ecut defined by the carbon
pseudopotential was 286 eV.

∇ 2

2m
-------– V r( )+ 

  Ψi r( ) εiΨi r( ),=

V r( ) V r Rl–( ) V r Rr–( ) V tube r( ),+ +=

U〈 〉 1
Z
--- εi εi

kBT
---------– 

  , Zexp
i

∑ εi

kBT
---------– 

  ,exp
i

∑= =

3

4



586 FEDOROV, OVCHINNIKOV
The Schrödinger equation for the adsorbate mole-
cule was solved by expanding the wave function with
respect to plane waves:

 (4)

In the calculations, we used the reciprocal lattice vec-
tors G with the maximum magnitude G ≤ Gmax = 50
(measured in units of 2π/a, where a = 2d; d is the dis-
tance between the adsorbed particles).

Figures 1 and 2 show the total potentials acting on
the hydrogen molecule inside the (3,3) and (6,0) nano-
tubes, respectively; the distance between the particles is
equal to 6 Å. The potentials consist of two parts. One of
them is defined by the interaction potential between the
particle and its left-hand and right-hand neighbors
(described by the steeply rising portions of the curve of
the total potential near the ends). The other part is
defined by the interaction potential between the particle
and the nanotube atoms and is responsible for oscilla-
tions of the potential with a relatively small amplitude.
Figures 1 and 2 also show the corresponding wave
functions Ψ1, 2, 3(r) of the three lowest levels of the
hydrogen molecule. We can see the difference in the
molecule localization, which is due to the difference in
the amplitude of the potential exerted on the particle by
the nanotube atoms. Inside the (3,3) tube, this potential
is weak and the particle is weakly localized and does
not correlate with the positions of the minima of the
potential. Inside the (6,0) nanotube, oscillations of the
potential are ten times larger and the particle is mostly
localized at the minima of the potential. These differ-
ences cause the average distances between hydrogen
molecules inside the (6,0) tube to be more sensitive to
external pressure than inside the (3,3) tube. External
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Fig. 1. Potential V(r) (in kelvins) and the wave functions
Ψi(r) for the lowest states i = {1, 2, 3} of an H2 molecule in
the (3,3) CNT.
P

pressure causes molecules to jump from one local min-
imum to another.

We studied the dependence of the equilibrium dis-
tance between particles on external parameters,
namely, the pressure p and temperature T. The equilib-
rium of the system at {p, T} ≠ 0 corresponds to a mini-
mum of the Gibbs thermodynamic potential Φ = 〈U〉  –
TS + PV = G + PV (where G is the free energy, S is the
entropy, P is the external pressure, V is the volume of
the system). Therefore, in addition to the internal
energy 〈U〉 , we should take into account the contribu-
tions from the entropy S and the volume energy PV. In
the free energy G (per adsorbate molecule), we
included two contributions. One of them is the free
energy G1 related to the average energy 〈ε〉  of the parti-
cles (determined at fixed positions of both neighbor
adsorbate molecules) and to the entropy S1 of their dis-
tribution over the energy levels; the other contribution,
Gph, is associated with deviations of the neighbors from
their equilibrium positions. These deviations cause a
change in the energy levels of the central molecule and,
hence, a change in the total energy of the system. This
change, in turn, gives rise to a restoring force acting on
the neighbor molecules and produces the contribution
Gph to the free energy associated with phonon vibra-
tions (with frequencies ωi) of the chain of adsorbed
molecules. Thus, we have

 (5)
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Fig. 2. Same as in Fig. 1 but for the (6,0) CNT.
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Since the adsorbed molecules in the model interact via
pair potentials, half the particle potential energy
[(1/2)〈Upot〉 = (1/2)〈E – Ekin〉] should be subtracted from
the total internal and free energies (〈U〉, G1) in order to
avoid counting the pairs twice. The particle kinetic energy

in state i is calculated as  = 〈 (r)| – |Ψi(r)〉.

The phonon frequencies ωi(r, T) are calculated from
the dispersion relation for phonons in a one-dimen-
sional chain of particles of mass m mutually spaced at
a distance d and interacting via the forces characterized
by elastic constants f(r, T). The result is

 (9)

 (10)

The elastic constants f(d, T) are calculated for various
temperatures, and the intermolecular distances d, by
considering the displacement ∆ of a particle positioned
between two neighbors. The energy levels εi of the
neighbors and, therefore, their average energies 〈U(r ±
∆)〉  and the total energy of the system vary in the second
order with respect to ∆, giving rise to phonon vibra-
tions. It should be noted that, although the model is
based on the mean-field approximation, in which the
positions of both neighbors of the particle are assumed
to be fixed, the inclusion of the phonon contribution Gph
in the free energy partially eliminates the disadvantages
of this approximation. In this case, perturbations in the
positions of the neighboring particles with respect to
their average positions are taken into account in the har-
monic approximation.

The energy levels εi of a particle and, hence, the free
energy per adsorbed particle depend on the phase rphase
of the periodic potential Vtube(r – rphase) exerted on the
particle by the nanotube atoms, εi = εi(rphase). Therefore,
we should perform Gibbs averaging of εi over various
phases rphase. Since the phases rphase of the potential
Vtube(r – rphase) acting on neighboring particles are
mutually correlated, this correlation should be correctly
taken into account in the averaging. To this end, for
each value of the average interparticle distance d, a
cluster (chain of neighbors) of N particles is selected so
that the phases of the potential Vtube(r – rphase) acting on
the first and last particles in the cluster are identical (the
accuracy was 1/20 of the interatomic distance in the
nanotube). Generally, this required setting approxi-
mately ten particles in the cluster. Then, positions i of
interior particles in the cluster are varied to minimize
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the total free energy Gcl of the cluster and to calculate
the average free energy of a particle:

 (11)

 (12)

 (13)

 (14)

These energies 〈G(d, T)〉  for hydrogen molecules inside
both nanotubes are shown in Figs. 3 and 4. We note that
the contribution of phonons to the free energy vanishes
at certain interparticle distances l for which the force
constants f(l, T) are negative, which gives rise to the
free-energy oscillations in Figs. 3 and 4.

By calculating the internal and free energies of parti-
cles and the Gibbs thermodynamic potential Φ = Φ(P, T)
at various temperatures and average intermolecular
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Fig. 3. Dependence of the average Gibbs free energy 〈G(d,
T)〉  of a H2 molecule on temperature T and interparticle dis-
tance d in the (3,3) CNT.

Fig. 4. Same as in Fig. 3 but for the (6,0) CNT.
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distances d and by minimizing Φ(P, T) at each value of
external pressure P, we found the equilibrium intermo-
lecular distances 〈d〉  = 〈d(P, T)〉  for both nanotubes
(Figs. 5, 6). We can see that the density of adsorbed
hydrogen molecules undergoes a series of phase transi-
tions at all temperatures (not exceeding the upper limit
Tmax = 300 K of the temperature range covered in this
study) as the external pressure increases (up to 0.2 kbar).
The transitions are caused by the fact that, as the pres-
sure increases, the hydrogen molecules begin to jump
from deeper to less deep minima, since the change
∆(PV) in the contribution from the volume energy to
Φ in this case becomes larger than the change in the
free energy in the local minima. We can see from
Figs. 3 and 4 that the number of local minima in the
(6,0) nanotube is larger than that in the (3,3) tube. A
particle jumps into these minima as the external pres-
sure increases, which results in a larger compressibility
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P

of hydrogen inside the (6,0) nanotube in comparison
with that for the (3,3) nanotube.

These results qualitatively agree with the experi-
mental data from [3] (although CNTs of a significantly
larger diameter were used in [3]). For example, the den-
sity of adsorbed hydrogen in [3] was .0.3 wt % at T =
290 K and P = 0.1 kbar. In our model, the calculated
density of adsorbed hydrogen at this pressure and tem-
perature is 0.42 wt %. In [3], the density of adsorbed
hydrogen increased essentially nonlinearly with pres-
sure, as was the case in our model.

3. CONCLUSIONS

A method for calculating the thermodynamic func-
tions and the equilibrium density of a one-dimensional
chain of molecules adsorbed inside a nanotube has been
proposed. The model takes into account the interactions
of incorporated molecules with one another (within the
mean-field approximation) and with the nanotube
walls. Data obtained in ab initio calculations using the
pseudopotential method in the framework of the den-
sity functional formalism were used to calculate all the
interactions. The model is quantum-mechanical and,
hence, correctly includes the quantization of the energy
levels of a particle and transitions of the particle to
excited levels. The contribution from phonons is taken
into account in calculating the free energy at nonzero
temperature. This contribution improves the mean-field
approximation and partly takes into account the contri-
bution from vibrations of particles with respect to their
average positions in the harmonic approximation. The
method can be readily generalized to the case of
adsorption in more complex systems (on two- and
quasi-two-dimensional surfaces). The method has been
applied to calculate hydrogen molecule adsorption in
(3,3)- and (6,0)-type CNTs. It was shown that under
pressure a sequence of first-order phase transitions
occurs in which the density of adsorbed hydrogen
changes in a jump.
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